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Maxime PIGOUa,b,∗, Jérôme MORCHAINa, Pascal FEDEb, Marie-Isabelle PENETc,
Geoffrey LARONZEc
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Abstract

Population Balance Models have a wide range of applications in many industrial fields as
they allow accounting for heterogeneity among properties which are crucial for some system
modelling. They actually describe the evolution of a Number Density Function (NDF) in a
Population Balance Equation (PBE). For instance, they are applied to gas-liquid columns
or stirred reactors, aerosol technology, crystallisation processes, fine particles or biological
systems. There is a significant interest for fast, stable and accurate numerical methods in
order to solve for PBEs, a class of such methods actually does not solve directly the NDF
but resolves their moments. These methods of moments, and in particular quadrature-
based methods of moments, have been successfully applied to a variety of systems. Point-
wise values of the NDF are sometimes required but are not directly accessible from the
moments. To address these issues, the Extended Quadrature Method of Moments (EQMOM)
has been developed in the past few years and approximates the NDF, from its moments, as
a convex mixture of Kernel Density Functions (KDFs) of the same parametric family. In the
present work EQMOM is further developed on two aspects. The main one is a significant
improvement of the core iterative procedure of that method, the corresponding reduction
of its computational cost is estimated to range from 60% up to 95%. The second aspect is
an extension of EQMOM to two new KDFs used for the approximation, the Weibull and
the Laplace kernels. All MATLAB source codes used for this article are provided with this
article.

Keywords: Extended Quadrature Method of Moments (EQMOM), Quadrature Based
Method of Moments (QBMM), Population Balance, Mathematical modelling, Gauss
quadrature

1. Introduction1

Population Balance Equations (PBEs) are particular formalisms that allows describing2

the evolution of properties among heterogeneous populations. They are used to track the3
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Nomenclature

Greek symbols

ε relative tolerance

λj j-th nested quadrature node

µ positive measure

ωj j-th nested quadrature weight

Ωξ NDF support

πk k order orthogonal polynomial

σ shape parameter

ξ random variable

ξi i-th main quadrature node

ζ realisability criteria on ]0,+∞[

Roman

a orthogonal polynomials recurrence
coefficient

A transition matrix to degenerated mo-
ments

b orthogonal polynomials recurrence
coefficient

H Hankel determinant

Jn n order Jacobi matrix

mk moment of order k

M realisable moment space

n number density function

ñ approximation of n

N order of moment set

N order of realisability

pk canonical moment of order k

P number of main quadrature nodes

Q number of nested quadrature nodes

wi i-th main quadrature weight

size distribution of fine particles [1]; the bubble size distribution in gas-liquid stirred-tank4

reactors or bubble columns [2, 3]; the crystal-size distribution in crystallizers; the distribution5

of biological cell properties in bioreactors [4, 5]; the volume and/or surface distribution of6

soot particles in flames [6, 7] or the formation of nano-particles [8], among other examples.7

A PBE describes the evolution and transport of a Number Density Function (NDF),8

under the influence of multiple processes which modify the tracked property distribution9

(e.g. erosion, dissolution, aggregation, breakage, coalescence, nucleation, adaptation, etc.).10

One often requires low-cost numerical methods to solve PBEs, for instance when coupling11

with a flow solver (e.g. Computational Fluid Dynamics software). Monte-Carlo methods12

constitute a stochastic resolution of the population balance and can be applied to such13

PBE-CFD simulations [9]. Similarly, sectional methods allow direct numerical resolutions of14

the PBE through the discretisation of the property space [10, 11]. They respectively require15

a high number of parcels or sections in order to reach high accuracy and are thus often16

discarded for large-scale simulations.17

An interesting alternative approach lies in the field of methods of moments. A PBE,18

which describes the evolution of a NDF, is transformed in a set of equations which describes19

the evolution of the moments of that distribution. Moments are integral properties of NDFs,20

the first low order integer moments are related to the mean, variance, skewness and flatness21

of the statistical distributions described by NDFs. This approach then reduces the number22
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of resolved variables to a finite set of NDF moments. It also comes with some difficulties23

when one must compute non-moment integral properties, or point-wise evaluations, of the24

distribution [12].25

To tackle these issues, one can try to recover a NDF from a finite set of its moments. In26

most cases, this reverse problem has an infinite number of solutions and different approaches27

exist to identify one or an other out of them. The simplest is probably to assume that28

the NDF is a standard distribution (Gaussian, Log-normal, . . . ) whose parameters will be29

deduced from its first few moments. Other methods that lead to continuous approximations,30

and which preserve a higher number of moments, are the Spline method [13], the Maximum-31

Entropy approach [12, 14, 15] or the Kernel Density Element Method (KDEM) [16].32

More recently, the Extended Quadrature Method of Moments (EQMOM) was proposed33

as a new approach which is more stable than the previous ones, and yields either continuous34

or discrete NDFs depending on the moments [1, 17, 18]. EQMOM has been implemented in35

OpenFOAM [19] for the purpose of PBE-CFD coupling. The core of this method relies on36

an iterative procedure that is a computational bottleneck.37

The current work focuses on EQMOM and develops a new core procedure whose compu-38

tational cost is significantly lower than previous implementations by reducing both (i) the39

cost of each iteration and (ii) the total number of required iterations.40

The previous core procedure [1] will be recalled before describing how it can be shifted41

toward the new –cheaper– approach. Both implementations will be compared in terms of42

computational cost (number of required floating-point operations) and run-time.43

Multiple variations of EQMOM exist, the Gauss EQMOM [17, 20], Log-normal EQMOM44

[21] as well as Gamma and Beta EQMOM [18]. Two new variations, namely Laplace EQ-45

MOM and Weibull EQMOM, are proposed along with a unified formalism among all six46

variations.47

The whole source code used to write this article (figures and data generation) is provided48

as supplementary data, as well as our implementations of EQMOM in the form of a MATLAB49

functions library [22].50

2. Quadrature Based Methods of Moments: QMOM and EQMOM51

2.1. Definitions52

Let dµ(ξ) be a positive measure, induced by a non-decreasing function µ(ξ) defined on53

a support Ωξ. This measure is associated to a Number Density Function n(ξ) such that54

dµ(ξ) = n(ξ)dξ. Let mN be the vector of the first N + 1 integer moments of this measure:55

mN =


m0

m1
...
mN

 , mk =

∫
Ωξ

ξkn(ξ)dξ (1)

Three actual supports will be considered: (i) Ωξ = ]−∞,+∞[, (ii) Ωξ = ]0,+∞[ and56

(iii) Ωξ = ]0, 1[. For each support, one can define the associated realisable moment space,57

MN(Ωξ), as the set of all vectors of finite moments mN induced by all possible positive58

measures defined on Ωξ.59
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A moment set is said to be “weakly realisable” if located on the boundary of the realisable60

moment space (mN ∈ ∂MN(Ωξ)). Otherwise, if located within the realisable moment space,61

mN is said to be “strictly realisable”.62

2.2. Quadrature Method of Moments63

EQMOM is based on the Quadrature Method of Moments (QMOM) that was first in-64

troduced by McGraw [23]. It is used to approximate integral properties of a distribution65

where only a finite number of its moments is known. By making use of an even number66

of moments 2P , one can compute a Gauss quadrature rule characterised by its weights67

wP = [w1, . . . , wP ]T and nodes ξP = [ξ1, . . . , ξP ]T such that:68 ∫
Ωξ

f(ξ)dµ(ξ) =
P∑
i=1

wif(ξi) (2)

holds true if f(ξ) = ξk, ∀k ∈ {0, . . . , 2P −1}. Otherwise, this quadrature rule will produce69

an approximation of the integral property. The computation of the quadrature rule (i.e.70

the vectors wP and ξP ) is of special interest for us, which is why its two main steps will be71

detailed.72

Any positive measure dµ(ξ) is associated with a sequence of monic polynomials (i.e. poly-73

nomial whose leading coefficient equals 1) denoted πk –with k the order of the polynomial–74

such that:75 ∫
Ωξ

πi(ξ)πj(ξ)dµ(ξ) = 0, for i 6= j (3)

These polynomials are said orthogonal with respect to the measure dµ(ξ) and are defined76

by:77

πk(ξ) =
1

ck

∣∣∣∣∣∣∣∣∣∣∣

m0 m1 · · · mk−1 mk

m1 m2 · · · mk mk+1
...

...
. . .

...
...

mk−1 mk · · · m2k−2 m2k−1

1 ξ · · · ξk−1 ξk

∣∣∣∣∣∣∣∣∣∣∣
(4)

with ck a constant chosen so that the leading coefficient (of order k) of πk equals 1, hence78

making πk a monic polynomial.79

It is known that monic orthogonal polynomials satisfy a three-term recurrence relation80

[24]:81

πk+1(ξ) = (ξ − ak)πk(ξ)− bkπk−1(ξ) (5)

with ak and bk being the recurrence coefficients specific to the measure dµ(ξ), π−1(ξ) = 082

and π0(ξ) = 1.83

Let Jn(dµ) be the n×n Jacobi matrix associated to the measure dµ. This is a tridiagonal84

symmetric matrix defined as:85
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Jn(dµ) =


a0

√
b1 0

√
b1 a1

. . .
. . . . . .

√
bn−1

0
√
bn−1 an−1

 (6)

The weights and nodes of the quadrature rule from Eq. (2) are given by spectral properties86

of JP (dµ). The nodes ξP of the rule are the eigenvalues of JP (dµ). The weights of the rule87

are given by:88

wi = m0v
2
1,i (7)

where v1,i is the first component of the normalised eigenvector belonging to the eigenvalue89

ξi. The computation of the quadrature rule (Eq. (2)) then relies on two steps:90

1. The computation of the recurrence coefficients aP−1 = [a0, . . . , aP−1]T and bP−1 =91

[b1, . . . , bP−1]T.92

2. The computation of the eigenvalues and the normalised eigenvectors of JP (dµ).93

Multiple algorithms are available in the literature to compute the recurrence coefficients:94

• The Quotient-Difference algorithm [25, 26]95

• The Product-Difference algorithm [27]96

• The Chebyshev algorithm [28]97

The Chebyshev algorithm was found to be the stablest one of the three [1, 28], its description98

is given in Appendix A.99

2.3. Extended Quadrature Method of Moments100

The QMOM method is well suited for the approximation of integral properties of the101

NDF, which is actually the main purpose of Gauss quadratures. However, in many appli-102

cations such as evaporation [12] or dissolution [29] processes, point-wise values of the NDF103

n(ξ) are required but not directly accessible from the moments. For that purpose, a method104

is needed to produce an approximation ñ(ξ) of the original distribution n(ξ), by knowing105

only a finite set of its moments.106

In a sense, one can consider that the Gaussian quadrature computed with QMOM ap-107

proximates n(ξ) as a weighted sum of Dirac distributions:108

ñ(ξ) =
P∑
i=1

wiδ(ξ, ξi) (8)

with the Dirac δ distribution defined by its sifting property109 ∫ +∞

−∞
f (ξ) δ(ξ, ξm)dξ = f (ξm) (9)
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For most applications, n(ξ) is expected to be a continuous distribution whilst QMOM110

yields monodisperse or discrete polydisperse reconstructions of n(ξ), with ñ(ξ) = 0 for all111

values of ξ except some finite number of these values.112

Many methods were suggested to tackle this problem and to propose a continuous recon-113

struction ñ(ξ) from a finite number of moments mN . Some of them are the Spline method114

[13], the Maximum-Entropy approach [14, 15, 12] or the Kernel Density Element Method115

[16]. Their properties will not be discussed here but one only underlines that they tend to116

be unstable, ill-conditionned, or have a high sensitivity to numerical parameters [13, 29, 30].117

In particular, none of them can handle the case of a weakly realisable moment set. Such118

a moment set is associated to a discrete (or degenerated) distribution and, in this specific119

case, the distribution provided by QMOM is the only possible reconstruction (see Eq. 8).120

Note that a failure –or instabilities– in a numerical method can compromise the integrity121

of large-scale simulations. For this reason, Chalons et al. [17], Yuan et al. [18] and Nguyen122

et al. [1] proposed a robust and stable method to tackle this reconstruction problem by han-123

dling both continuous approximations and discrete solutions. Their approach, the Extended124

Quadrature Method of Moments, approximates n(ξ) as a convex mixture of Kernel Density125

Functions (KDFs) of the same parametric family:126

ñ(µ) =
P∑
i=1

wiδσ(ξ, ξi) (10)

with127

• wi: the weight of the i-th node, wi ≥ 0,∀i ∈ {1, . . . , P}128

• ξi: the location parameter of the i-th node, ξi ∈ Ωξ,∀i ∈ {1, . . . , P}129

• δσ: a KDF chosen to perform the approximation, referred later to as the reconstruction130

kernel. σ is the shape parameter of the approximation.131

The computation of the weights wP = [w1, . . . , wP ]T, the nodes ξP = [ξ1, . . . , ξP ]T and132

the shape parameter σ from the moment set m2P is performed by the EQMOM moment-133

inversion procedure. The improvement of this procedure constitutes the core of this article134

and is detailed in section 3.135

Multiple standard normalized distribution functions can be used as the reconstruction136

kernel δσ (e.g. Gaussian, Log-normal, etc.). A list of them is given in Appendix B. All137

of these kernels degenerate into Dirac distribution if their shape parameters are sufficiently138

small:139

lim
σ→0

δσ(ξ, ξm) = δ(ξ, ξm) (11)

This allows EQMOM to be numerically stable in the case of a moment set m2P being on the140

boundary of the realisable moment space ∂M2P (Ωξ). Indeed, in such cases, the EQMOM141

approximation simply degenerates in a weighted sum of Dirac distribution and the definition142

given in Eq. 10 still holds true, with σ = 0.143
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EQMOM can also be used to compute integral properties of the NDF with high accuracy.144

This comes with the introduction of nested quadratures. The main quadrature proposes the145

following approximation of integral terms:146 ∫
Ωξ

f(ξ)n(ξ)dξ ≈
P∑
i=1

wi

[∫
Ωξ

f(ξ)δσ(ξ, ξi)dξ

]
(12)

Moreover, a quadrature rule can be used to approximate the bracketed integral in Eq.147

(12). This will be the nested quadrature that actually depends on the kernel δσ(ξ, ξm). For148

instance, Gauss-Hermite quadratures can be used to approximate integrals over a Gaussian149

kernel (see Appendix B.1). Nested quadratures then give the following approximation:150 ∫
Ωξ

f(ξ)n(ξ)dξ ≈
P∑
i=1

wi

Q∑
j=1

ωjf (g(σ, ξi, λj)) (13)

with Q the order, ωQ = [ω1, . . . , ωQ]T the weights and λQ = [λ1, . . . , λQ]T the nodes of the151

sub-quadrature. g defines the nodes of the nested quadrature from σ, ξi and λj. These152

nested quadratures are detailed for all KDFs in Appendix B and Appendix C.153

3. Moment inversion procedure154

The EQMOM moment-inversion procedure comes with analytical solutions for some ker-155

nels in the case of low-order quadratures. The one-node analytical solutions are detailed for156

all kernels in Appendix B. When they exist, the two-nodes analytical solutions are imple-157

mented in MATLAB code (see supplementary data) but are not detailed in this article. The158

current section is focusing on the numerical procedure used to compute the reconstruction159

parameters in absence of an analytical solution.160

The procedure proposed by Yuan et al. [18] and Nguyen et al. [1] is first recalled in section161

3.1. The section 3.2 details how their approach can be shifted toward a new convergence162

criteria that will be applied to the specific cases of163

• the Hamburger moment problem (section 3.3): NDF defined on the whole phase space164

Ωξ = ]−∞,+∞[165

• the Stieltjes moment problem (section 3.4): NDF defined on the positive phase space166

Ωξ = ]0,+∞[167

• the Hausdorff moment problem (section 3.5): NDF defined on the closed support168

Ωξ = ]0, 1[169

Some moment sets lead to ill-conditioned situations that need to be specifically handled170

by EQMOM implementations. These are addressed in section 3.6.171

3.1. Standard procedure172

Let mN be the vector of the first N + 1 integer moments of the measure dµ(ξ) = n(ξ)dξ,173

with N = 2P an even integer:174
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mN =


m0

m1
...
mN

 , mk =

∫
Ωξ

ξkn(ξ)dξ (14)

The EQMOM moment-inversion procedure aims to identify the parameters σ, wP =175

[w1, . . . , wP ]T and ξP = [ξ1, . . . , ξP ]T such that mN = m̃N with:176

m̃N =


m̃0

m̃1
...
m̃N

 , m̃k =

∫
Ωξ

ξkñ(ξ)dξ, ñ(ξ) =
P∑
i=1

wiδσ(ξ, ξi) (15)

For any value of σ, Yuan et al. [18] identified a procedure which leads to the parameters177

wP and ξP such that mN−1 = m̃N−1. The EQMOM moment-inversion problem has then178

been reduced to solving a scalar non-linear equation by looking for a root of the function179

DN(σ) = mN − m̃N(σ).180

The approach developed by Yuan et al. [18] and then improved by Nguyen et al. [1] is181

based on the fact that, for the KDFs used in EQMOM, it is possible to write the following182

linear system:183

m̃n = An(σ) ·m∗n (16)

where An(σ) is a lower-triangular (n+ 1)× (n+ 1) matrix whose elements depend only on184

the chosen KDF and on the value σ, whereas m∗n is defined as:185

m∗n =


m∗0
m∗1
...
m∗n

 , m∗k =
P∑
i=1

wiξ
k
i (17)

By their definition, the moments m∗n correspond to the moments of a degenerated dis-186

tribution (i.e. a finite sum of Dirac distributions), hence these moments will be referred as187

the degenerated moments of the approximation. Degenerated moments are defined in such a188

way that the vectors wP and ξP can be computed from m∗2P−1 using a Gauss Quadrature189

(see 2.2).190

At this point, one has the basis required to compute the objective function DN(σ) and191

to search for its root. The computation of DN(σ) from a vector mN is as follow (see also192

Fig. 1a):193

1. Compute m∗N−1(σ) = A−1
N−1(σ) ·mN−1.194

2. Compute the recurrence coefficients a∗P−1(σ) and b∗P−1(σ) by applying the Chebyshev195

algorithm to m∗N−1(σ).196

3. Use the recurrence coefficients to compute the Gaussian quadrature rule wP (σ) and197

ξP (σ).198
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4. Knowing the parameters σ, wP (σ) and ξP (σ) of the reconstruction, compute m̃N(σ),199

this can be done easily by:200

• Computing the N-th order degenerated moment of the approximated NDF:m∗N(σ) =201 ∑P
i=1 wi(σ)ξi(σ)N .202

• Multiplying the last line ofAN(σ) and the vector of degenerated moments: m̃N(σ) =203

[0, 0, . . . , 1] ·AN(σ) ·
[
m∗0(σ), . . . ,m∗N−1(σ),m∗N(σ)

]T
.204

5. Compute DN(σ) = mN − m̃N(σ).205

For each compatible KDF, it is possible to use the low order moments to compute an206

upper bound σmax so that the search of a root of DN is restricted to the interval σ ∈ [0, σmax].207

Then a bounded non-linear equation solver such as Ridder’s method can be applied to208

actually find the root of the function.209

Two specific cases were discarded in the previous description of the method. First, it210

happens that the function DN does not admit any root, in such a case the procedure is211

switched toward the minimisation of this function in order to reduce the error on the last212

moment of the approximation.213

Second, during the computation of DN(σ), one must compute degenerated moments214

from which the weights and nodes are extracted. If the degenerated moments m∗N−1(σ) turn215

out not to be realisable on the support Ωξ of the NDF, the quadrature performed on this216

vector will lead to nodes outside Ωξ, or even to negative/complex weights. Nguyen et al. [1]217

then suggest to check for the realisability of the degenerated moments, and if these are not218

realisable, to set m̃N(σ) to a arbitrarily high value such as 10100. This will force the non-219

linear equation solver to test a lower value of σ in order to bring back the vector m∗N−1(σ)220

within the realisable moment space. However note that this is only a numerical trick to221

converge toward the actual root, but DN(σ) is actually undefined as soon as m∗N−1(σ) is not222

realisable.223

3.2. A new procedure based on moment realisability224

The reversible linear system linking the raw moments of the approximation m̃N to its225

degenerated moments m∗N is such that a new objective function D∗N(σ) –whose root is the226

same as that of DN(σ)– can be formulated. Its computation is as follow (see also Fig. 1b):227

1. Compute m∗N(σ) = A−1
N (σ) ·mN .228

2. Compute a quadrature on the vector m∗N−1(σ) to obtain the vectors wP (σ) and ξP (σ).229

3. Compute m∗N(σ) =
∑P

i=1 wi(σ)ξi(σ)N .230

4. Compute D∗N(σ) = m∗N(σ)−m∗N(σ).231

Note that DN(σ) = D∗N(σ)×AN,N(σ). As shown in Appendix B for all kernels, diagonal232

elements of An(σ) are always strictly positive so the two objective functions do share the233

same roots.234

The benefit of this new objective function is that it only requires the matrix A−1
N (σ)235

instead of both the matrix A−1
N−1(σ) and the last line of AN(σ). This only increases the236

clarity of the method, but has hardly no effect on its numerical cost.237
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The point of this alternative approach is however to underline a crucial element for the238

new EQMOM implementation: we actually look for a value of σ for which m∗2P (σ) = m∗2P (σ).239

This implies that, for this specific searched σ value, the vector m∗2P (σ) reads240

m∗2P (σ) =


∑P

i=1 wiξ
0
i∑P

i=1 wiξ
1
i

...∑P
i=1wiξ

2P
i

 (18)

which is, by construction, the vector of the first 2P + 1 moments of the sum of P Dirac241

distributions.242

Under the condition that a P -node EQMOM reconstruction exists for the moment set243

m2P with σ > 0, wi > 0, ξi 6= 0, i ∈ {1, . . . , P}, the vector m∗2P (σ) will have the following244

specific properties:245

1. The vector m∗2P−1(σ) must be strictly within the realisable moment spaceMN−1(Ωξ).246

2. The vector m∗2P (σ) must be on the boundary of the realisable moment spaceMN(Ωξ).247

EQMOM procedure will then rely on the realisability of the vector m∗2P (σ) instead of248

the computation of the error on the last moment, this will be a cheaper approach.249

Situations were the EQMOM reconstruction exist but with σ = 0, or ∃i ∈ {1, . . . , P}, wi =250

0 or ξi = 0 are tackled in section 3.6 but are always based on checking the realisability of251

m∗2P (σ).252

The actual definition of the realisable moment space of order n, Mn, depends on the253

support Ωξ of the NDF. The three classical supports, corresponding to the Hamburger,254

Stieltjes and Hausdorff moment problems, come with different constraints on a moment set255

to ensure its realisability. The realisability criteria for each of these supports will then be256

detailed.257

Fig. 1 sums up the “standard approach” based on DN(σ), the shifted approach, based258

on D∗N(σ), as well as the new approach based on the realisability criteria of m∗2P (σ) for all259

three supports.260

3.3. Application to the Hamburger problem261

As stated in 2.2, it is known that the monic polynomials which are orthogonal to a262

measure dµ(ξ) = n(ξ)dξ satisfy a three-term recurrence relation (Eq. (5)) with ak and263

bk, k ∈ N, the recurrence coefficients specific to the measure dµ(ξ). The Favard’s theorem264

[31] and its converse [32] imply that the measure dµ(ξ) is realisable on Ωξ = ]−∞,+∞[ if265

and only if ak ∈ R and bk > 0, ∀k ∈ N.266

One looks for a value of σ such that the associated degenerated moments m∗2P−1(σ) are267

strictly realisable (i.e. within the moment space), and the moments m∗2P (σ) are weakly real-268

isable (i.e. on the frontier of realisability). Then, if the Chebyshev algorithm is used to com-269

pute the recurrence coefficients a∗P−1(σ) = [a∗0(σ), . . . , a∗P−1(σ)]T and b∗P (σ) = [b∗1(σ), . . . , b∗P (σ)]T270

from the vector m∗2P (σ), the condition of realisability can be written in terms of values of271

b∗P (σ): looking for the EQMOM reconstruction parameters with the Gaussian and Laplace272

kernels is equivalent to looking for a value of σ such as:273
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Figure 1: Comparison of the computation of convergence criteria based on (a) DN (σ), (b) D∗
N (σ) and (c)

the realisability criteria of the support Ωξ. CA: Chebyshev Algorithm. QC: Quadrature Computation. The
convergence criteria are highlighted in light blue. Inspired by Fig. 1 from Nguyen et al. [1].

• b∗k(σ) > 0, ∀k ∈ {1, . . . , P − 1}274

• b∗P (σ) = 0275

Fig. 2 makes use of the developments from Appendix B.1 and Appendix B.2, about276

the Gaussian and Laplace kernels respectively, to show the evolution of D6(σ), D∗6(σ) and277

b∗k(σ), k ∈ {1, 2, 3} for two sets of 7 moments (P = 3). This figure illustrates the fact that278

indeed the approaches based on DN(σ), D∗N(σ) and b∗P (σ) are equivalent as they share the279

same circled root.280

Let denote σk the root of bk(σ). One can notice that the root σk lies within the interval281

[0, σk−1]. We actually observed the existence of all roots σk, k ∈ {1, . . . , P} on numerous282

(about 106) randomly selected moment sets of N + 1 = 13 moments, and never observed an283

undefined root. The generality of this observation has not been mathematically proved, but284

it seems that indeed σk is always defined and always lies in σk ∈ [0, σk−1] , k ∈ {2, . . . , P}.285

σ1 is defined analytically.286

The previous observations were used to design a simple algorithm which allows identifying287

the root σP . This algorithm is based on the fact that it is possible to check whether a value288

σt is higher or lower than σP at low cost and with no prior knowledge of σP value:289

• If b∗k(σt) > 0, ∀k ∈ {1, . . . , P}, then σt < σP .290

• Otherwise, that is if ∃k ∈ {1, . . . , P}, b∗k(σt) < 0, then σt > σP .291

One can then use an iterative approach that will292
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Figure 2: Evolution of the different convergence criteria for both Gaussian (a and b) and Laplace (c and

d) kernels depending on σ value. The two initial moment sets are m
(1)
6 = [1 1 2 5 12 42 133]T and

m
(2)
6 = [1 2 7 17 58 149 493]T.

1. Check the realisability of the raw moments m2P = m∗2P (0) by computing b∗P (0) and293

checking the positivity of all elements.294

2. Initialise an interval
[
σ

(0)
l , σ

(0)
r

]
such that σ

(0)
l < σP and σ

(0)
r > σP , and then update295

these bounds to shrink the search interval. These initial values will be σ
(0)
l = 0 and296

σ
(0)
r = σ1 with σ1 the analytical solution of b∗1(σ) = 0.297

3. Iterate over k298

(a) Choose σt ∈
[
σ

(k−1)
l , σ

(k−1)
r

]
.299

(b) Compute b∗P (σt).300

(c) If all elements of b∗P (σt) are positive, set σ
(k)
l = σt and σ

(k)
r = σ

(k−1)
r .301

(d) Otherwise, set σ
(k)
l = σ

(k−1)
l and σ

(k)
r = σt.302

The choice of σt at step 3a will be made by trying to locate the root σj of b∗j (σ) with j the303

index of the first negative element of b∗P

(
σ

(k)
r

)
. Following Nguyen et al. [1] developments,304

the use of Ridder’s method is advised to select σt. This method actually tests two σ values305

per iteration. Consequently, the step 3 of the previous algorithm becomes:306

3. Iterate over k307

(a) Identify j the index of the first negative element of b∗P

(
σ

(k−1)
r

)
.308

(b) Compute σt1 = 1
2

(
σ

(k−1)
l + σ

(k−1)
r

)
and b∗P (σt1).309

(c) Compute σt2 = σt1 +
(
σt1 − σ

(k−1)
l

)
b∗j(σt1)√

b∗j(σt1)
2
−b∗j

(
σ
(k−1)
l

)
∗b∗j
(
σ
(k−1)
r

) and b∗P (σt2).310
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(d) Set σ
(k)
l as the highest value between σ

(k−1)
l , σt1 and σt2 such that the correspond-311

ing vector b∗P contains only positive values.312

(e) Set σ
(k)
r as the lowest value between σ

(k−1)
r , σt1 and σt2 such that the corresponding313

vector b∗P contains at least one negative value.314

Stop the computation if σ
(k)
r −σ(k)

l < ε σ1 or if b∗P

(
σ

(k)
l

)
< ε b∗P (0), with ε a relative tolerance315

(e.g. ε = 10−10). Then compute the weightswP and nodes ξP of the EQMOM reconstruction316

by computing a Gauss quadrature based on the recurrence coefficients a∗P−1

(
σ

(k)
l

)
and317

b∗P−1

(
σ

(k)
l

)
.318

Actual implementations of this algorithm for both kernels are provided as supplementary319

data.320

3.4. Application to the Stieltjes problem321

It is well known that the realisability of a moment set mN on the support Ωξ = ]0,+∞[322

is strictly equivalent to the positivity of the Hankel determinants H2n+d [33] defined as:323

H2n+d =

∣∣∣∣∣∣∣
md · · · mn+d
...

. . .
...

mn+d · · · m2n+d

∣∣∣∣∣∣∣ (19)

with d ∈ {0, 1} and n ∈ N, 2n+ d ≤ N .324

This condition on the positivity of Hankel determinants can be translated into a condition325

on the positivity of the numbers ζk [32] defined by :326

ζk =
Hk−3Hk

Hk−2Hk−1

, Hj = 1 if j < 0 (20)

These numbers can be directly computed from the recurrence coefficients aP and bP defined327

in 2.2 through the following relations:328

ζ2k =
bk
ζ2k−1

, ζ2k+1 = ak − ζ2k (21)

with ζ1 = a0 = m1/m0.329

The goal here is to use these realisability criteria to compute the parameters of EQMOM330

quadrature with either the Log-normal, the Gamma or the Weibull kernel (see Appendix331

B.3, Appendix B.4 and Appendix B.5 respectively). In these cases, one must332

1. Compute m∗N(σ) = A−1
N (σ) ·mN with AN(σ) the matrix associated to the chosen333

kernel (see Appendix B.3, Appendix B.4, Appendix B.5).334

2. Apply the Chebyshev algorithm to m∗N(σ) to access the recurrence coefficients a∗P (σ)335

and b∗P (σ).336

3. Compute ζ∗N(σ) = [ζ∗1 (σ), . . . , ζ∗N(σ)]T using the relations in Eq. (21).337

One actually looks for σ such that338
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Figure 3: Evolution of the different convergence criteria for the Weibull kernel depending on σ value. The ini-

tial moment sets are m
(a)
6 = [1 1.5 12 131 15200 18033 2.16e5]T , m

(b)
6 = [1 5.5 78 1285 22225 4.05e5 7.88e6]T

and m
(c)
6 = [1 1 2 5 14 42 133]T.

• ζ∗k(σ) > 0, ∀k ∈ {1, . . . , N − 1}339

• ζ∗N(σ) = 0340

Let σk be the root of ζ∗k(σ). In all cases, the root σ2 is defined, analytically for the341

Log-normal and Gamma kernels, and numerically for the Weibull kernel. Fig. 3 shows the342

evolution of D6(σ), D∗6(σ) and ζ∗6(σ) for three moment sets when the developments relative343

to the Weibull (see Appendix B.5) kernel are used. Three situations can be observed on that344

figure:345

1. All roots σk, k ∈ {2, . . . , N} are defined (Fig. 3a).346

2. Some intermediary roots σk, k ∈ {3, . . . , N − 1}, are not defined but the root σN still347

exists (Fig. 3b).348

3. The root σN is not defined (Fig. 3c).349

These three cases can be observed for the Gamma and Log-normal kernels too.350

In the first two cases, when σN exists, the EQMOM approximation is well defined. The351

last case –where ζ∗N(σ) admits no root in [0, σN−1]– actually corresponds to the case described352

by Nguyen et al. [1] where DN(σ) did not admit any root either. In this case, it was suggested353

to minimise DN(σ) in order to reduce the difference between mN and m̃N(σ) as much as354

possible.355

DN(σ) tends to be a decreasing function, but is undefined as soon as any element of356

ζ∗N−1(σ) is negative. The minimum of DN(σ) is then usually located at the highest order357

defined root. For instance, in the case shown in Fig. 3c, the minimum of D6(σ) is located358

at the root σ5 of ζ∗5 (σ).359

The moment-inversion procedure for reconstruction kernels defined on Ωξ = ]0,+∞[ is360

then reduced to the identification of the defined root σk, k ∈ {2, . . . , N}, of highest index.361
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The algorithm proposed in section 3.3 already converges toward this root and only requires362

little adjustments:363

1. Check the realisability of the raw moments m2P = m∗2P (0) by computing ζ∗N (0) and364

checking the positivity of all elements.365

2. Initialise an interval
[
σ

(0)
l , σ

(0)
r

]
with σ

(0)
l = 0 and σ

(0)
r = σ2 with σ2 the solution of366

ζ∗2 (σ) = 0.367

3. Iterate over k368

(a) Identify j the index of the first negative element of ζ∗N

(
σ

(k−1)
r

)
.369

(b) Compute σt1 = 1
2

(
σ

(k−1)
l + σ

(k−1)
r

)
and ζ∗N(σt1).370

(c) Compute σt2 = σt1 +
(
σt1 − σ

(k−1)
l

)
ζ∗j (σt1)√

ζ∗j (σt1)
2
−ζ∗j

(
σ
(k−1)
l

)
∗ζ∗j
(
σ
(k−1)
r

) and ζ∗N(σt2).371

(d) Set σ
(k)
l as the highest value between σ

(k−1)
l , σt1 and σt2 such that the correspond-372

ing vector ζ∗N contains only positive values.373

(e) Set σ
(k)
r as the lowest value between σ

(k−1)
r , σt1 and σt2 such that the corresponding374

vector ζ∗N contains at least one negative value.375

Stop the computation if σ
(k)
r −σ(k)

l < ε σ1 or if ζ∗N

(
σ

(k)
l

)
< ε ζ∗N(0), with ε a relative tolerance376

(e.g. ε = 10−10). Then compute the weightswP and nodes ξP of the EQMOM reconstruction377

by computing a Gaussian-quadrature based on the recurrence coefficients a∗P−1

(
σ

(k)
l

)
and378

b∗P−1

(
σ

(k)
l

)
.379

3.5. Application to the Hausdorff problem380

The moments of a distribution defined on the closed support Ωξ = ]0, 1[ must obey two381

sets of conditions in order to be within the realisable moment space [15, 26]. The moment382

set mN is interior to the realisable moment space associated to the support Ωξ = ]0, 1[ if383

and only if:384

• Hk > 0, ∀k ∈ {0, . . . , N}385

• Hk > 0, ∀k ∈ {1, . . . , N}386

with Hk defined in Eq. (19) and Hk defined by387

H2n+d =

∣∣∣∣∣∣∣
md−1 −md · · · mn+d−1 −mn+d

...
. . .

...
mn+d−1 −mn+d · · · m2n+d−1 −m2n+d

∣∣∣∣∣∣∣ (22)

Leaving aside the obvious condition H0 = m0 > 0, the conditions Hk > 0 and Hk > 0388

induce a lower bound m−k and an upper bound m+
k for the values of mk, k ∈ {1, . . . , N}.389

Consequently, one can define the canonical moments of the distribution pN = [p1, . . . , pN ]T390

as391
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pk =
mk −m−k
m+
k −m

−
k

(23)

A moment set mN is realisable if and only if the associated canonical moment set pN lies392

in the hypercube ]0, 1[N . The canonical moments can be computed through the recurrence393

relation [34]:394

pk =
ζk

1− pk−1

(24)

with ζk defined in Eq. (20) and p1 = m1.395

In the case of the Beta kernel (see Appendix B.6), one is looking for a value of σ such396

that the vector p∗N(σ) has the following properties:397

• p∗k(σ) ∈ ]0, 1[ , ∀k ∈ {1, . . . , N − 1}398

• p∗N(σ) = 0399

p∗N(σ) is computed from the vector ζ∗N(σ) which is deduced from the recurrence coef-400

ficients a∗P−1(σ) and b∗P (σ). These are computed –like previously– through the Chebyshev401

algorithm applied to the vector m∗N(σ) = A−1
N (σ) ·mN .402

Fig. 4 shows the evolution of the canonical moments and the convergence criteria D6(σ)403

and D∗6(σ) for four different sets of 7 moments with the developments relative to the Beta404

kernel (see Appendix B.6). Each of these sets corresponds to one of the four situations405

encountered when dealing with Beta EQMOM:406

• Fig. 4a: the root σN of DN(σ), D∗N(σ) and p∗N(σ) exists and can be identified through407

a similar procedure than that described in sections 3.3 and 3.4.408

• Fig. 4b: the root σN is not defined but the minimum of DN(σ) is located at the σ409

value for which p∗N−1(σ) is on the boundary of the hypercube ]0, 1[N−1.410

• Fig. 4c: DN(σ), D∗N(σ) and p∗N(σ) admit multiple roots.411

• Fig. 4d: the root σN is defined, but there is a range ]σv1 , σv2 [ with σv2 < σN , highlighted412

in light grey, such that in this interval the convergence criteria are undefined because413

∀σ ∈]σv1 , σv2 [, p
∗
N−1(σ) /∈ ]0, 1[N−1.414

The algorithm proposed in sections 3.3 and 3.4 can still be applied here by replacing the415

convergence criteria by the canonical moments, and by checking that the values of p∗N(σ) all416

lie in the interval ]0, 1[ instead of checking only for positivity:417

1. Check the realisability of the raw moments m2P = m∗2P (0) by computing p∗N (0) and418

checking that all elements lie in ]0, 1[.419

2. Initialise an interval
[
σ

(0)
l , σ

(0)
r

]
with σ

(0)
l = 0 and σ

(0)
r = σ2 with σ2 the analytical420

solution of p∗2(σ) = 0.421

3. Iterate over k422
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Figure 4: Evolution of the different convergence criteria for the Beta reconstruction kernel and four initial
moment sets. These sets can be found in the figure source code provided as supplementary data.

(a) Identify j the index of the first element of p∗N

(
σ

(k−1)
r

)
that is either negative or423

higher than 1.424

(b) Compute σt1 = 1
2

(
σ

(k−1)
l + σ

(k−1)
r

)
and p∗N(σt1).425

(c) If j < N and p∗j

(
σ

(k−1)
r

)
> 1426

• Compute σt2 = σt1 +
(
σt1 − σ

(k−1)
l

)
q∗j (σt1)√

q∗j (σt1)
2
−q∗j

(
σ
(k−1)
l

)
∗q∗j
(
σ
(k−1)
r

) and p∗N(σt2),427

with q∗j (σ) = 1− p∗j(σ).428

(d) Else, that is if j = N or p∗j

(
σ

(k−1)
r

)
< 0429

• Compute σt2 = σt1 +
(
σt1 − σ

(k−1)
l

)
p∗j(σt1)√

p∗j(σt1)
2
−p∗j

(
σ
(k−1)
l

)
∗p∗j
(
σ
(k−1)
r

) and p∗N(σt2).430

(e) Set σ
(k)
l as the highest value between σ

(k−1)
l , σt1 and σt2 such that the correspond-431

ing vector p∗N lies in ]0, 1[N .432

(f) Set σ
(k)
r as the lowest value between σ

(k−1)
r , σt1 and σt2 such that the corresponding433

vector p∗N does not lie in ]0, 1[N .434

Stop the computation if σ
(k)
r − σ

(k)
l < ε σ2 or if p∗N

(
σ

(k)
l

)
< ε p∗N(0), with ε a relative435

tolerance (e.g. ε = 10−10). As previously, once convergence is achieved, the weights wP and436

nodes ξP of the reconstruction can be obtained by computing a Gaussian quadrature rule437

based on the recurrence coefficients a∗P−1

(
σ

(k)
l

)
and b∗P−1

(
σ

(k)
l

)
.438
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This algorithm will converge to the root σN for cases similar to Fig. 4a; to the minimum439

of DN(σ) for cases similar to Fig. 4b; to one of the multiple roots for cases similar to Fig.440

4c. In the case illustrated in Fig. 4d, the algorithm may or may not identify the existing441

root, depending on whether one of the intermediate tested σ values lies in the greyed area.442

One could try to develop a more robust algorithm, that will always find the root if it443

is defined, even in the case shown in Fig. 4d. An other improvement would be to ensure444

a consistent result when multiple roots exist, for instance by converging toward the lowest445

root, so that a small perturbation in the raw moments will only cause a small change on the446

resulting σ value. Nothing prevents the current algorithm from converging toward one root447

for a moment set and toward another one after a small perturbation of this set which could448

induce instabilities in large-scale simulations. Note that these limitations already existed in449

previous EQMOM implementations and do not result from the new approach developed in450

this article.451

3.6. Handling weakly realisable and ill-conditioned moment sets452

The EQMOM moment-inversion procedure attempts to identify a NDF defined by453

ñ(ξ) =
P∑
i=1

wiδσ(ξ, ξi) (25)

whose first 2P + 1 integer moments are given by m2P .454

This approximation is not always possible as shown in sections 3.4 and 3.5. When the455

EQMOM approximation exists, it may be ill-conditioned if at least one of the followings456

holds true:457

• σ = 0458

• ∃i, wi = 0459

• ∃i, ξi = 0460

The first situation is that of m2P being weakly realisable. The second situation occurs461

if m2P is the moment set of a convex mixture of the reconstruction kernel with less than P462

nodes. These situations are not mutually exclusive, a vector m6 could be the vector of the463

7 first moments of a bi-Dirac distribution, one of which could be located in ξ = 0.464

Accounting for these situations requires introducing the order of realisability of a moment465

set, N (mN). This notation was introduced by Nguyen et al. [1] but was only defined on466

Ωξ =]0,+∞[ in terms of Hankel determinants. The following definition is broader as it467

encompasses theirs but extends it to other supports. N (mN) is the number of moments in468

the largest strictly realisable subset of mN . For each support, the order of realisability is469

defined in terms of the realisability criterion:470

• For Ωξ = ]−∞,+∞[, compute bP from m2P ;471

– if all elements are positive, N (m2P ) = 2P + 1;472

– else, if there is n such that bn = 0, N (m2P ) = 2n;473
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– else, if there is n such that bn < 0, N (m2P ) = 2n− 1.474

• For Ωξ = ]0,+∞[, compute ζ2P from m2P ;475

– if all elements are positive, N (m2P ) = 2P + 1;476

– else identify n such that ζn ≤ 0, N (m2P ) = n.477

• For Ωξ = ]0, 1[, compute p2P from m2P ;478

– if all elements are included on ]0, 1[, N (m2P ) = 2P + 1;479

– else identify n such that pn /∈ ]0, 1[, N (m2P ) = n.480

Detecting the situations where σ = 0 requires to check the order of realisability of raw481

moments. If N (m2P ) is even, set σ = 0; otherwise apply the iterative procedure to m2P ′482

with N (m2P ) = 2P ′ − 1 to identify σ [1].483

The actual number of nodes required by the EQMOM approximation, i.e. the number484

of non-zero weights P ′′, is determined from N (m∗2P (σ)). If it is even, P ′′ = N (m∗2P (σ))/2;485

otherwise, P ′′ = (N (m∗2P (σ)) + 1)/2 but one node will be located in ξ = 0 which might486

be an issue for KDFs defined on Ωξ = ]0,+∞[ or Ωξ = ]0, 1[. The weights and nodes487

will be computed from the recurrence coefficients a∗P ′′−1(σ) and b∗P ′′−1(σ). If P ′′ < P , let488

wk = 0, ξk = 1/2, ∀k ∈ {P ′′ + 1, . . . , P}.489

These adjustments of the first and last steps of algorithms described in sections 3.3, 3.4490

and 3.5 give great stability to the moment-inversion procedure at low cost.491

In the situation where N (m∗2P (σ)) = 2P , the EQMOM approximation is guaranteed to492

preserve the whole moment set m2P . However, if N (m∗2P (σ)) < 2P , the approximation493

may, or may not, preserve all moments with no simple method to check for this. One should494

compute the moments of the EQMOM approximation and measure the relative error from495

original moments.496

4. Comparison of EQMOM approaches497

4.1. Method498

The new EQMOM moment-inversion procedure only requires computation of the realis-499

ability criteria of the vector of degenerated moments m∗2P (σ) in order to identify σ. These500

computations were already performed in the original approach [1] to ensure the realisability501

of the vector m∗2P−1(σ) prior to the quadrature computation and ulterior steps.502

It is therefore obvious that the new approach will always require a lower number of503

floating point operations (FLOP). In order to quantify this reduction on FLOP number, and504

the actual performance gain, different implementations of EQMOM are compared, they are505

based either on the realizability criteria, or on a quadrature-based objective function.506

4.1.1. Tested EQMOM implementations507

Comparison are performed for kernels defined on Ωξ = ]−∞,+∞[ (i.e. Gauss and Laplace508

kernels), and on Ωξ = ]0,+∞[ (i.e. Log-Normal, Gamma and Weibull kernels), using MAT-509

LAB [22] implementations.510
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Implementations that are based on the realizability criteria of m∗2P (σ) use algorithms511

that were fully described in sections 3.3 and 3.4 and adjustments from section 3.6.512

For quadrature-based moment-inversion implementations, we optimized codes from Marchi-513

sio and Fox [20] and the OpenQBMM project [19] by implementing optimizations suggested514

by Nguyen et al. [1] and adjustments from section 3.6. Instead of searching for the root of515

D2P (σ) (see Fig. 1a), these implementations directly search the root of D∗2P (σ) (Fig. 1b).516

Doing so, all compared implementations only require the matrix A−1
2P (σ) and can benefit517

from the same code optimization when computing m∗2P (σ) = A−1
2P (σ) ·m2P .518

For kernels defined on Ωξ = ]0,+∞[, if Ridder’s method fails to identify a root of D∗2P (σ),519

the golden-ratio method is used to minimize D2P (σ)2 = (D∗2P (σ) · A2P,2P (σ))2. The golden-520

ratio minimization method was already used in OpenQBMM [19].521

4.1.2. Performance measurements522

The main element of comparison is the number of floating-point operations required for523

the whole moment-inversion procedure. The MATLAB implementations embed a simple524

FLOP counter that distinguishes each operation (+, −, ∗, /, exp,
√
·, Γ(·), . . . ) and counts525

them for each step of the moment-inversion procedure (linear system, Chebyshev algorithm,526

quadrature computation and others).527

In order to evaluate the number of operations used in the computation of the eigenvalues528

and eigenvectors of the Jacobi matrix (Eq. (6)), the Jacobi and the Francis algorithms529

which are suited for symmetric matrices [35] are used in place of the MATLAB built-in “eig”530

function [22]. The Jacobi algorithm is used for matrices of size up to 3× 3 and the Francis531

algorithm for larger matrices in order to always use the fastest method.532

Two others metrics are measured for each call to the moment-inversion procedure: the533

number of tested σ values and the wall-time of function calls.534

4.1.3. Tested moment sets535

Each comparison was performed on 104 randomly generated moment sets. These have536

varying size 2P + 1 ∈ {5, 7, 9, 11} and were either far from, or close to, the boundary of the537

realisable moment space.538

Moments sets for kernels defined on Ωξ = ]−∞,+∞[ were computed from random vectors539

aP−1 and bP using a reversed Chebyshev algorithm. Distribution laws for the elements of540

these vectors are541

• ak ∼ N (0, 25), k ∈ {0, . . . , P − 1}.542

• bk ∼ 1 + Exp(4), k ∈ {1, . . . , P}.543

• bP ∼ Exp(0.5) for moment sets close from the frontier of realisability.544

Similarly, moments sets for kernels defined on Ωξ = ]0,+∞[ were computed from ran-545

dom vectors ζ2P using a reversed ζ-Chebyshev algorithm [1]. Elements of these vectors are546

generated using following distribution laws:547

• ζk ∼ 1 + Exp(4), k ∈ {1, . . . , 2P}.548

• ζ2P ∼ Exp(0.5) for moment sets close from the frontier of realisability.549
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4.1.4. Reproducibility550

To allow reproducibility of results described hereafter, every source codes previously551

described, and randomly generated data, are available as supplementary data.552

4.2. Results553

Results of the comparison performed on Gauss-EQMOM for moment sets far from the554

boundary of the realisable moment space are given in Table 1. Similar tables are available555

as supplementary data for all kernels and moment sets.556

Table 1: Comparison of Gauss EQMOM implementations corresponding to Fig. 1b and 1c for moment sets
far from the frontier of realisability. The count of FLOP details the operations related to (i) the matrix-
vector product A−1

2P (σ) ·m2P , (ii) the Chebyshev Algorithm (CA), (iii) the Quadrature Computation (QC)
and (iv) a miscellaneous category. Results are given as mean±standard-deviation among 104 moment sets.

P = 2 P = 3 P = 4 P = 5
New

FLOP

A−1
2P (σ) 237±59 767±141 1709±253 3201±476

approach CA 177±40 477±83 979±139 1751±251

QC 52±0 474±42 995±120 1746±188

Misc. 54±12 65±11 75±11 86±12

Total 519±112 1783±242 3759±441 6784±830

Evaluations 12±3 14±2 17±2 19±3

Run-time (ms) 1±0 2±0 3±0 4±1

Former

FLOP

A−1
2P (σ) 295±161 1433±423 4060±869 8516±1870

approach CA 202±102 853±241 2246±467 4509±967

QC 742±377 9171±2910 24997±9966 52312±14096

Misc. 191±99 430±129 804±156 1298±251

Total 1429±739 11887±3603 32108±10645 66635±16085

Evaluations 14±7 26±7 39±8 50±11

Run-time (ms) 1±1 9±3 17±5 31±7

Gain in FLOP 59.1%±12.3% 84.2%±3.5% 87.9%±2.5% 88.0%±13.1%

Evaluations 8.6%±27.7% 40.9%±17.7% 54.2%±12.8% 53.0%±55.2%

Run-time 53.2%±13.2% 81.9%±4.2% 84.0%±3.6% 83.3%±18.0%

Table 2 underlines a decrease in the number of tested σ values, in particular for high557

order reconstructions. This decrease is mainly due to the fact that in the former approach,558

if m∗N−1(σ) turns out not to be realisable, the objective function is set to a arbitrarily high559

negative value. The use of such an arbitrary value slows down the convergence of the non-560

linear equation solver. Meanwhile, the new approach never makes use of arbitrary values,561

all the elements of the vectors of realisability criteria (b∗P (σ), ζ∗2P (σ) or p∗2P (σ)) are used one562

after the other which yields a better choice of the next tested σ value.563

Moreover, for kernels defined on Ωξ = ]0,+∞[ and in situations illustrated in Fig. 3c,564

the former approach may switch from a root search to a minimization process if no root is565

found. This induces numerous supplementary tested σ values before convergence is reached566

while this situation never occurs in the new approach.567

A significant drop in the total number of FLOP can be observed in Table 3. This was568

expected and is mainly justified by the fact that the quadrature computation is only called569
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Table 2: Gain in number of tested σ values.
P = 2 P = 3 P = 4 P = 5

Gauss
Strict 8.6%±27.7% 40.9%±17.7% 54.2%±12.8% 53.0%±55.2%

Weak 10.2%±25.5% 43.0%±17.4% 54.7%±20.0% 42.4%±86.3%

Laplace
Strict 8.6%±28.3% 41.1%±17.6% 54.3%±12.7% 53.2%±54.4%

Weak 9.9%±23.7% 43.3%±17.4% 54.8%±19.9% 42.5%±85.7%

Log-normal
Strict 8.8%±45.9% 21.9%±32.8% 30.5%±27.0% 49.5%±23.8%

Weak 4.0%±38.1% 17.8%±26.4% 40.0%±27.0% 59.1%±16.1%

Gamma
Strict 15.5%±38.2% 24.7%±31.1% 34.9%±30.1% 57.2%±24.9%

Weak 7.5%±28.3% 20.7%±26.0% 47.2%±29.6% 65.4%±16.0%

Weibull
Strict 26.3%±35.0% 27.2%±30.2% 32.4%±28.1% 54.0%±25.8%

Weak 9.4%±15.7% 19.4%±17.7% 41.8%±25.3% 63.3%±16.4%

once in the new approach whilst it is called for most tested σ values in the former moment-570

inversion procedure. This quadrature, which consists in the computation of the eigenvalues571

and eigenvectors of a tridiagonal symmetric matrix, is the most expensive operation used in572

the EQMOM moment-inversion procedure.573

Concerning the impact of whether the moment sets are close or far from the boundary574

of the moment space, no significant difference appears in Tables 2 and 3. This implies that575

there are no preferential situations where the former approach could be more interesting.576

The new EQMOM core procedure should be used against all moment sets.577

Table 3: Gain in FLOP for all tested kernels and moment sets.
P = 2 P = 3 P = 4 P = 5

Gauss
Strict 59.1%±12.3% 84.2%±3.5% 87.9%±2.5% 88.0%±13.1%

Weak 59.3%±11.3% 84.4%±3.7% 87.8%±4.8% 85.3%±20.4%

Laplace
Strict 64.2%±10.7% 87.5%±2.7% 91.0%±1.7% 91.6%±8.9%

Weak 64.1%±9.1% 87.5%±2.9% 90.8%±3.5% 89.6%±14.1%

Log-normal
Strict 58.9%±20.0% 85.6%±5.8% 89.1%±4.3% 93.3%±3.5%

Weak 56.7%±16.7% 84.7%±4.6% 90.8%±4.4% 94.7%±2.4%

Gamma
Strict 58.2%±18.8% 82.1%±7.3% 85.7%±6.8% 91.6%±5.4%

Weak 54.2%±14.1% 81.1%±6.1% 88.7%±6.9% 93.4%±3.5%

Weibull
Strict 67.7%±15.1% 87.4%±5.1% 90.0%±4.2% 94.2%±3.6%

Weak 61.0%±6.5% 86.7%±3.0% 91.8%±3.9% 95.7%±2.3%

Overall, one observes a net decrease in the number of floating-point operations and in578

the computation run-times of 60% up to 95% for these implementations of EQMOM and the579

tested moment sets.580

One final interesting observation is the evolution of variability in the computational cost581

of each EQMOM reconstruction. This is illustrated by the ratios standard-deviation/mean582

shown in Table 4. The high ratios occurring for the former approach, ranging from 24%583

up to 794%, show that the distributions of required FLOP by EQMOM reconstruction are584

highly skewed. This leads to high probabilities of significantly different computational costs585

between different moment sets.586
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On the other hand, that ratio never goes higher than 26% for the new approach if P = 2,587

and 16% for higher order reconstructions. It implies that the distribution of numerical cost is588

more narrow and that this new approach will induce more consistent numerical costs among589

different moment sets. This is a salient feature of this new moment-inversion algorithm590

as it allows better load-balancing in high performance computing, in particular in highly591

parallelized CFD softwares.592

Table 4: Ratio standard-deviation/mean of the distribution of total number of FLOP required by EQMOM
reconstructions. Only moment sets generated far from the frontier of realisability are considered.

P = 2 P = 3 P = 4 P = 5

Gauss
New approach 0.22 0.14 0.12 0.12
Former approach 0.52 0.30 0.33 0.24

Laplace
New approach 0.21 0.12 0.11 0.11
Former approach 0.67 0.30 0.43 0.43

Log-normal
New approach 0.26 0.15 0.12 0.11
Former approach 1.10 0.97 7.94 6.48

Gamma
New approach 0.25 0.16 0.15 0.15
Former approach 1.26 1.14 0.87 3.23

Weibul
New approach 0.21 0.13 0.12 0.11
Former approach 1.05 1.46 7.21 6.41

5. Conclusion593

The first developments relative to the Extended Quadrature Method of Moments are594

quite recent [17]. Most of these developments were dedicated to widening the use of this595

method to new application cases, in particular by adding new reconstruction kernels to596

the EQMOM formalism, and to demonstrate its stability and accuracy compared to other597

methods. This article summarised all of these developments, relative to the Gaussian kernel598

[17], to the Log-normal kernel [21] and to the Gamma and Beta kernels [18]. It was also599

shown that at least two other kernels are perfectly compatible with the EQMOM formalism:600

the Laplace and Weibull kernels.601

The youth of EQMOM explains that there is still room left for improvements. The602

core of this method –the moment-inversion procedure– is an iterative process which is its603

computational bottleneck. Nguyen et al. [1] proposed some modifications, compared to604

previous implementations, in order to stabilise the method and to speed-up its resolution,605

namely the use of Ridder’s method instead of bounded-secant or dichotomic methods to606

solve the non-linear problem, and the realisability checks performed prior to the quadrature607

computation.608

Further improvements were proposed by shifting the resolution toward a new paradigm.609

This results in a significant decrease in computational cost of about 60% − 95% in terms610

of required floating-point operations. This resulted in our MATLAB implementations in a611

similar gain in terms of computation wall-time. Moreover, the new approach offers more612

consistent numerical costs which will be beneficial to load-balancing in parallelized software.613
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In multiple works [1, 18, 30], EQMOM has been compared to other methods (Maximum614

Entropy approach or sectional methods) and exhibited (i) similar accuracy even with a lower615

number of resolved variables, and (ii) faster or comparable computation times. The new616

improvements of EQMOM will make it even more competitive as its stability and accuracy617

are kept while reducing the gap in terms of numerical cost between EQMOM and other618

cheaper methods such as Gauss or Gauss-Radau quadratures.619

We strongly believe that transparency about these developments will help further refine-620

ments of EQMOM. For that reason, all sources used to generate figures and data in this article621

are provided as supplementary data. We also release all our EQMOM source codes both with622

this article and in an open-access GIT repository (url: https://gitlab.com/open-eqmom).623

It will be updated as well as supplemented with implementations of EQMOM in languages624

other than MATLAB. In the case of the Beta reconstruction kernel, some suggestions for625

further improvements in terms of accuracy and stability were listed in section 3.5. These626

will be tackled in ulterior work.627
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Appendix A. Chebyshev algorithm739

The Chebyshev algorithm allows to compute the three-term recurrence coefficients of the740

monic polynomials orthogonal to a measure dµ(ξ) whose moments are given by the vector741

mN = [m0, . . . ,mN ]. This version of the algorithm fills column-wise a N + 1×dN+1
2
e matrix742

denoted S.743

First, fill the first column with the moments Si,0 = mi, compute a0 = m1/m0 and fill the744

second column with Si,1 = Si+1,0 − a0Si,0, ∀i ∈ {1, . . . , N − 1}.745

Then iterate for j ∈
{

2, . . . , dN−1
2
e
}

:746

aj−1 =
Sj,j−1

Sj−1,j−1

− Sj−1,j−2

Sj−2,j−2

bj−1 =
Sj−1,j−1

Sj−2,j−2

Si,j = Si+1,j−1 − aj−1Si,j−1 − bj−1Si,j−2, i ∈ {j, . . . , N − j}

Appendix B. Kernels for EQMOM747

There exists multiple variations of the EQMOM method depending on the Kernel Density748

Function that is used for the reconstruction in Eq. (15). This section details the specificities749

of multiple KDF that were found to be compatible with the EQMOM procedure. It details750

for each kernel751

1. the actual expression of that kernel δσ(ξ, ξm);752

2. the expression of its moments;753

3. the matrix An(σ) that allows the transfer between the raw moments of the reconstruc-754

tion m̃n and its degenerated moments m∗n;755

4. the nested quadrature rules suiting this kernel;756

5. the analytical solutions available for one-node EQMOM (P = 1).757

Two-nodes analytical solutions exist for the Gaussian, Gamma, Laplace and Log-normal758

kernels and are accessible using the same methodology than that used by Chalons et al. [17]759

for the Gaussian kernel. These solutions are not detailed here but are implemented in the760

MATLAB code given in supplementary data.761

All definitions of matrices An(σ) are given using zero-offset. The element of the first line762

and column of this matrix then reads A0,0(σ).763

Appendix B.1. Gaussian kernel764

Appendix B.1.1. Definition765

The Gaussian kernel δ
(G)
σ (ξ, ξm) was first used in EQMOM by Chalons et al. [17]. It is766

defined on Ωξ = ]−∞,+∞[ by767

δ(G)
σ (ξ, ξm) =

1

σ
√

2π
exp

(
−(ξ − ξm)2

2σ2

)
(B.1)
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Appendix B.1.2. Moments and linear system768

Moments of the Gaussian kernel are given by:769 ∫ +∞

−∞
ξkδ(G)

σ (ξ, ξm)dξ =

bk/2c∑
j=0

k!

j!(k − 2j)!

(
σ2

2

)j
ξk−2j
m (B.2)

Moments of the distribution ñ(ξ) =
∑P

i=1wiδ
(G)
σ (ξ, ξi) are given by the linear system770

m̃n = A(G)
n (σ) ·m∗n (B.3)

with771

A
(G)
i,j (σ) =

0 if j > i or (i− j mod 2) = 1

i!

( i−j2 )!j!

(
σ2

2

) i−j
2

otherwise
(B.4)

The inverse of this matrix is given by:772

A
(G)−1
i,j (σ) =

0 if j > i or (i− j mod 2) = 1

i!

( i−j2 )!j!

(
−σ2

2

) i−j
2

otherwise
(B.5)

which translates, for the case n = 4, into:773


m̃0

m̃1

m̃2

m̃3

m̃4

 =


1 0
0 1
σ2 0 1
0 3σ2 0 1

3σ4 0 6σ2 0 1

 ·

m∗0
m∗1
m∗2
m∗3
m∗4

 (B.6)


m∗0
m∗1
m∗2
m∗3
m∗4

 =


1 0
0 1
−σ2 0 1

0 −3σ2 0 1
3σ4 0 −6σ2 0 1

 ·

m̃0

m̃1

m̃2

m̃3

m̃4

 (B.7)

Appendix B.1.3. Moment preserving nested quadrature774

The approximation of integral properties using Gauss EQMOM is performed through the775

following nested quadrature:776 ∫ +∞

−∞
f(ξ)n(ξ)dξ ≈ 1√

π

P∑
i=1

wi

Q∑
j=1

ωjf
(
ξi + σλj

√
2
)

(B.8)

with wP , ξP and σ the EQMOM reconstruction parameters computed from m2P ; ωQ and777

λQ are the weights and nodes of a Q-nodes Gauss-Hermite quadrature rule (see Appendix778

C).779
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Appendix B.1.4. Single node analytical solution780

The case P = 1 has the following analytical solution:781

w1 = m0

ξ1 =
m1

m0

σ =

√
m2m0 −m2

1

m0

Appendix B.2. Laplace kernel782

Appendix B.2.1. Definition783

The Laplace kernel δ
(λ)
σ (ξ, ξm) is defined on Ωξ = ]−∞,+∞[ by784

δ(λ)
σ (ξ, ξm) =

1

2σ
exp

(
−|ξ − ξm|

σ

)
(B.9)

Appendix B.2.2. Moments and linear system785

Moments of the Laplace kernel are given by786 ∫ +∞

−∞
ξkδ(λ)

σ (ξ, ξm)dξ =
k∑
j=0

k!

(k − j)!
1 + (−1)j

2
ξk−jm σj (B.10)

Moments of the distribution ñ(ξ) =
∑P

i=1wiδ
(λ)
σ (ξ, ξi) are given by the linear system787

m̃n = A(λ)
n (σ) ·m∗n (B.11)

with788

A
(λ)
i,j (σ) =

{
0 if j > i or (i− j mod 2) = 1
i!
j!
σi−j otherwise

(B.12)

The inverse matrix is defined by789

A
(λ) −1
i,j (σ) =


1 if i = j

−(j + 1)(j + 2)σ2 if i = j + 2

0 otherwise

(B.13)

which translates for n = 6 into790
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

m̃0

m̃1

m̃2

m̃3

m̃4

m̃5

m̃6


=



1 0
0 1

2!σ2

0!
0 1

0 3!σ2

1!
0 1

4!σ4

0!
0 4!σ2

2!
0 1

0 5!σ4

1!
0 5!σ2

3!
0 1

6!σ6

0!
0 6!σ4

2!
0 6!σ2

4!
0 1


·



m∗0
m∗1
m∗2
m∗3
m∗4
m∗5
m∗6


(B.14)



m∗0
m∗1
m∗2
m∗3
m∗4
m∗5
m∗6


=



1 0
0 1
−2σ2 0 1

−6σ2 0 1
−12σ2 0 1

−20σ2 0 1
0 −30σ2 0 1


·



m̃0

m̃1

m̃2

m̃3

m̃4

m̃5

m̃6


(B.15)

Appendix B.2.3. Moment preserving nested quadrature791

The approximation of integral properties using Laplace EQMOM is performed through792

the following nested quadrature:793 ∫ +∞

−∞
f(ξ)n(ξ)dξ ≈

P∑
i=1

wi

Q∑
j=1

ωjf (ξi + σλj) (B.16)

with wP , ξP and σ the EQMOM reconstruction parameters computed from m2P ; ωQ and794

λQ are the weights and nodes of a Q-nodes “Gauss-Laplace” quadrature rule (see Appendix795

C).796

Appendix B.2.4. Single node analytical solution797

The case P = 1 has the following analytical solution:798

w1 = m0

ξ1 =
m1

m0

σ =

√
m2m0 −m2

1

2m2
0

Appendix B.3. Log-normal kernel799

Appendix B.3.1. Definition800

The Log-normal kernel δ
(L)
σ (ξ, ξm) was first used in EQMOM by Madadi-Kandjani and801

Passalacqua [21]. It is defined on Ωξ = ]0,+∞[ by802
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δ(L)
σ (ξ, ξm) =

1

σξ
√

2π
exp

(
−(log(ξ)− log(ξm))2

2σ2

)
(B.17)

Appendix B.3.2. Moments and linear system803

Moments of the Log-normal kernel are given by804 ∫ +∞

0

ξkδ(L)
σ (ξ, ξm)dξ = ξkmz

k2 with z = eσ
2/2 (B.18)

Moments of the distribution ñ(ξ) =
∑P

i=1wiδ
(L)
σ (ξ, ξi) are given by805

m̃k = m∗kz
k2 (B.19)

This can be translated into a linear system806

m̃n = A(L)
n (σ) ·m∗n (B.20)

with A
(L)
n (σ) a diagonal matrix:807

A
(L)
i,j (σ) =

{
zi

2
if i = j

0 otherwise
(B.21)

whose inverse matrix is directly given by808

A
(L)−1
i,j (σ) =

{
z−i

2
if i = j

0 otherwise
(B.22)

Appendix B.3.3. Low cost nested quadrature809

A variable change allows approximating integral properties over a LogN EQMOM recon-810

struction using Gauss-Hermite quadratures [21]:811 ∫ +∞

0

f(ξ)n(ξ)dξ ≈ 1√
π

P∑
i=1

wi

Q∑
j=1

ωjf
(
ξi exp

(
σλj
√

2
))

(B.23)

with wP , ξP and σ the EQMOM reconstruction parameters computed from m2P ; ωQ and812

λQ are the weights and nodes of a Q-nodes Gauss-Hermite quadrature rule (see Appendix813

C).814

Parameters of this nested quadrature do not depend on σ of the main quadrature nodes815

ξP . Consequently, ωQ and λQ only need to be computed once. It is worth noting that this816

quadrature does not preserve the moments of the distribution and only yields exact results817

for f(ξ) = log(ξ)k, k ∈ {0, . . . , 2 min(P,Q)− 1}.818

Appendix B.3.4. Moment preserving nested quadrature819

Passalacqua et al. [19] suggested the use of Gauss-Wigert quadratures [36] to preserve820

the moments of a LogN EQMOM reconstruction:821
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∫ +∞

0

f(ξ)n(ξ)dξ ≈
P∑
i=1

wi

Q∑
j=1

ω
(σ)
j f

(
ξiλ

(σ)
j

)
(B.24)

with wP , ξP and σ the EQMOM reconstruction parameters computed from m2P ; ω
(σ)
Q and822

λ
(σ)
Q are the weights and nodes of a Q-nodes Gauss-Wigert quadrature rule of parameter σ823

(see Appendix C). This quadrature rule must be computed for each value of σ, i.e. for each824

LogN EQMOM reconstruction.825

Appendix B.3.5. Single node analytical solution826

The case P = 1 has the following analytical solution:827

w1 = m0

ξ1 =

√
m4

1

m2m3
0

σ =

√
log

(
m2m0

m2
1

)
Appendix B.4. Gamma kernel828

Appendix B.4.1. Definition829

The Gamma kernel δ
(Γ)
σ (ξ, ξm) was first used in EQMOM by Yuan et al. [18]. It is defined830

on Ωξ = ]0,+∞[ by831

δ(Γ)
σ (ξ, ξm) =

ξ(l−1) exp(−ξ/σ)

Γ(l)σl
with l =

ξm
σ

and Γ(x) =

∫ +∞

0

tx−1e−tdt (B.25)

Appendix B.4.2. Moments and linear system832

Moments of the Gamma kernel are given by833 ∫ +∞

0

ξkδ(Γ)
σ (ξ, ξm)dξ = Gk(ξm, σ) =

{
1 if k = 0∏k−1

j=0 (ξm + jσ) otherwise
(B.26)

Moments of the distribution ñ(ξ) =
∑P

i=1wiδ
(Γ)
σ (ξ, ξi) are given by the linear system834

m̃n = A(Γ)
n (σ) ·m∗n (B.27)

with835

A
(Γ)
i,j (σ) =


0 if j > i or i = 0 or j = 0

1 if i = 0 and j = 0

A
(Γ)
i−1,j−1(σ) + (i− 1)σA

(Γ)
i−1,j(σ) otherwise

(B.28)
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The inverse of this matrix is given by836

A
(Γ)−1
i,j (σ) =


0 if j > i or i = 0 or j = 0

1 if i = 0 and j = 0

A
(Γ)−1
i−1,j−1(σ)− jσA(Γ)−1

i−1,j (σ) otherwise

(B.29)

which translates, for n = 6 into837 

m̃0

m̃1

m̃2

m̃3

m̃4

m̃5

m̃6


=



1 0
0 1
0 1σ 1
0 2σ2 3σ 1
0 6σ3 11σ2 6σ 1
0 24σ4 50σ3 35σ2 10σ 1
0 120σ5 274σ4 225σ3 85σ2 15σ 1


·



m∗0
m∗1
m∗2
m∗3
m∗4
m∗5
m∗6


(B.30)



m∗0
m∗1
m∗2
m∗3
m∗4
m∗5
m∗6


=



1 0
0 1
0 −σ 1
0 σ2 −3σ 1
0 −σ3 7σ2 −6σ 1
0 σ4 −15σ3 25σ2 −10σ 1
0 −σ5 31σ4 −90σ3 65σ2 −15σ 1


·



m̃0

m̃1

m̃2

m̃3

m̃4

m̃5

m̃6


(B.31)

Appendix B.4.3. Low cost nested quadrature838

A Gauss-Laguerre quadrature can be used to approximate integral properties over a839

Gamma EQMOM reconstruction:840 ∫ +∞

0

f(ξ)n(ξ)dξ ≈
Q∑
j=1

ωjf(σλj)
P∑
i=1

wi

Γ
(
ξi
σ

)λ ξiσ −1

j (B.32)

with wP , ξP and σ the EQMOM reconstruction parameters computed from m2P ; ωQ and841

λQ are the weights and nodes of a Q-nodes Gauss-Laguerre quadrature rule of parameter842

α = 0 (see Appendix C). The advantage of this quadrature is that it only requires ωQ and843

λQ to be computed once. However, this quadrature will not preserve the moments of the844

distribution.845

Appendix B.4.4. Moment preserving nested quadrature846

A generalized Gauss-Laguerre quadrature preserves the moments of a Gamma EQMOM847

reconstruction:848 ∫ +∞

0

f(ξ)n(ξ)dξ ≈
P∑
i=1

wi

Γ
(
ξi
σ

) Q∑
j=1

ω
(αi)
j f

(
σλ

(αi)
j

)
(B.33)

with wP , ξP and σ the EQMOM reconstruction parameters computed from m2P ; ω
(αi)
Q and849

λ
(αi)
Q are the weights and nodes of a Q-nodes Gauss-Laguerre quadrature rule of parameter850
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αi = ξi
σ
− 1 (see Appendix C).851

The accuracy of this quadrature comes with a cost related to the computation of ω
(αi)
Q852

and λ
(αi)
Q for each value of αi.853

Appendix B.4.5. Single node analytical solution854

The case P = 1 has the following analytical solution:855

w1 = m0

ξ1 =
m1

m0

σ =
m2

m1

− m1

m0

Appendix B.5. Weibull kernel856

Appendix B.5.1. Definition857

The Weibull kernel δ
(W )
σ (ξ, ξm) is defined on Ωξ = ]0,+∞[ by858

δ(W )
σ (ξ, ξm) =

1

σξm

(
ξ

ξm

) 1−σ
σ

exp

(
−
(
ξ

ξm

)1/σ
)

(B.34)

Appendix B.5.2. Moments and linear system859

Moments of the Weibull kernel are given by860 ∫ +∞

0

ξkδ(W )
σ (ξ, ξm)dξ = ξkmΓ(1 + kσ) (B.35)

Moments of the distribution ñ(ξ) =
∑P

i=1wiδ
(W )
σ (ξ, ξi) are given by861

m̃k = m∗kΓ(1 + kσ) (B.36)

This can be translated into a linear system862

m̃n = A(W )
n (σ) ·m∗n (B.37)

with A
(W )
n (σ) a diagonal matrix:863

A
(W )
i,j (σ) =

{
Γ(1 + iσ) if i = j

0 otherwise
(B.38)

whose inverse matrix is directly given by864

A
(W )−1
i,j (σ) =

{
1

Γ(1+iσ)
if i = j

0 otherwise
(B.39)
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Appendix B.5.3. Low cost nested quadrature865

A Gauss-Laguerre quadrature can be used to approximate integral properties over a866

Weibull EQMOM reconstruction:867 ∫ +∞

0

f(ξ)n(ξ)dξ ≈
P∑
i=1

wi

Q∑
j=1

ωjf
(
ξiλ

σ
j

)
(B.40)

with wP , ξP and σ the EQMOM reconstruction parameters computed from m2P ; ωQ and868

λQ are the weights and nodes of a Q-nodes Gauss-Laguerre quadrature rule of parameter869

α = 0 (see Appendix C). The advantage of this quadrature is that it only requires ωQ and870

λQ to be computed once. However, this quadrature will not preserve the moments of the871

distribution and only yields exact results for f(ξ) = ξk/σ, k ∈ {0, . . . , 2 min(P,Q)− 1}872

Appendix B.5.4. Moment preserving nested quadrature873

One can produce a Gauss quadrature that preserves the moments of Weibull EQMOM874

approximations:875 ∫ +∞

0

f(ξ)n(ξ)dξ ≈
P∑
i=1

wi

Q∑
j=1

ω
(σ)
j f

(
ξiλ

(σ)
j

)
(B.41)

with wP , ξP and σ the EQMOM reconstruction parameters computed from m2P ; ω
(σ)
Q and876

λ
(σ)
Q are the weights and nodes of a Q-nodes “Gauss-Weibull” quadrature rule of parameter877

σ (see Appendix C). The weights and nodes of the nested quadrature need to be computed878

for each value of σ, i.e. for each Weibull EQMOM approximation of the NDF.879

Appendix B.5.5. Single node numerical solution880

The parameters w1, ξ1 and σ of the one-node Weibull EQMOM must be solution of the881

following system:882

m0 = w1

m1

Γ(1 + σ)
= w1ξ1

m2

Γ(1 + 2σ)
= w1ξ

2
1

The first equation gives w1 = m0 but no explicit solution exists for the two other equations.883

One can however notice that s = σ
1+σ

must be a root of884

G(s) =
m2m0

m2
1

−
Γ(1+s

1−s)

Γ( 1
1−s)

2
(B.42)

which is monotonous, defined on s ∈ [0, 1[ and has the following limits885
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G(0) =
m2m0

m2
1

> 0

lim
s→1−

G(s) < 0

G(s) then admits a single root that can be computed numerically with the Ridder’s method.886

One can also narrow down, at a very low cost, the search interval [0, 1[ by using the property887

gn = G

(
n

n+ 1

)
=
m2m0

m2
1

− (2n)!

(n!)2
(B.43)

with n an integer, which induces the following recurrence relation:888

gn = c− hn (B.44)

hn+1 =

(
4− 2

n+ 1

)
hn (B.45)

with c = m2m0

m2
1

and h1 = 2.889

The proposed algorithm to identify the root of G(s) is890

1. Compute c = m2m0

m2
1

891

• if c < 1, cancel the operation as the moments are not realisable;892

• if c = 1, s = 0 is the root of G(s);893

• if c < 2, set sl = 0, vl = c− 1, sr = 1
2

and vr = c− 2 and go to step 3.894

• otherwise, set sl = 0, vl = c− 1 and go to step 2.895

2. Initialise i = 1, h = 2 and iterate896

(a) increment i by 1;897

(b) compute h = h ∗
(
4− 2

i

)
898

• if h = c, then s = i
i+1

is a root of G(s);899

• if h < c, set sl = i
i+1

and vl = c− h;900

• if h > c, set sr = i
i+1

, vr = c− h and go to step 3.901

3. Apply the Ridder’s method to G(s) on the interval [sl, sr]902

(a) compute st1 = 1
2
(sl + sr) and vt1 = G(st1);903

(b) compute st2 = st1 + (st1 − sl)
vt1√

v2t1
−vlvr

and vt2 = G(st2);904

(c) set sl the highest value between sl, st1 and st2 whose image by G is positive;905

(d) set sr the lowest value between sr, st1 and st2 whose image by G is negative;906

(e) stop the computation if vl < ε(c− 1) with ε a relative tolerance (e.g. ε = 10−10)907

and consider sl as a root of G(s).908

Once the root of G(s) is identified, compute909
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σ =
s

1− s
ξ1 =

m1

m0Γ(1 + σ)

Note that each iteration of the Ridder’s method requires two computations of G(s), that910

implies four computations of the Gamma function –which is quite expensive– by iteration.911

This explains the interest of the second step which allows to narrow down the research912

interval at hardly no cost.913

Appendix B.6. Beta kernel914

Appendix B.6.1. Definition915

The Beta kernel δ
(β)
σ (ξ, ξm) was first used in EQMOM by Yuan et al. [18]. It is defined916

on Ωξ = ]0, 1[ by917

δ(β)
σ (ξ, ξm) =

ξ(l−1)(1− ξ)(m−1)

B(l,m)
with l =

ξm
σ

and m =
1− ξm
σ

(B.46)

with B(l,m) =
∫ 1

0
x(l−1)(1− x)(m−1)dx the beta function.918

Appendix B.6.2. Moments and linear system919

Moments of the Beta kernel are given by920 ∫ 1

0

ξkδ(β)
σ (ξ, ξm)dξ = Hk(ξm, σ) =

{
1 if k = 0∏k−1

j=0

(
ξm+jσ
1+jσ

)
otherwise

(B.47)

Moments of the distribution ñ(ξ) =
∑P

i=1wiδ
(β)
σ (ξ, ξi) are given by the linear system921

m̃n = A(β)
n (σ) ·m∗n (B.48)

with the elements of A
(β)
n (σ) being computed from the elements of the matrix relative to922

Gamma EQMOM, A
(Γ)
n (σ):923

A
(β)
i,j (σ) =

A
(Γ)
i,j (σ)

Fi(σ)
(B.49)

Fi(σ) =

{
1 if i ≤ 1

(1 + (i− 1)σ)Fi−1(σ) otherwise
(B.50)

The inverse of this matrix is also easily defined from A
(Γ)−1
n (σ):924

A
(β)−1
i,j (σ) = A

(Γ)−1
i,j (σ)Fj(σ) (B.51)
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Appendix B.6.3. Low cost nested quadrature925

A Gauss-Legendre quadrature can be used to approximate integral properties over a Beta926

EQMOM reconstruction:927

∫ 1

0

f(ξ)n(ξ)dξ ≈ 1

2

P∑
i=1

wi
B (αi+1, βi+1)

Q∑
j=1

ωjf

(
1− λj

2

)(
1− λj

2

)αi (1 + λj
2

)βi
(B.52)

with wP , ξP and σ the EQMOM reconstruction parameters computed from m2P ; ωQ and928

λQ are the weights and nodes of a Q-nodes Gauss-Legendre quadrature rule (see Appendix929

C); αi = ξi−σ
σ

and βi = 1−ξi−σ
σ

. This nested quadrature only requires ωQ and λQ to be930

computed once, but will not preserve the moments of the distribution.931

Appendix B.6.4. Moment preserving nested quadrature932

A Gauss-Jacobi quadrature will preserve the moments of the distribution:933

∫ 1

0

f(ξ)n(ξ)dξ ≈ 2
σ−1
σ

P∑
i=1

wi
B (αi+1, βi+1)

Q∑
j=1

ω
(αi,βi)
j f

(
1− λ(αi,βi)

j

2

)
(B.53)

withwP , ξP and σ the EQMOM reconstruction parameters computed fromm2P ; ω
(αi,βi)
Q and934

λ
(αi,βi)
Q are the weights and nodes of a Q-nodes Gauss-Jacobi quadrature rule of parameters935

αi = ξi−σ
σ

and βi = 1−ξi−σ
σ

(see Appendix C). The moment-preserving property of this936

quadrature comes with the need to compute ω
(αi,βi)
Q and λ

(αi,βi)
Q for each node of the main937

Beta EQMOM quadrature.938

Appendix B.6.5. Single node analytical solution939

The case P = 1 has the following analytical solution:940

w1 = m0

ξ1 =
m1

m0

σ =
m2

1 −m0m2

m0(m2 −m1)

Appendix C. Gaussian quadratures941

A Q-node Gaussian quadrature allows to approximate a function integral as a weighted942

sum of point wise values of this function over an interval I:943 ∫
I

f(x)p(x)dx ≈
Q∑
j=1

ωjf (λj) (C.1)
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p(x) is a weight function, and the quadrature rule yields accurate integral evaluations if944

f(x) = xk, k ∈ {0, . . . , 2Q − 1}. The computation of the weights ωQ and nodes λQ is945

performed as detailed in 2.2 by considering polynomials that are orthogonal with respect to946

the weight function p(x).947

Table C.1 details for each Gauss quadrature:948

• the weight function p(x);949

• the integration support I;950

• the computation of recurrence coefficients aQ−1 and bQ−1;951

• the zero-th order moment P0 of p(x).952

The recurrence coefficients are used to construct the Jacobi matrix JQ associated with953

p(x) on I (see Eq. 6). The nodes λQ are the eigenvalues of JQ, and the weights ωQ are given954

by ωj = P0v
2
1,j with v1,j the first component of the normalised eigenvector belonging to the955

eigenvalue λj.956
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Table C.1: Specifics of Gauss quadratures used for EQMOM nested quadratures.

Gauss- I p(x) aQ and bQ P0

Hermite R exp (−x2) ak = 0

bk = k/2

√
π

Laplacec R exp (− |x|) /2
Apply Chebyshev algorithm to

P2Q−1 with Pk =

{
0 if k odd

k! if k even

1

Laguerref R+ xα exp (−x) a0 = 1 + α

ak = 2 + ak−1

bk = k(k + α)

Γ (1 + α)d

Wigerta,f R+ 1
γx
√

2π
exp

(
log2(x)

2γ2

)
ak =

((
z2 + 1

)
z2k − 1

)
z2k−1

bk =
(
z2k − 1

)
z6k−4

z = exp(γ2/2)

1

Weibullc,f R+ γxγ−1 exp (−xγ) Apply Chebyshev algorithm to
P2Q−1 with Pk = Γ (1 + k/γ)

1

Legendreb ]−1, 1[ 1 ak = 0

bk =
k2

4k2 − 1

2

Jacobib,f ]−1, 1[ (1−x)α (1+x)β ak =
β2−α2

δk(δk+2)

bk =
4k(k+α)(k+β)(k+α+β)

δ2
k(δ

2
k−1)

δk = 2k+α+β

2α+β+1×
B (α+1, β+1)e

aWilck [36]. bShen et al. [37]. c Not standard Gauss-quadrature. d Γ(x) =
∫ +∞

0 tx−1e−tdt. e

B(x, y) = Γ(x)Γ(y)
Γ(x+y) . f α > −1, β > −1, γ > 0.
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