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Abstract. Condition monitoring performed directly from the estimated
instantaneous angular speed has found some interesting applications in
industrial environments, going from bearing monitoring to gear failure
detection. One common way to estimate the angular speed makes use of
angular encoders linked to a rotating shaft. At the opposite of traditional
time-sampled signals, encoders describe purely angular phenomena often
encountered in rotating machines. However, rotating encoders suffer from
various geometric defects, corrupting the measurement with an angular
periodic signature. The angular synchronous average is a very popular
tool to estimate this systematic error, but is only adapted to constant
speed conditions, which is rarely the case in real applications. We pro-
pose here two different estimators to compute a robust estimation of the
synchronous component in variable speed conditions. The former, as a
data-driven approach, is based on a local weighted least squares method,
while the latter is a model-based approach. We study the behaviour of
our estimators with both simulations and experimental signals, and show
the relevance of the proposed method in an industrial context.

Keywords: Condition monitoring · Instantaneous Angular Speed · Syn-
chronous average · Non-stationary

1 Introduction

The use of Instantaneous Angular Speed (IAS) for condition monitoring is an
interesting alternative to more popular tools, such as vibration analysis or acous-
tic emissions. It has been applied in various industrial cases involving rotating
parts, such as wind turbines [2], engines [9, 11, 12], bearings [8], gearboxes [10] or
industrial machines [6]. One of the main feature of IAS is the angular localization
of the measurement, which gives an insight in common angle-linked phenomena
encountered when dealing with rotating machines. One technique to estimate the
IAS is to associate a high resolution angle measurement with a high frequency
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clock. The angle measurement can be achieved thanks to the combination of a
rotating encoder, such as zebra tapes or magnetic encoder, with the appropriate
sensor.

These types of encoders need calibration to deal with various sources of
errors, such as irregularity of tapes or distortion of the measured magnetic field,
both corrupting the angle estimation with repeatable error. However it is not
always possible to calibrate the sensor with the help of a reference angle. The
processings proposed in this paper address the case where no reference angle is
available.

One of the most popular tool to deal with this kind of repeatable error is
the Residual Angle Synchronous Average, which is the angular equivalent to
the Time Synchronous Average. A first step processes the estimated IAS by
synchronous averaging, and then the synchronous part identified as the unde-
sired error is removed. However, the synchronous average does not cope with
variable speed conditions, as we will demonstrate further. In [1] a Generalized
Synchronous Average is proposed, computing the synchronous average at differ-
ent regimes and using a kernel smoother to give a continuous speed-dependant
synchronous estimation. However, this kind of data-driven approach is limited
by the number of cycles needed to obtain a proper average for each regime. In
this paper we present two different approaches to retrieve a synchronous com-
ponent in variable speed, both based on a model developed in section 2. Section
3 presents local polynomial regression, a useful tool to deal with IAS measure-
ments. Section 4 introduces some notations relating to the synchronous average
operator, while sections 5 and 6 detail the two aforementioned methods to esti-
mate the synchronous component. Finally simulation results are given in section
7.

2 The Instantaneous Angular Speed Measurement

In this study we consider an angle measurement obtained from a rotating en-
coder and the paired sensor. One popular technology is the zebra-tapes encoder,
associated with an optical sensor, where white and black tapes are used alterna-
tively to give the angular position. The magnetic encoder is a robust alternative,
where the angular position is obtained from the magnetic field emitted by al-
ternation of magnetic poles of opposite polarity. This kind of measurement is
directly linked to the angular position of the shaft, with a given angular resolu-
tion often referred as a number of points per revolution.

The measurement of IAS is presented in [7], where both an elapsed-time
method and a pulse counter method are detailed. The approach used in this pa-
per is the elapsed-time method, where a high frequency clock is used to measure
the elapsed time between two pulses given by the angular encoder.

For now we consider a rotating shaft, which angular position (given by some

encoder) is known as θ(t). The rotating speed is noted ω(t) =
dθ

dt
. We suppose

that the shaft never stops, i.e. ∀t, ω(t) > 0. So there is a bijection between
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the angular and time domains: when the angle is given as function of time,
say θ = ϕ(t), the time is written equivalently as function of angle, which is
written t = ϕ−1(θ). In the angle domain, the rotating speed can also be given
for each angular position θ, with the equivalence ω(t) = ω(ϕ−1(θ)) = Ω(θ). In
fact this representation is quite natural in this application, where the encoder
is physically linked to the rotating part: the elapsed time is given between fixed
angle positions.

The time t can be directly expressed by integrating the rotating speed,

t(θ) =

∫ θ

0

dϕ

Ω(ϕ)
, (1)

and thus deriving the time allows one to retrieve the instantaneous angular speed
Ω(θ).

The angle is sampled with a regular step ∆θ, such that we obtain a set of
measurement (θn)n∈N = (n∆θ)n∈N. A classical approach is to differentiate the
previous equation ∆tn = t [θn+1]− t [θn], which in practice is called the “elapsed
time method”. The main drawback of this method (or similar ones based on
finite differentiation) is that differentiation is very sensitive to white noise, as
high frequencies would overwhelm the signal.

A different approach is developed here, based on local polynomial approxi-
mation. Intuition is the following: for a constant speed Ω(θ) = Ω0, integration
in eq.(1) leaves a linear term

t(θ)Ω=Ω0 =
θ

Ω0
. (2)

More generally, we can write

t(θ) = l(θ) + h(θ) (3)

as the sum of two components, one component l(θ) containing the very low
frequencies (for example, the trend in eq.(2)) and a second component h(θ) =
t(θ)− l(θ) containing the remaining high frequencies. We will discuss about the
discrimination between low and high frequencies later.

Let us now introduce the sampling errors corrupting the measurement. At
each angular position θn, a repeatable, deterministic error ξn is committed due to
the inner characteristics of the encoder, typically pole irregularities, or distortion
of the magnetic field. The sampling angles are noted

θn = θn + ξn. (4)

We assume that ξn is periodic over one revolution, i.e. when the measurement
is sampled at M ∈ N points per revolution, we have ∀n, ξn+M = ξn. The
expression of the corresponding time t

[
θn
]

is obtained from eq.(3),

t
[
θn
]

= l
[
θn
]

+ h
[
θn
]
. (5)
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For a small error ξn and a sufficiently smooth speed, i.e. the speed does not vary
too much regarding the sampling frequency, a first order approximation gives

t
[
θn
]

= t [θn] + ξn
dt

dθ
[θn] = l [θn] + h [θn] + ξnt

′ [θn] (6)

where we have introduced t′ [θn] =
dt

dθ
[θn] . We now see that the measurement

is corrupted with the periodic error ξn. The idea developed in this paper is to:

1. Get a smooth estimate of the speed Ω thanks to the polynomial approxima-
tion l(θ)

2. Estimate the repeatable angular error ξn
3. Use both of these informations to correct the original sampling.

3 A Local Polynomial Regression

The objective in this section is to estimate the low frequency content of the time
signal t

[
θn
]
, noted l

[
θn
]

in eq.(5). We fit t
[
θn
]

locally with a polynomial of low
order, a common method described as “lowess smoothing” in [4]. Let us explain
this choice in the scope of our study.

1. When the speed is constant, the “very low frequency component” is just an
affine function (see eq.(2)). It makes sense to use linear regression.

2. In real cases, when speed is slowly varying, the corresponding recorded time
t
[
θn
]

can be locally approximated by a low order polynomial, such as a line
or a parabola. The “local” property is determined by a tuning parameter
used to cope with different speed profiles.

3. Estimating the time t
[
θn
]

with a piecewise polynomial gives a smooth esti-
mate of the speed, free from measurement noise

4. Moreover the residual obtained by removing the very low frequency content
is not distorted and can be used for further analysis

As the local polynomial fit has already been investigated in the scope of IAS
estimation in [13], we will not discuss the detailed performances of the method
here. However, we recall the principle of this estimation as we use a similar idea
in section 5:

– The signal t
[
θn
]

is fitted with a polynomial of low order K, hence the linear
model

tn = Xβn + rn (7)

where at sample n ∈ N, the local span of size N = 2P + 1 of the signal

is noted tn =
[
t
[
θn−P

]
. . . t

[
θn+P

]]T
, βn ∈ RK+1 are the coefficients to

be estimated, rn is the residual, and X is the constant design matrix used
to estimate the low frequencies l [θn] sampled at regularly spaced angles
θn = n∆θ, such as
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X =


1 1 . . . 1
1 2 . . . 2K

...
...

...
...

1 N . . . NK

 ∈ RN×(K+1) .

– The least square estimate of coefficients β̂n ∈ RK+1 is given by

β̂n = arg min
β

(tn −Xβ)TW (tn −Xβ) (8)

with W a weighting matrix:

W =


w1 0 · · · 0

0 w2

...
...

. . . 0
0 · · · 0 wN

 ∈ RN×N

where the weights (wi)i∈1..N privilege samples near the current one; for ex-
ample the popular tricube function described in [4] by

∀i ∈ {1 . . . N}, wi =

(
1− |P − i|

3

P 3

)3

.

A simple derivation along β in eq.(8) gives the well known formula

β̂n =
(
XTWX

)−1
XTW tn . (9)

– The residual is computed from the middle of the fit Xβ̂n, which is given by
the P th sample r

[
θn
]

= t
[
θn
]
−
(
1 P . . . PK

)
β̂n.

The fit gives a noise free estimation of the signal t
[
θn
]
, approximated locally

by a polynomial l̂ [θn] at the center of the span,

∀n ∈ N, l̂ [θn] =
(
1 P . . . PK

)
β̂n (10)

and a residual, obtained from 6 by a simple substraction

r
[
θn
]

= t
[
θn
]
− l̂ [θn] ' h [θn] + ξnt

′ [θn] . (11)

The least squares estimator β̂n in eq.(9) shows that the local polynomial
regression can be viewed as a linear filter of span N . Thus the expression of
r
[
θn
]

in (11) is just a high-passed filtered version of t
[
θn
]
. The order K of the

polynomial and the span N are chosen according to the specifications of the user,
determining the “local” nature of the fit, or equivalently the cut-off frequency
the filter (see fig. 1).

We present two different ways to estimate the error ξn: the first one presented
in section 5 is a data-driven approach, where ξn is used as a local regressor to
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Fig. 1: The transfer function associated to the polynomial regression filter de-
scribed in eq.(11), comparison between polynomials of orders K = 1 and K = 2

estimate the modulation t′ [θn]. The second one presented in section 6 is a simple

derivation of the angular error ξn using the filtered version of the time l̂ [θn] (see
eq.(10)). Both of our methods rely on the synchronous average operator, a tool
presented in the following section.

4 The Angle Synchronous Average

The synchronous average is a popular tool dealing with periodic components.
Let us introduce some notations describing the associated operator.

4.1 The Synchronous Average Operator

We note M ∈ N∗ the number of points per revolution, a.k.a. the resolution of the
encoder. One central operation in the following parts is the synchronous average,
which is an average over several revolutions. We define for every discrete signal
s the synchronous averaging operator

∀k ∈ {1 . . .M}, ms[k] = lim
T→+∞

1

T

T∑
p=1

s[k + pM ] . (12)

Note that for M = 1, ms is simply the mean operator. The synchronous
average ms is a vector of RM ; the operator is linear, and for a M−periodic
signal s̃ we have

∀k ∈ {1 . . .M}, ms̃[k] = s̃[k] . (13)

The main property of the synchronous average is that it only captures com-
ponents which frequencies are integer orders: in the frequency domain, the syn-
chronous average operator can be seen as a comb filter at every integer orders[3].
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Using the linearity of the synchronous average operator, a direct consequence
is that every signal can be written as a sum of two components, the synchronous
average and the non-synchronous component v in which every integer frequency
have been removed,

s = ms + v . (14)

4.2 Separating Synchronous Components

In fact the synchronous average cannot be directly applied on the raw time signal
t
[
θn
]
. Indeed it would be biased due to the fact that it is a finite duration signal,

containing a trend and low frequencies that would not be averaged to vanish in
the synchronous estimation.

For this reason we use the residual r
[
θn
]

obtained after the local polynomial
fit presented in the previous section (see eq.(11)), which behaves like a high pass
filter. In the following paragraphs, we present two different approaches to get rid
of the periodic error ξn in the raw signal.

Since h is the high frequency content of t (see eq.(6)) it is centered, and to
simplify the interpretation we use the hypothesis that it does not contain any
synchronous component, both conditions required to have mh [θn] = 0.

In this case we can apply the synchronous average to eq.(11), and using the
linearity of the operator and the M -periodicity of ξn we get

mr

[
θn
]

= mh [θn]︸ ︷︷ ︸
=0

+ξnmt′ [θn] = ξnmt′ [θn] . (15)

Note that t being a time counter, we have t′(θ) > 0 and thus mt′ [θn] >
0. In real cases the synchronous components are not separated from the error
ξnt
′ [θn], this is why any attempt to correct the periodic error will also remove

the synchronous components.

5 Synchronous Regression

The first proposed estimator uses the fact that the periodic error ξn is mod-
ulated in amplitude by the term t′ [θn] (see eq.(11)). In the vibration analysis
scope, Daher[5] has made some attempt to compute a synchronous average in
variable speed with a least square approach. However a polynomial basis is used
to describe the amplitude modulation of the synchronous average, while we rely
on our first order model and use the synchronous average as the only predictor
for the least square estimation.

The idea is then to use a synchronous average on the residual r
[
θn
]

as a local
linear fit. The model adopted is very similar to the first polynomial fit presented
in section 3, except that we replace the polynomial basis expansion with the
synchronous average mr

[
θn
]

as the regressor. This time we use a vector of span
M for each sample n ∈ N∗, noted
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rn =
[
r
[
θn−P

]
. . . r

[
θn+P

]]T
where for sake of simplicity, we have assumed a odd number of samples

M = 2P + 1 per revolution.
Looking at eq.(15) we notice that ξn is proportional to mrn , which leads us

to the local model

rn = Yαn + hn (16)

where

αn ∈ R2, Y =


1 mr

[
θn−P

]
1 mr

[
θn−P+1

]
...

...

1 mr

[
θn+P

]
 ∈ RN×2 .

Note : we have considered mr

[
θk
]

for any k ∈ N∗ by using its value modulo
M , and used the column of 1 in Y as an intercept.

Using the same weighting matrix W as in section 3, with weights defined by
the tricube function privileging samples at the center of the span, we minimize
the least square weighted loss function

α̂n = arg min
α

(rn − Yα)TW (rn − Yα) .

The same formula is obtained to estimate the coefficients

α̂n =
(
Y TWY

)−1
Y TWrn .

Finally we compute the residual from the center of the fit Y α̂n, which is
given by

h [θn] = r
[
θn
]
−
(
1 mr

[
θn
])

α̂n .

6 Direct Estimation of the Synchronous Component

A direct way to obtain the residual r [θn] is to estimate the angular error ξn. In
the second method that we propose, we simply use eq.(15) to remark that

ξn =
mr

[
θn
]

mt′ [θn]
. (17)

We need to get an estimation of t′ [θn], which is homogenous to an inverse
of a speed. It seems that we are back to the initial problem, where we had to
estimate an instantaneous speed from noisy measurement; however here we got
a low pass filtered version of the time signal t, thanks to the polynomial fit
presented in section 3. The fit gave us a noise free estimation l̂ [θn] that we can
differentiate, for example
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t′ [θn] ' l̂ [θn+1]− l̂ [θn−1]

2∆θ
. (18)

The main advantage of this method is that it provides us directly an estima-
tion of the error pattern ξn.

The corrected signal is then

h [θn] = r
[
θn
]
− ξnt′ [θn] . (19)

7 Simulation

In order to compare the different approaches presented in this paper, we have
simulated the output of an encoder rotating at variable speed. The object of the
study being the estimation of the angular error caused by the encoder, we have
simulated a pattern of error periodic over one revolution (figure 2a). A magnetic
encoder has been considered, the angular error being caused by both the pole
irregularities and the distortion of the magnetic field. The given error must be
divided by the number of pole pairs to obtain the overall angular error.
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Fig. 2: An error pattern used to simulate the time jitter polluting the speed
measurement; the jitter is modulated in amplitude as the speed is growing.

A constant acceleration has been simulated, the speed varying from 500 rpm
to 5500 rpm in 10 s. The sampling frequency has been set to Fs = 100 kHz to
avoid any distortion, and the angle has been computed by simple integration.

The speed measurement is finally obtained thanks to the elapsed-time method.
On fig. 2b we have computed the time jitter obtained by subtracting the time
corresponding to ideal positions θn. We can observe a periodic pattern linked to
the angular error, and modulated in amplitude as stated in eq.(6).
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The classical synchronous average is not able to capture the jitter in this
context (fig. 3): the pattern modulated in amplitude by the speed variations is
not periodic and thus the residual component is still polluted. In another hand,
both synchronous regression (in red) and model based approach (in yellow) result
in a very small residue.
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Fig. 3: The residual obtained after synchronous averaging : in blue the classical
SA, in red the synchronous regression presented in section 5 and in yellow the
model based approach presented in section 6. Results are given as a percentage
of the maximum time jitter introduced in fig.2b.

8 Conclusion

We have presented two methods to estimate the synchronous component in In-
stantaneous Angular Speed signals. Contrary to the classical synchronous av-
erage, these methods cope with the variable speed case. They have been used
in this study to estimate and correct the periodic errors introduced by a rotat-
ing encoder. However, due to their averaging principle, these approaches do not
discriminate components of same frequency (or multiple of the same frequency).

The advantages of these methods are their robustness and their simplicity,
relying on very few parameters : the span width is the main tunable parameter,
and it is directly interpretable as a cut off frequency. Thus they are a privileged
tool in an industrial context.

One perspective could be to adapt the tuning of these parameters auto-
matically, minimizing some given criterion on the data. Standard methods like
cross-validation would then give the optimal parameters for each dataset.
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