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Abstract

We investigate one-dimensional periodic chains of alternate type of par-
ticles interacting through mirror symmetric potentials. The optimality of
the equidistant configuration – also called crystallization – is shown in var-
ious settings, at any scale and at high density. In particular, we prove the
crystallization at any scale for neutral and non-neutral systems with inverse
power laws interactions, including the three-dimensional Coulomb poten-
tial. We also prove the crystallization at high density for Lennard-Jones
type interactions and ionic screened potentials involving inverse power laws
and Yukawa potentials. These high density results are derived from a gen-
eral sufficient condition based on a convexity argument. Furthermore, we
derive a necessary condition for crystallization at high density based on the
positivity of the Fourier transform of the interaction potentials sum.

AMS Classification: 82B05, 26A51, 74E15.
Keywords: Crystallization; Two-component systems; Convexity; Inverse power
laws potentials; Lennard-Jones potentials; Optimisation; Ionic crystals.

1 Introduction

In the theory of crystallization which is concerned with large systems of interact-
ing particles, it has been asked using energy minimization principles why many
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systems from materials science exhibit the spontaneous formation of ordered struc-
ture and in particular periodic structures (see e.g. [9] for a review). Such peri-
odic structures are observed in systems consisting of identical particles (such as
e.g. Coulomb gases, Bose-Einstein Condensates and Ginzburg-Landau vortices),
but also appear in models composed of different types of particles. For example
in ionic compounds (such as NaCl) periodicity is still commonly observed, even
though different attractive and repulsive interaction potentials between the ions
are present (see e.g. [44]). Motivated by these observations, we consider prototypi-
cal one-dimensional models consisting of different types of particles and investigate
necessary and sufficient conditions for the optimality of equidistant configurations.

Systems with different types of particles also arise in other models such as e.g.
chains of interacting magnetic dipoles (e.g. [40, 5], see also Fig. 2). Also the
interaction of stripe type magnetic domains in thin ferromagnetic films can be
described in this setting, where the sign of the interaction energy between two
interfaces in this model depends on the number of in-between interfaces so that
this model can be viewed as a system of alternating particles of two kinds [33,
Theorem 2.2.3]. We also note that while one-dimensional model systems do not
occur commonly in nature, they can be created by confinement (see e.g. [39]). We
also would like to note that the type of models investigated in this paper might
also be interesting for biological models related to swarming and flocking between
different species (although in a dynamical, higher dimensional setting, see e.g.
[12, 11, 28]). The semi-empirical potentials we consider in this paper are also used
in social interactions to study group behaviour, see e.g. [29, 37].

For one-dimensional systems of identical particles, Ventevogel and Nijboer [45, 46,
47] have derived several results about the optimality of the equidistant configura-
tion. In their work, interacting potentials are radially symmetric and correspond to
semi-empirical potentials used in molecular simulations (see e.g. [34, p. 624]). In
particular, they proved the optimality of the equidistant configuration for convex
interaction potentials and Lennard-Jones-type potentials (also called “Mie poten-
tials”) among periodic configurations. A similar result by Radin [19] shows the
optimality of an equidistant configuration for the classical (12, 6) Lennard-Jones
potential, when the number of points – added alternatively to both sides of the
configuration – goes to infinity. Another recent result by Bandegi and Shirokoff
[4, Sect. 6.1] gives numerical evidences for the global optimality of the equidis-
tant configuration for some values of the density and the parameters of the Morse
potential using convex relaxation. The only crystallization result for several kind
of particles was proved by Radin in [36]. Using three different radially symmetric
short-range interaction potentials, he proved the minimality of a two-dimensional
binary quasiperiodic configuration. Furthermore, one-dimensional systems involv-
ing power-laws and two kind of species have been numerically studied in [26] in a
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different perspective, changing the species ratio and considering interaction only
between species of the same kind. We note that similar studies have been made
in dimension two for dipolar (inverse power law) interaction [2] and the Yukawa
potential [3]. Periodicity of solutions has also been investigated for other one-
dimensional systems e.g. in [31, 48, 38, 25].

For higher dimensional systems, partial progress has been made for special poten-
tials or in restricted settings. In dimension two, the optimality of the triangular
lattice has been proved for radially symmetric short-range interaction potentials
[22, 35, 17, 27] as well as a long-range perturbation of them [43]. In dimension
d ≥ 3, only few crystallization results are known [41, 16]. Quantum models in-
volving nuclei and electrons have also been studied. Blanc and Le Bris [8] proved
the periodicity of the ground state for the one-dimensional Thomas-Fermi-von-
Weizsäcker energy. Furthermore, for the two-dimensional Thomas-Fermi model,
assuming the periodicity of nuclei’s positions, the first author and Zhang [7] proved
the optimality of the triangular lattice among Bravais lattices at any scale. We
note that a different perspective has been taken by Born in [10] where the opti-
mality of the alternate rock-salt charge configuration is proved for a given one-
dimensional lattice configuration; we refer to [6] for a generalization of this result
to higher dimensions and to more general interaction potentials. Some related
results on pattern formation for the Ohta-Kawasaki energy can e.g. be found in
[1, 13, 14, 15, 20, 21, 24].

In the present paper, once the charges are fixed, as well as the interaction between
species, we show the optimality of the equidistant configuration at any scale or at
high density, among one-dimensional periodic configurations of alternating species
in different settings. The novelty of the paper consists in the systematic analysis
for the ground state energy of alternating two-particle systems. We assume re-
pulsive interaction at short distances between different species in order to avoid a
degeneracy of the ground state. We will also show that in the neutral Coulomb
case or in the power-law case, the equidistant configuration is the unique maxi-
mum of the real energy (i.e. when charges of different (resp. same) signs attract
(resp. repel) each other). We note that the model considered is chosen as a simple
prototype model. More general, it would be interesting to derive conditions for
periodicity in higher-dimensional systems, to consider systems of more than two
different particles or to consider the case of different ratio between the involved
species.
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2 Setting and statement of main results

We consider one-dimensional alternating chains of particles of two types, located
at the positions xi ∈ R for i ∈ Z (see Fig. 1). Since we are interested in the
case when the interaction energy between different types of particles is attractive,
we will assume that the different particles are ordered alternatively. For technical
reasons, we also assume that the particles positions are 2N periodic for a large
number N :

Definition 2.1 (Configurations and energy).

(i) For N ∈ 2N and ρ > 0, we denote the class of alternating configurations
with density ρ and N points per period by

AρN =
{
X = (xi)i∈Z : x0 = 0, xi < xi+1 and xi+N = xi + ρ−1N for all i ∈ Z

}
.

The equidistant configuration eρ ∈ AρN is given by eρ := (kρ)k∈Z. It is
assumed that the particles of type 1 are located on even positions x2j, j ∈ Z
while the particles of type 2 are located on odd positions.

(ii) We assume that particles of type i, j interact by the interaction potentials
fij : R → R for i, j ∈ {0, 1}. The functions fij are assumed to be mirror
symmetric, i.e. fij(−x) = fij(x). The associated energy is then denoted by

EF(X) :=
1

N

N∑
n=1

∞∑
k=−∞
k 6=n

fεnεk(xk − xn),

where F = (f11, f22, f12) and where εi = 1 if i ∈ 2Z + 1 and εi = 2 if i ∈ 2Z.

Figure 1: Example of periodic configuration X ∈ Aρ8.

We consider two notions of minimality of the equidistant configuration:

Definition 2.2 (Minimality at any scale or at high density). We say that X ∈ AρN
is a minimizer of EF at any scale if λX is a minimizer on AρλN for any λ > 0. We
say that X ∈ AρN is a minimizer at high density if there is λ0 = λ0(ρ,N) > 0 such
that λX is a minimizer on AρλN for all λ > λ0.
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We start with a necessary condition for the optimality of the equidistant configu-
ration at high density, inspired by Ventevogel and Nijboer’s result [47]. We recall
that the Fourier transform of a mirror symmetric function f ∈ L1(R) in terms of

the cosinus is given by f̂(k) = 1√
2π

∫
R f(x) cos(kx)dx.

Theorem 2.3 (Necessary condition for high density crystallization). Suppose that
the functions fij ∈ C2(R)∩L1(R) are mirror symmetric and strongly tempered for
any i, j ∈ {1, 2}, in the sense that there exists r0, C, η > 0 such that

|fij(x)| < C|x|−1−η for any |x| > r0. (2.1)

If eρ is a minimizer of EF at high density for any N ∈ 2N, then

f̂12(k) +
1

2

(
f̂11(k) + f̂22(k)

)
≥ 0 for all k ∈ R.

We notice that the positivity of the Fourier transform of all the potentials is not
necessary for the optimality of the equidistant configuration at high density. Note
that the notion of strongly tempered potentials has also been used by Süto [42].

In [45], Ventevogel proved the optimality of eρ at any scale when, for any i ∈ {1, 2},
fij = f is a convex function. The following theorem generalizes this result for two
kinds of alternating species and three kinds of interactions, and includes also some
classes of nonconvex functions:

Theorem 2.4 (Sufficient condition). Suppose that fij(x) = Φ+
ij(|x|) − Φ−ij(|x|)

where the functions Φ±ij : [0,∞) → R are convex and strongly tempered in the
sense of (2.1). Moreover, suppose that the function F is convex on (0, η] for
η ∈ (0,∞], where

F (r) := 2Φ+
12(r)−

∞∑
k=1

(
Φ−12((2k − 1)r) + Φ−22(2kr) + Φ−11(2kr)

)
. (2.2)

Then the equidistant configuration eρ is the unique minimizer of EF at high density
for any N ∈ 2N, and at any scale for any N ∈ 2N if η =∞.

As a consequence of Theorem 2.4, the Riesz potentials f11(x) = f22(x) = −f12(x) =
|x|−p are minimized by the equidistant configuration for any p > 1. The next result
improves this result to the case p ≥ p0 where p0 ≈ 0.655 is the unique solution of

ζ(1 + p0) + 1 = 21+p0 in (0,∞). (2.3)

Theorem 2.5 (Riesz potentials). Let

f12(x) = −f11(x) = −f22(x) =
1

|x|p
for p ≥ p0,

where p0 is the unique solution of (2.3). Then the equidistant configuration is the
unique minimizer of EF at any scale and for any N ∈ 2N.
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We notice that the alternation of species is the only case where the minimizer is
not degenerate. Indeed, if two points of the same kind are adjacent, it is sufficient
to merge them in order to get an energy equal to −∞. In order to improve The-
orem 2.4 for non-summable potentials, the use of the homogeneity is a key point.
In particular, Theorem 2.5 shows the maximality of the alternate equidistant con-
figuration (with charges ±1), at any scale, for the standard Coulomb energy.

In the following, we present some corollaries of Theorem 2.4 and point to some
connections to physical and biological models. The next result is aimed at sums
of power type laws (including e.g. the Lennard-Jones potential, but including
other situations as well). The results shows how near repulsion at small distance
of the interaction potential f12 governs the high-density crystallization of binary
alternate systems:

Corollary 2.6 (High density crystallization for inverse power laws). Let a2 > 0,
(a1, b1, b2, c1, c2) ∈ [0,∞), for any i ∈ {1, 2}, pi,mi, ni > 1, and

f12(x) =
a2
|x|p2

− a1
|x|p1

, f11(x) =
b2
|x|m2

− b1
|x|m1

, f22(x) =
c2
|x|n2

− c1
|x|n1

.

Then eρ is the unique minimizer of EF at high density for any N ∈ 2N if one of
the following holds:

(i) p2 = max{p1, p2,m1, n1},

(ii) p2 = m1 = max{p1, p2,m1, n1} and 2a2p2(p2 + 1) > 2−m1b1m1(m1 + 1)ζ(m1),

(iii) p2 = n1 = max{p1, p2,m1, n1} and 2a2p2(p2 + 1) > 2−n1c1n1(n1 + 1)ζ(n1).

In the p2 = m1 = n1 > p1 case, the same result can be proved with suitable
assumptions on the parameters, as well as for (a1, b1, c1) ∈ (−∞, 0]. As for The-
orem 2.5, we notice that the alternation of species is the only way to have a
non-degenerate minimizer, i.e. the minimal energy is not −∞. The same holds if
b2 = c2 = 0. An interesting application of this result is for f12(x) = a2

|x|p2 −
a1
|x|p1 ,

p2 > p1 > 1 a Lennard-Jones-type potential (also called “Mie potentials”). Then,
whatever the interactions between points of the same kind are, the fact that p2
is the only maximum exponent involved in this system, or a2 is sufficiently large,
ensures the crystallization at high density.

Remark 2.7. The proof of this corollary extends to more general sums of inverse
power laws and can also be extended to the case when a convex function gij is
added to each of the interaction potential fij, as long as gij is strongly tempered
for any i, j ∈ {1, 2} in the sense of (2.1) and lim inf |x|→0 g12(x) > −∞ (e.g. for
Buckingham potential [34, p. 155]).
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We now give a direct application of Theorem 2.4 for systems with alternating
charges 1,−α and power-law interaction potential, in the integrable case. We
can think about two kinds of individuals with “mass” 1 and α interacting via the
potentials x 7→ ±|x|−p. The following result shows that once p is fixed, there exists
an interval of α containing α = 1 such that the equidistributed configuration is
the only minimizer of the energy at any scale. It gives (non-optimal) bounds on
α such that this equilibrium is achieved. Another physical motivation are chains
of antiparallel dipoles which are common e.g. in the self-assembly of magnetic
nanoparticles [40, Fig. 1] and classical models of spin chains [5, Sect. 3] where this
regular structure reaches the equilibrium when there is no anisotropy field. Let
us consider the following toy model of a chain of dipoles dn, located at position
(xn, 0, 0) ∈ R3 for n ∈ Z. The dipoles are aligned in direction of the x2 axis with
alternating orientation and with magnitude given by |d2k| = 1 and |d2k+1| = α (see
Fig. 2). The interaction potentials, up to a positive constant, are then given by
f12(x) = −α|x|−3, f11(x) = |x|−3, f22(x) = α2|x|−3 ([18, Eq. (4.27)]). Hence, the
following result gives a condition on α and p such that the equidistant configuration
is the only maximum for this system at any scale.

Figure 2: System of alternate oriented dipoles of magnitude 1 and α.

Corollary 2.8 (Crystallization for the inverse power law: the non-neutral case).
Let f12(x) = α|x|−p, f11(x) = −|x|−p and f22(x) = −α2|x|−p, for p > p1 where
p1 ≈ 1.46498 > 1 is the unique solution of ζ(p1) = 2p1 and let α be such that

αp < α <
1

αp
, αp :=

2p −
√

4p − ζ(p)2

ζ(p)
. (2.4)

Then eρ is the unique minimizer of EF at any scale and for any N ∈ 2N.

As in the previous discussed cases, we notice that the alternation of species is the
only way to have a non-degenerate minimizer, i.e. the minimal energy is not −∞.
We also note that if α is sufficiently large (depending on any fixed p, N) then the
equidistributed configuration cannot be a minimizer of EF , the dominant interac-
tion being f22(x) = −α2|x|−p, which forces the particles to be close to each other.
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We also note the conceptual connection between this result and recent work by
Moser and Seiringer [30] related to the stability, under condition on the mass ratio
m ∈ [m2,m

−1
2 ], of a systems of two fermions of one species interacting with two

fermions of another species via point interactions.

For the interaction of ions, usually it is assumed that the interaction potential is
given by f(x) = ae−α|x| ± b

|x| (see e.g. [34, p. 624] or [23, p. 96]). Obviously,
this model is not adapted to the alternate chain of ions of opposite signs because
lim|x|→0 ae

−α|x|− b
|x| = −∞ (the repulsion at 0 is not strong enough). A good model

is to replace the Coulomb potential by the screened Coulomb potential (relevant
for ionic crystal, see [34, p. 624]). Then, the following result shows the optimality,
at high density, of the equidistant configuration for power-law repulsion at short
distance and screened Coulomb tail.

Corollary 2.9 (Ionic interaction). Let f12(x) = a2
|x|p−

a1e−µ|x|

|x| , f11(r) = b2
|x|q + b1e−µ|x|

|x|

and f22(r) = c2
|x|m + c1e−µ|x|

|x| , where for any i ∈ {1, 2} ai, bi, ci ∈ (0,+∞), p > 2,

(q,m) ∈ (1,+∞)2 and µ > 0. Then eρ is the unique minimizer of EF at high
density for any N ∈ 2N.

Remark 2.10. We note that this result can be generalized to sums of Yukawa

potentials, i.e. for any i, j ∈ {1, 2} fij(x) =
∑Nij

k=1 aijk
e−µk|x|

|x| , with suitable assump-

tions on aijk and µk. Neumann [32] proved that this kind of potential is the most
general law under which a set of electric charges can find a stable equilibrium.

3 Proofs

In the following proofs, we use the notation ` := ρ−1.

3.1 Proof of Theorem 2.3

We adapt the proof of [47, Sect. 2] to our case. By assumption, we have, for any
N and any 0 < ` < `0, EF(X) ≥ EF(eρ) for any X = (xi)i∈Z ∈ AρN . We choose in
particular xn := yn + n`− ε with yn = ε cos

(
2πmn
N

)
for some small ε > 0 such that

ε < `/2 and for some m ∈ Z. With this choice, we have x0 = 0 and xi+N−xi = N`
and xi+1 − xi > 0 for any i ∈ Z, and hence X ∈ AρN . Using Taylor expansion, by
minimality of the equidistant configuration we hence get, for ` sufficiently small,

N∑
n=1

∞∑
j∈Z

|yj − yn|2 f ′′εjεn((j − n)`) ≥ 0.
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Hence there is `1 > 0 such that for any ` ≤ `1 ≤ `0 and g(x) := 1
2
(f11(x) + f22(x)),∑

j∈Z

(1− cos ((2j − 1)q)) f ′′12((2j − 1)`) +
∑
j∈Z

(1− cos (2qj)) g′′(2j`) ≥ 0, (3.1)

where q := 2πm
N

. Since (3.1) holds independently of N , by an approximation
argument we also have for any x ∈ R and any 0 < ` ≤ `1 ≤ `0,∑

j∈Z

(1− cos(2jx− x)f ′′12((2j − 1)`) +
∑
j∈Z

(1− cos(2jx))g′′(2j`) ≥ 0. (3.2)

Thus, multiplying (3.2) by `, taking x = `k and dividing by k2, we get

0 ≤ lim
`→0

(
`
∑
j∈Z

(1− cos((2j`− `)k)

k2
f ′′12((2j − 1)`) + `

∑
j∈Z

(1− cos(2jk`))

k2
g′′(2j`)

)
=

∫
R

1− cos((2y − 1)k)

k2
f ′′12(2y − 1)dy +

∫
R

1− cos(2yk)

k2
g′′(2y)dy

= f̂12(k) + ĝ(k) for all k ∈ R\{0}.

3.2 Proof of Theorem 2.4

In this proof, for convenience, we write Φ±ij(x) instead of Φij(|x|). In view of the
assumptions of the theorem, for any X ∈ AρN we have,

EF(X) =
2

N

N∑
n=1

∞∑
k=1

Φ+
12(xn+2k−1 − xn) +

2

N

N/2∑
j=1

∞∑
k=1

Φ+
22(x2j+2k − x2j)

+
2

N

N/2∑
j=1

∞∑
k=1

Φ+
11(x2j−1+2k − x2j−1)−

2

N

N∑
n=1

∞∑
k=1

Φ−12(xn+2k−1 − xn)

− 2

N

N/2∑
j=1

∞∑
k=1

Φ−22(x2j+2k − x2j)−
2

N

N/2∑
j=1

∞∑
k=1

Φ−11(x2j−1+2k − x2j−1)

=: S1 + S2 + S3 − S4 − S5 − S6.

We estimate the six expressions using convexity of the functions and periodicity.
By convexity of Φ+

12 and with the notation dn := xn+1 − xn, we have

S1 =
2

N

N∑
n=1

Φ+
12(dn) + 2

∞∑
k=2

1

N

N∑
n=1

Φ+
12(xn+2k−1 − xn)
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≥ 2

N

N∑
n=1

Φ+
12(dn) + 2

∞∑
k=2

Φ+
12

(
(2k − 1)`

)
.

By convexity of Φ+
22 and Φ+

11, we furthermore obtain

S2 ≥
∞∑
k=1

Φ+
22

( 2

N

N/2∑
j=1

x2j+2k − x2j
)

=
∞∑
k=1

Φ+
22

(
2k`
)
,

S3 ≥
∞∑
k=1

Φ+
11

( 2

N

N/2∑
j=1

x2j+2k−1 − x2j−1
)

=
∞∑
k=1

Φ+
11 (2k`) .

For the terms S4, S5, S6 with a negative sign, we decompose the distances into
nearest-neighbours distances. By convexity of Φ−12 we get

S4 =
2

N

N∑
n=1

∞∑
k=1

Φ−12

( 2k+1∑
m=1

dn+m−1

)
≤ 2

N

N∑
n=1

∞∑
k=1

Φ−12((2k − 1)dn).

Similarly, by convexity of Φ−22 and Φ−11, we obtain

S5 =
2

N

N/2∑
j=1

∞∑
k=1

Φ−22

( 2k∑
m=1

d2j+m−1

)
≤ 2

N

N/2∑
j=1

∞∑
k=1

1

2k

2k∑
m=1

Φ−22(2kd2j+m−1)

≤ 1

N

N∑
n=1

∞∑
k=1

Φ−22(2kdn),

S6 =
2

N

N/2∑
j=1

∞∑
k=1

Φ−11

( 2k∑
m=1

d2j+m−2

)
≤ 1

N

N∑
n=1

∞∑
k=1

Φ−11(2kdn).

Thus, combining all these inequalities, we have

EF(X) ≥ 2
∞∑
k=1

Φ+
12 ((2k + 1)`) +

∞∑
k=1

Φ+
22 (2k`) +

∞∑
k=1

Φ+
11 (2k`) +

1

N

N∑
n=1

F (dn),

where F is given by (2.2). From this formula, it is clear that if F is convex on (0, η]
with η ∈ (0,∞], then for any 0 < ` ≤ `0 := η

N
∈ (0,∞], we have dn ≤ `N ≤ η for

any 1 ≤ n ≤ N . By Jensen’s inequality, we hence get

EF(X) ≥ 2
∞∑
k=1

Φ+
12 ((2k + 1)`) +

∞∑
k=1

Φ+
22 (2k`) +

∞∑
k=1

Φ+
11 (2k`) + F (`) = EF(eρ),

with equality if and only if X = eρ.
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3.3 Proof of Theorem 2.5

The main idea is to compare the interaction on distances |xi − xj| where i − j is
even with interactions of distances where i− j is odd. More precisely, we will use
the convex combination

xn+2k − xn =
(2k − j)

2k

2k(xn+2k − xn+j)
2k − j

+
j

2k

2k(xn+j − xn)

j
, (3.3)

which holds for all 1 ≤ j ≤ k. We set f(x) := |x|−p and use again the notation
dn := xn+1 − xn. Inserting (3.3) for j = 1 into f and exploiting convexity, we get

f(xn+2k − xn) ≤ 2k − 1

2k
f

(
2k(xn+2k − xn+1)

2k − 1

)
+

1

2k
f(2kdn).

Since f is homogeneous of degree −p, the last line implies

f(xn+2k − xn) ≤
(2k − 1

2k

)1+p
f (xn+2k − xn+1) +

( 1

2k

)1+p
f(dn). (3.4)

Averaging (3.4) over n and using periodicity of X, we get

1

N

N∑
n=1

f(xn+2k − xn) ≤ 1

N

N∑
n=1

((2k − 1

2k

)1+p
f(xn+2k−1 − xn) +

( 1

2k

)1+p
f(dn)

)
,

i.e. a bound on the interaction on even distances in terms of the interaction on
odd distances. Inserting this estimate into the energy EF yields the lower bound

EF(X) ≥ 2

N

N∑
n=1

∞∑
k=1

akf(xn+2k−1 − xn),

where the coefficients ak are given by

ak :=

1− 1
21+p
−
∑∞

j=1

(
1
2j

)1+p
= 1− 2−(1+p)(ζ(1 + p) + 1) for k = 1,

1−
(
2k−1
2k

)1+p
otherwise.

Since a1 : p 7→ 1 − 2−(1+p)(ζ(1 + p) + 1) is an increasing function on (0,∞), p0 is
unique and p ≥ p0 implies that ak ≥ 0 for all k ≥ 1. Applying Jensen’s inequality
and inserting 1

N

∑N
n=1(xn+2k−1 − xn) = (2k − 1)` yields the lower bound

EF(X) ≥ 2
∞∑
k=1

akf ((2k − 1)`) = EF(eρ),

which is strict unless X = eρ, corresponding to equality in Jensen’s inequality.
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3.4 Proof of corollaries

Proof of Corollary 2.6. We apply Theorem 2.4. We have

F (r) =
2a2
rp2
− (2p1 − 1)a1ζ(p1)

2p1rp1
− b1ζ(m1)

2m1rm1
− c1ζ(n1)

2n1rn1
,

F ′′(r) =
2a2p2(p2 + 1)

rp2+2
− (2p1 − 1)a1p1(p1 + 1)ζ(p1)

2p1rp1+2
− b1m1(m1 + 1)ζ(m1)

2m1rm1+2

− c1n1(n1 + 1)ζ(n1)

2n1rn1+2
.

In all three considered cases, limr→0 F
′′(r) > 0 by direct computation and hence

the second point of Theorem 2.4 can be applied.

Proof of Corollary 2.8 . We want to apply Theorem 2.4. We have

F (r) =
2α

rp
− (α2 + 1)ζ(p)

2prp
, F ′′(r) =

(
− ζ(p)

2p
α2 + 2α− ζ(p)

2p

)p(p+ 1)

rp+2
.

The discriminant of the polynomial Pp(α) := − ζ(p)
2p
α2+2α− ζ(p)

2p
is ∆ = 4

(
1− ζ(p)2

22p

)
,

which is positive if and only if ζ(p) < 2p, i.e. p > p1, because p 7→ 2p − ζ(p) is an
increasing function on (1,+∞). Then, Pp(α) > 0 if and only if α satisfies (2.4),
and the proof is completed.

Proof of Corollary 2.9. In order to apply Theorem 2.4, we compute

F (r) =
2a2
rp
− a1

r

∞∑
k=1

e−µ(2k−1)r

2k − 1
,

F ′′(r) =
2a2p(p+ 1)

rp+2
− a1

∞∑
k=1

(µ2(2k − 1)

r
+

2µ

r2
+

2

(2k − 1)r3

)
e−µ(2k−1)r.

Therefore, for the last three terms, using the fact that (respectively), for any x > 0,
ex ≥ x3

6
, ex ≥ x2

2
and ex ≥ x, we get

F ′′(r) ≥ 2a2p(p+ 1)

rp+2
− 9ζ(2)a1

µr4
=

1

rp+2

(
2a2p(p+ 1)− 9ζ(2)a1

µ
rp−2

)
,

since
∑∞

k=1
1

(2k−1)2 = ζ(2) −
∑∞

k=1
1

(2k)2
= 3

4
ζ(2). Thus, we have F ′′(r) > 0 for

rp−2 < 2a2p(p+1)µ
9ζ(2)a1

. The proof is completed by application of Theorem 2.4.
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[24] H. Knüpfer, C. B. Muratov, and M. Novaga. Low density phases in a uniformly
charged liquid. Comm. Math. Phys., 345(1):141–183, 2016.
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