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Population Balance Models have a wide range of applications in many industrial fields as they allow accounting for heterogeneity among properties which are crucial for some system modelling. They actually describe the evolution of a Number Density Function (NDF) using a Population Balance Equation (PBE). For instance, they are applied to gas-liquid columns or stirred reactors, aerosol technology, crystallisation processes, fine particles or biological systems. There is a significant interest for fast, stable and accurate numerical methods in order to solve for PBEs, a class of such methods actually does not solve directly the NDF but resolves their moments. These methods of moments, and in particular quadraturebased methods of moments, have been successfully applied to a variety of systems. Pointwise values of the NDF are sometimes required but are not directly accessible from the moments. To address these issues, the Extended Quadrature Method of Moments (EQMOM) has been developed in the past few years and approximates the NDF, from its moments, as a convex mixture of Kernel Density Functions (KDFs) of the same parametric family. In the present work EQMOM is further developed on two aspects. The main one is a significant improvement of the core iterative procedure of that method, the corresponding reduction of its computational cost is estimated to be between 80% and 85%. The second aspect is an extension of EQMOM to two new KDFs used for the approximation, the Weibull and the Laplace kernels. All MATLAB source codes used for this article are provided with this article.

Introduction

Population Balance Equations (PBEs) are particular formalisms that allows describing 2 the evolution of properties among heterogeneous populations. They are used to track the size 3 distribution of fine particles [START_REF] Nguyen | Solution of population balance equations in applications with fine particles: Mathematical modeling and numerical schemes[END_REF]; the bubble size distribution in gas-liquid stirred-tank reactors or bubble columns [START_REF] Moilanen | Modelling mass transfer in an aerated 0.2 m3 vessel agitated by Rushton, Phasejet and Combijet impellers[END_REF][START_REF] Buffo | A novel simplified multivariate PBE solution method for mass transfer problems[END_REF]; the crystal-size distribution in crystallizers or the distribution of biological cell properties in bioreactors [START_REF] Morchain | A coupled population balance model and CFD approach for the simulation of mixing issues in lab-scale and industrial bioreactors[END_REF][START_REF] Heins | Experimental and in silico investigation of population heterogeneity in continuous Sachharomyces cerevisiae scaledown fermentation in a two-compartment setup[END_REF], among other examples.

A PBE describes the evolution and transport of a Number Density Function (NDF), under the influence of multiple processes which modify the tracked property distribution (e.g. erosion, dissolution, aggregation, breakage, coalescence, nucleation, adaptation, etc.).

One often requires low-cost numerical methods to solve PBEs, for instance when coupling with a flow solver (e.g. Computational Fluid Dynamics software). Monte-Carlo methods constitute a stochastic resolution of the population balance and can be applied to such PBE-CFD simulations [START_REF] Fede | Monte-Carlo simulation of colliding particles or coalescing droplets transported by a turbulent flow in the framework of a joint fluidparticle pdf approach[END_REF]. Similarly, sectional methods allow direct numerical resolutions of the PBE through the discretisation of the property space [START_REF] Kumar | On the solution of population balance equations by discretization -I. A fixed pivot technique[END_REF][START_REF] Kumar | On the solution of population balance equations by discretization -II. A moving pivot technique[END_REF]. They respectively require a high number of parcels or sections in order to reach high accuracy and are thus often discarded for large-scale simulations.

An interesting alternative approach lies in the field of methods of moments. A PBE, which describes the evolution of a NDF, is transformed in a set of equations which describes the evolution of the moments of that distribution. Moments are integral properties of NDFs, the first low order integer moments are related to the mean, variance, skewness and flatness of the statistical distributions described by NDFs. This approach then reduces the number of resolved variables to a finite set of NDF moments. It also comes with some difficulties when one must compute non-moment integral properties, or point-wise evaluations, of the distribution [START_REF] Massot | A robust moment method for evaluation of the disappearance rate of evaporating sprays[END_REF].

To tackle these issues, one can try to recover a NDF from a finite set of its moments. In most cases, this reverse problem has an infinite number of solutions and different approaches exist to identify one or an other out of them. Some methods that lead to continuous approximations are the Spline method [START_REF] John | Techniques for the reconstruction of a distribution from a finite number of its moments[END_REF], the Maximum-Entropy approach [START_REF] Massot | A robust moment method for evaluation of the disappearance rate of evaporating sprays[END_REF][START_REF] Mead | Maximum entropy in the problem of moments[END_REF][START_REF] Tagliani | Hausdorff moment problem and maximum entropy: A unified approach[END_REF] or the Kernel Density Element Method (KDEM) [START_REF] Athanassoulis | The truncated Hausdorff moment problem solved by using kernel density functions[END_REF].

More recently, the Extended Quadrature Method of Moments (EQMOM) was proposed as a new approach which is more stable than the previous ones, and yields either continuous or discrete NDFs depending on the moments [START_REF] Nguyen | Solution of population balance equations in applications with fine particles: Mathematical modeling and numerical schemes[END_REF][START_REF] Chalons | A multi-Gaussian quadrature method of moments for gas-particle flows in a LES framework[END_REF][START_REF] Yuan | An extended quadrature method of moments for population balance equations[END_REF]. EQMOM has been implemented in OpenFOAM [START_REF] Passalacqua | An open-source quadrature-based population balance solver for OpenFOAM[END_REF] for the purpose of PBE-CFD coupling. The core of this method relies on an iterative procedure that is a computational bottleneck.

The current work focuses on EQMOM and develops a new core procedure whose computational cost is significantly lower than previous implementations by reducing both (i) the cost of each iteration and (ii) the total number of required iterations.

The previous core procedure [START_REF] Nguyen | Solution of population balance equations in applications with fine particles: Mathematical modeling and numerical schemes[END_REF] will be recalled before describing how it can be shifted toward the new -cheaper-approach. Both implementations will be compared in terms of computational cost (number of required floating-point operations) and run-time.

Multiple variations of EQMOM exist, the Gauss EQMOM [START_REF] Chalons | A multi-Gaussian quadrature method of moments for gas-particle flows in a LES framework[END_REF][START_REF] Marchisio | Computational Models for Polydisperse Particulate and Multiphase Systems[END_REF], Log-normal EQMOM [START_REF] Madadi-Kandjani | An extended quadrature-based moment method with log-normal kernel density functions[END_REF] as well as Gamma and Beta EQMOM [START_REF] Yuan | An extended quadrature method of moments for population balance equations[END_REF]. Two new variations, namely Laplace EQ-MOM and Weibull EQMOM, are proposed along with a unified formalism among all six variations.

The whole source code used to write this article (figures and data generation) is provided as supplementary data, as well as our implementations of EQMOM in the form of a MATLAB functions library [START_REF]MATLAB, version 9.0 (R2016a[END_REF].

2. Quadrature Based Methods of Moments: QMOM and EQMOM

Definitions

Let dµ(ξ) be a positive measure, induced by a non-decreasing function µ(ξ) defined on a support Ω ξ . This measure is associated to a Number Density Function n(ξ) such that dµ(ξ) = n(ξ)dξ. Let m N be the vector of the first N + 1 integer moments of this measure:

m N =      m 0 m 1 . . . m N      , m k = Ω ξ ξ k n(ξ)dξ (1) 
Three actual supports will be considered: (i) Ω ξ = ]-∞, +∞[, (ii) Ω ξ = ]0, +∞[ and (iii) Ω ξ = ]0, 1[. For each support, one can define the associated realisable moment space, M N (Ω ξ ), as the set of all vectors of finite moments m N induced by all possible positive measures defined on Ω ξ .

Quadrature Method of Moments

EQMOM is based on the Quadrature Method of Moments (QMOM) that was first introduced by McGraw [START_REF] Mcgraw | Description of Aerosol Dynamics by the Quadrature Method of Moments[END_REF]. It is used to approximate integral properties of a distribution where only a finite number of its moments is known. By making use of an even number of moments 2P , one can compute a Gauss quadrature rule characterised by its weights w P = [w 1 , . . . , w P ] T and nodes ξ P = [ξ 1 , . . . , ξ P ] T such that:

Ω ξ f (ξ)dµ(ξ) = P i=1 w i f (ξ i ) (2) 
holds true if f (ξ) = ξ k , ∀k ∈ {0, . . . , 2P -1}. Otherwise, this quadrature rule will produce an approximation of the integral property. The computation of the quadrature rule (i.e.

the vectors w P and ξ P ) is of special interest for us, which is why its two main steps will be detailed.

Any positive measure dµ(ξ) is associated with a sequence of monic polynomials (i.e. polynomial whose leading coefficient equals 1) denoted π k -with k the order of the polynomialsuch that:

Ω ξ π i (ξ)π j (ξ)dµ(ξ) = 0, for i = j (3) 
These polynomials are said orthogonal with respect to the measure dµ(ξ) and are defined by:

π k (ξ) = 1 c k m 0 m 1 • • • m k-1 m k m 1 m 2 • • • m k m k+1 . . . . . . . . . . . . . . . m k-1 m k • • • m 2k-2 m 2k-1 1 ξ • • • ξ k-1 ξ k (4) 
with c k a constant chosen so that the leading coefficient (of order k) of π k equals 1, hence making π k a monic polynomial.

It is known that monic orthogonal polynomials satisfy a three-term recurrence relation [START_REF] Gautschi | Orthogonal Polynomials: Computation and Approximation, Numerical mathematics and scientific computation[END_REF]:

π k+1 (ξ) = (ξ -a k )π k (ξ) -b k π k-1 (ξ) (5) 
with a k and b k being the recurrence coefficients specific to the measure dµ(ξ), π -1 (ξ) = 0 and π 0 (ξ) = 1.

Let J n (dµ) be the n×n Jacobi matrix associated to the measure dµ. This is a tridiagonal symmetric matrix defined as:

J n (dµ) =      a 0 √ b 1 0 √ b 1 a 1 . . . . . . . . . b n-1 0 b n-1 a n-1      (6) 
The weights and nodes of the quadrature rule from Eq. ( 2) are given by spectral properties of J P (dµ). The nodes ξ P of the rule are the eigenvalues of J P (dµ). The weights of the rule are given by:

w i = m 0 v 2 1,i (7) 
where v 1,i is the first component of the normalised eigenvector belonging to the eigenvalue ξ i . The computation of the quadrature rule (Eq. ( 2)) then relies on two steps:

1. The computation of the recurrence coefficients a P -1 = [a 0 , . . . , a P -1 ] T and b

P -1 = [b 1 , . . . , b P -1 ] T .
2. The computation of the eigenvalues and the normalised eigenvectors of J P (dµ).

Multiple algorithms are available in the literature to compute the recurrence coefficients:

• The Quotient-Difference algorithm [START_REF] Henrici | The Quotient-Difference algorithm[END_REF][START_REF] Dette | The theory of canonical moments with applications in statistics, probability, and analysis[END_REF] • The Product-Difference algorithm [START_REF] Gordon | Error Bounds in Equilibrium Statistical Mechanics[END_REF] • The Chebyshev algorithm [START_REF] Wheeler | Modified moments and Gaussian quadratures[END_REF] The Chebyshev algorithm was found to be the stablest one of the three [START_REF] Nguyen | Solution of population balance equations in applications with fine particles: Mathematical modeling and numerical schemes[END_REF][START_REF] Wheeler | Modified moments and Gaussian quadratures[END_REF], its description is given in Appendix A.

Extended Quadrature Method of Moments

The QMOM method is well suited for the approximation of integral properties of the NDF, which is actually the main purpose of Gauss quadratures. However, in many applications such as evaporation [START_REF] Massot | A robust moment method for evaluation of the disappearance rate of evaporating sprays[END_REF] or dissolution [START_REF] Lebaz | Reconstruction of a distribution from a finite number of its moments: A comparative study in the case of depolymerization process[END_REF] processes, point-wise values of the NDF n(ξ) are required but not directly accessible from the moments. For that purpose, a method is needed to produce an approximation n(ξ) of the original distribution n(ξ), by knowing only a finite set of its moments.

In a sense, one can consider that the Gaussian quadrature computed with QMOM approximates n(ξ) as a weighted sum of Dirac distributions:

n(ξ) = P i=1 w i δ(ξ, ξ i ) (8)
with the Dirac δ distribution defined by its sifting property

+∞ -∞ f (ξ) δ(ξ, ξ m )dξ = f (ξ m ) (9) 
For most applications, n(ξ) is expected to be a continuous distribution whilst QMOM yields monodisperse or discrete polydisperse reconstructions of n(ξ), with n(ξ) = 0 for all values of ξ except some finite number of these values.

Many methods were suggested to tackle this problem and to propose a continuous reconstruction n(ξ) from a finite number of moments m N . Some of them are the Spline method [START_REF] John | Techniques for the reconstruction of a distribution from a finite number of its moments[END_REF], the Maximum-Entropy approach [START_REF] Mead | Maximum entropy in the problem of moments[END_REF][START_REF] Tagliani | Hausdorff moment problem and maximum entropy: A unified approach[END_REF][START_REF] Massot | A robust moment method for evaluation of the disappearance rate of evaporating sprays[END_REF] or the Kernel Density Element Method [START_REF] Athanassoulis | The truncated Hausdorff moment problem solved by using kernel density functions[END_REF]. Their properties will not be discussed here but one only underlines that they tend to be unstable, ill-conditionned, or have a high sensitivity to numerical parameters [START_REF] John | Techniques for the reconstruction of a distribution from a finite number of its moments[END_REF][START_REF] Lebaz | Reconstruction of a distribution from a finite number of its moments: A comparative study in the case of depolymerization process[END_REF][START_REF] Pigou | An assessment of methods of moments for the simulation of population dynamics in large-scale bioreactors[END_REF].

In particular, none of them can handle the case of a moment set which would be on the boundary of the realisable moment space m N ∈ ∂M N (Ω ξ ). Such a moment set is associated to a discrete (or degenerated) distribution and, in this specific case, the solution provided by QMOM is the only possible reconstruction.

Note that a failure -or instabilities-in a numerical method can compromise the integrity of large-scale simulations. For this reason, Chalons et al. [START_REF] Chalons | A multi-Gaussian quadrature method of moments for gas-particle flows in a LES framework[END_REF], Yuan et al. [START_REF] Yuan | An extended quadrature method of moments for population balance equations[END_REF] and Nguyen et al. [START_REF] Nguyen | Solution of population balance equations in applications with fine particles: Mathematical modeling and numerical schemes[END_REF] proposed a robust and stable method to tackle this reconstruction problem by handling both continuous approximations and discrete solutions. Their approach, the Extended Quadrature Method of Moments, approximates n(ξ) as a convex mixture of Kernel Density Functions (KDFs) of the same parametric family:

n(µ) = P i=1 w i δ σ (ξ, ξ i ) (10) 
with

• w i : the weight of the i-th node, w i ≥ 0, ∀i ∈ {1, . . . , P }

• ξ i : the location parameter of the i-th node, ξ i ∈ Ω ξ , ∀i ∈ {1, . . . , P }

• δ σ : a KDF chosen to perform the approximation, referred later to as the reconstruction kernel. σ is the shape parameter of the approximation.

The computation of the weights w P = [w 1 , . . . , w P ] T , the nodes ξ P = [ξ 1 , . . . , ξ P ] T and the shape parameter σ from the moment set m 2P is performed by the EQMOM momentinversion procedure. The improvement of this procedure constitutes the core of this article and is detailed in section 3.

Multiple standard normalized distribution functions can be used as the reconstruction kernel δ σ (e.g. Gaussian, Log-normal, etc.). A list of them is given in Appendix B. All of these kernels degenerate into Dirac distribution if their shape parameters are sufficiently small:

lim σ→0 δ σ (ξ, ξ m ) = δ(ξ, ξ m ) (11) 
This allows EQMOM to perfectly handle the case of a moment set m 2P being on the boundary of the realisable moment space ∂M 2P (Ω ξ ).

EQMOM can also be used to compute integral properties of the NDF with high accuracy.

This comes with the introduction of nested quadratures. The main quadrature proposes the following approximation of integral terms:

Ω ξ f (ξ)n(ξ)dξ ≈ P i=1 w i Ω ξ f (ξ)δ σ (ξ, ξ i )dξ (12) 
Moreover, a quadrature rule can be used to approximate the bracketed integral in Eq. ( 12). This will be the nested quadrature that actually depends on the kernel δ σ (ξ, ξ m ). For instance, Gauss-Hermite quadratures can be used to approximate integrals over a Gaussian kernel (see Appendix B.1). Nested quadratures then give the following approximation:

Ω ξ f (ξ)n(ξ)dξ ≈ P i=1 w i Q j=1 ω j f ξ (σ) ij (13) 
with Q the order of the sub-quadrature, ω Q = [ω 1 , . . . , ω Q ] T the weights of the sub-quadrature, and ξ (σ) ij the j-th node of the sub-quadrature, taking into account the location and shape parameters of the i-th main-quadrature node. These nested quadratures are detailed for all KDFs in Appendix B and Appendix C.

Moment inversion procedure

The EQMOM moment-inversion procedure comes with analytical solutions for some kernels in the case of low-order quadratures. The one-node analytical solutions are detailed for all kernels in Appendix B. When they exist, the two-nodes analytical solutions are implemented in MATLAB code (see supplementary data) but are not detailed in this article. The current section is focusing on the numerical procedure used to compute the reconstruction parameters in absence of an analytical solution.

The procedure proposed by Yuan et al. [START_REF] Yuan | An extended quadrature method of moments for population balance equations[END_REF] and Nguyen et al. [START_REF] Nguyen | Solution of population balance equations in applications with fine particles: Mathematical modeling and numerical schemes[END_REF] is first recalled in section 3.1. The section 3.2 details how their approach can be shifted toward a new convergence criteria that will be applied to the specific cases of

• the Hamburger moment problem (section 3.3): NDF defined on the whole phase space

Ω ξ = ]-∞, +∞[
• the Stieltjes moment problem (section 3.4): NDF defined on the positive phase space

Ω ξ = ]0, +∞[
• the Hausdorff moment problem (section 3.5): NDF defined on the closed support

Ω ξ = ]0, 1[

Standard procedure

Let m N be the vector of the first N + 1 integer moments of the measure dµ(ξ) = n(ξ)dξ,

with N = 2P an even integer:

m N =      m 0 m 1 . . . m N      , m k = Ω ξ ξ k n(ξ)dξ (14) 
The EQMOM moment-inversion procedure aims to identify the parameters σ, w P = [w 1 , . . . , w P ] T and ξ P = [ξ 1 , . . . , ξ P ] T such that m N = m N with:

m N =      m 0 m 1 . . . m N      , m k = Ω ξ ξ k n(ξ)dξ, n(ξ) = P i=1 w i δ σ (ξ, ξ i ) (15) 
For any value of σ, Yuan et al. [START_REF] Yuan | An extended quadrature method of moments for population balance equations[END_REF] identified a procedure which leads to the parameters

w P and ξ P such that m N -1 = m N -1 .
The EQMOM moment-inversion problem has then been reduced to solving a scalar non-linear equation by looking for a root of the function

D N (σ) = m N -m N (σ).
The approach developed by Yuan et al. [START_REF] Yuan | An extended quadrature method of moments for population balance equations[END_REF] and then improved by Nguyen et al. [START_REF] Nguyen | Solution of population balance equations in applications with fine particles: Mathematical modeling and numerical schemes[END_REF] is based on the fact that, for the KDFs used in EQMOM, it is possible to write the following linear system:

m n = A n (σ) • m * n ( 16 
)
where A n (σ) is a lower-triangular (n + 1) × (n + 1) matrix whose elements depend only on the chosen KDF and on the value σ, whereas m * n is defined as:

m * n =      m * 0 m * 1 . . . m * n      , m * k = P i=1 w i ξ k i ( 17 
)
By their definition, the moments m * n correspond to the moments of a degenerated distribution (i.e. a finite sum of Dirac distributions), hence these moments will be referred as the degenerated moments of the approximation. Degenerated moments are defined in such a way that the vectors w P and ξ P can be computed from m * 2P -1 using a Gauss Quadrature (see 2.2).

At this point, one has the basis required to compute the objective function D N (σ) and to search for its root. The computation of D N (σ) from a vector m N is as follow (see also Fig. 1a):

1. Compute m * N -1 (σ) = A -1 N -1 (σ) • m N -1 .
2. Compute the recurrence coefficients a * P -1 (σ) and b * P -1 (σ) by applying the Chebyshev algorithm to m * N -1 (σ).

3. Use the recurrence coefficients to compute the Gaussian quadrature rule w P (σ) and ξ P (σ).

4. Knowing the parameters σ, w P (σ) and ξ P (σ) of the reconstruction, compute m N (σ), this can be done easily by:

• Computing the N-th order degenerated moment of the approximated NDF:

m * N (σ) = P i=1 w i (σ)ξ i (σ) N .
• Multiplying the last line of A N (σ) and the vector of degenerated moments:

m N (σ) = [0, 0, . . . , 1] • A N (σ) • m * 0 (σ), . . . , m * N -1 (σ), m * N (σ) T . 5. Compute D N (σ) = m N -m N (σ).
For each compatible KDF, it is possible to use the low order moments to compute an upper bound σ max so that the search of a root of

D N is restricted to the interval σ ∈ [0, σ max ].
Then a bounded non-linear equation solver such as Ridder's method can be applied to actually find the root of the function.

Two specific cases were discarded in the previous description of the method. First, it happens that the function D N does not admit any root, in such a case the procedure is switched toward the minimisation of this function in order to reduce the error on the last moment of the approximation.

Second, during the computation of D N (σ), one must compute degenerated moments from which the weights and nodes are extracted. If the degenerated moments m * N -1 (σ) turn out not to be realisable on the support Ω ξ of the NDF, the quadrature performed on this vector will lead to nodes outside Ω ξ , or even to negative/complex weights. Nguyen et al. [START_REF] Nguyen | Solution of population balance equations in applications with fine particles: Mathematical modeling and numerical schemes[END_REF] then suggest to check for the realisability of the degenerated moments, and if these are not realisable, to set m N (σ) to a arbitrarily high value such as 10 100 . This will force the nonlinear equation solver to test a lower value of σ in order to bring back the vector m * N -1 (σ) within the realisable moment space. However note that this is only a numerical trick to converge toward the actual root, but D N (σ) is actually undefined as soon as m * N -1 (σ) is not realisable.

A new procedure based on moment realisability

The reversible linear system linking the raw moments of the approximation m N to its degenerated moments m * N is such that a new objective function D * N (σ) -whose root is the same as that of D N (σ)-can be formulated. Its computation is as follow (see also Fig. 1b):

1. Compute m * N (σ) = A -1 N (σ) • m N .
2. Compute a quadrature on the vector m * N -1 (σ) to obtain the vectors w P (σ) and ξ P (σ).

Compute m

* N (σ) = P i=1 w i (σ)ξ i (σ) N . 4. Compute D * N (σ) = m * N (σ) -m * N (σ).
The benefit of this new objective function is that it only requires the matrix A -1 N (σ) instead of both the matrix A -1 N -1 (σ) and the last line of A N (σ). This only increases the clarity of the method, but has hardly no effect on its numerical cost. The point of this alternative approach is however to underline a crucial element for the new EQMOM implementation: we actually look for a value of σ for which

m * 2P (σ) = m * 2P (σ).
This implies that, for this specific searched σ value, the vector m * 2P (σ) reads

m * 2P (σ) =      P i=1 w i ξ 0 i P i=1 w i ξ 1 i . . . P i=1 w i ξ 2P i      (18)
which is, by construction, the vector of the first 2P + 1 moments of the sum of P Dirac distributions. Under the condition ξ i = 0, i ∈ {1, . . . , P }, the vector m * 2P (σ) will then have the following specific properties:

1. The vector m * 2P -1 (σ) must be strictly within the realisable moment space M N -1 (Ω ξ ).

2. The vector m * 2P (σ) must be on the boundary of the realisable moment space M N (Ω ξ ).

EQMOM procedure will then rely on the realisability of the vector m * 2P (σ) instead of the computation of the error on the last moment, this will be a cheaper approach. The actual definition of the realisable moment space of order n, M n , depends on the support Ω ξ of the NDF. The three classical supports, corresponding to the Hamburger, Stieltjes and Hausdorff moment problems, come with different constraints on a moment set to ensure its realisability.

The realisability criteria for each of these supports will then be detailed.

Fig. 1 sums up the "standard approach" based on D N (σ), the shifted approach, based on D * N (σ), as well as the new approach based on the realisability criteria of m * 2P (σ) for all three supports. 

Application to the Hamburger problem

As stated in 2.2, it is known that the monic polynomials which are orthogonal to a measure dµ(ξ) = n(ξ)dξ satisfy a three-term recurrence relation (Eq. ( 5)) with a k and b k , k ∈ N, the recurrence coefficients specific to the measure dµ(ξ). The Favard's theorem [START_REF] Favard | Sur les polynomes de Tchebicheff[END_REF] and its converse [START_REF] Chihara | An introduction to orthogonal polynomials[END_REF] imply that the measure dµ(ξ) is realisable on to looking for a value of σ such as: Let denote σ k the root of b k (σ). One can notice that the root σ k lies within the interval [0, σ k-1 ]. We actually observed the existence of all roots σ k , k ∈ {1, . . . , P } on numerous (about 10 6 ) randomly selected moment sets of N + 1 = 13 moments, and never observed an undefined root. The generality of this observation has not been mathematically proved, but it seems that indeed σ k is always defined and always lies in

Ω ξ = ]-∞,
• b * k (σ) > 0, ∀k ∈ {1, . . . , P -1} • b * P (σ) = 0
σ k ∈ [0, σ k-1 ] , k ∈ {2, . . . , P }.
σ 1 is defined analytically.

The previous observations were used to design a simple algorithm which allows identifying the root σ P . This algorithm is based on the fact that it is possible to check whether a value σ t is higher or lower than σ P at low cost and with no prior knowledge of σ P value:

• If b * k (σ t ) > 0, ∀k ∈ {1, . . . , P }, then σ t < σ P .
• Otherwise, that is if ∃k ∈ {1, . . . , P }, b * k (σ t ) < 0, then σ t > σ P .

One can then use an iterative approach that will 1. Check the realisability of the raw moments m 2P = m * 2P (0) by computing b * P (0) and checking the positivity of all elements.

2. Initialise an interval σ and σ

(0) l , σ (0) 
(k) r = σ t .
The choice of σ t at step 3a will be made by trying to locate the root σ j of b * j (σ) with j the index of the first negative element of b * P σ

(k) r

. Following Nguyen et al. [START_REF] Nguyen | Solution of population balance equations in applications with fine particles: Mathematical modeling and numerical schemes[END_REF] developments, the use of Ridder's method is advised to select σ t . This method actually tests two σ values per iteration. Consequently, the step 3 of the previous algorithm becomes:

3. Iterate over k (a) Identify j the index of the first negative element of b * P σ .

(k-1) r . (b) Compute σ t 1 = 1 2 σ (k-1) l + σ (k-1) r and b * P (σ t 1 ). (c) Compute σ t 2 = σ t 1 + σ t 1 -σ (k-1) l b * j (σt 1 ) b * j (σt 1 ) 2 -b * j σ (k-1) l * b * j σ (k-1)
Actual implementations of this algorithm for both kernels are provided as supplementary data.

Application to the Stieltjes problem

It is well known that the realisability of a moment set m N on the support Ω ξ = ]0, +∞[ is strictly equivalent to the positivity of the Hankel determinants H 2n+d [START_REF] Shohat | The Problem of Moments, Mathematical Surveys and Monographs[END_REF] defined as:

H 2n+d = m d • • • m n+d . . . . . . . . . m n+d • • • m 2n+d (19) 
with d ∈ {0, 1} and n ∈ N, 2n + d ≤ N .

This condition on the positivity of Hankel determinants can be translated into a condition on the positivity of the numbers ζ k [START_REF] Chihara | An introduction to orthogonal polynomials[END_REF] defined by :

ζ k = H k-3 H k H k-2 H k-1 , H j = 1 if j < 0 (20) 
These numbers can be directly computed from the recurrence coefficients a P and b P defined in 2.2 through the following relations:

ζ 2k = b k ζ 2k-1 , ζ 2k+1 = a k -ζ 2k (21) 
with

ζ 1 = a 0 = m 1 /m 0 .
The goal here is to use these realisability criteria to compute the parameters of EQMOM quadrature with either the Log-normal, the Gamma or the Weibull kernel (see Appendix One actually looks for σ such that 1. All roots σ k , k ∈ {2, . . . , N } are defined (Fig. 3a).

• ζ * k (σ) > 0, ∀k ∈ {1, . . . , N -1} • ζ * N (σ) = 0
2. Some intermediary roots σ k , k ∈ {3, . . . , N -1}, are not defined but the root σ N still exists (Fig. 3b).

3. The root σ N is not defined (Fig. 3c).

These three cases can be observed for the Gamma and Log-normal kernels too.

In the first two cases, when σ N exists, the EQMOM approximation is well defined. The last case -where ζ * N (σ) admits no root in [0, σ N -1 ]-actually corresponds to the case described by Nguyen et al. [START_REF] Nguyen | Solution of population balance equations in applications with fine particles: Mathematical modeling and numerical schemes[END_REF] where D N (σ) did not admit any root either. In this case, it was suggested to minimise D N (σ) in order to reduce the difference between m N and m N (σ) as much as possible.

D N (σ) tends to be a decreasing function, but is undefined as soon as any element of 

ζ * N -1 (σ) is
σ t 1 = 1 2 σ (k-1) l + σ (k-1) r and ζ * N (σ t 1 ). (c) Compute σ t 2 = σ t 1 + σ t 1 -σ (k-1) l ζ * j (σt 1 ) ζ * j (σt 1 ) 2 -ζ * j σ (k-1) l * ζ * j σ (k-1)
(k) r -σ (k) l < ε σ 1 or if ζ * N σ (k) l < ε ζ * N (0),

Application to the Hausdorff problem

The moments of a distribution defined on the closed support Ω ξ = ]0, 1[ must obey two sets of conditions in order to be within the realisable moment space [START_REF] Tagliani | Hausdorff moment problem and maximum entropy: A unified approach[END_REF][START_REF] Dette | The theory of canonical moments with applications in statistics, probability, and analysis[END_REF]. The moment set m N is interior to the realisable moment space associated to the support Ω ξ = ]0, 1[ if and only if:

• H k > 0, ∀k ∈ {0, . . . , N } • H k > 0, ∀k ∈ {1, . . . , N }
with H k defined in Eq. ( 19) and H k defined by 

H 2n+d = m d-1 -m d • • • m n+d-1 -m n+d . . . . . . . . . m n+d-1 -m n+d • • • m 2n+d-1 -m 2n+d ( 
p k = m k -m - k m + k -m - k (23) 
A moment set m N is realisable if and only if the associated canonical moment set p N lies in the hypercube ]0, 1[ N . The canonical moments can be computed through the recurrence relation [START_REF] Wall | Analytic Theory of Continued Fractions, The University series in higher mathematics[END_REF]:

p k = ζ k 1 -p k-1 (24) 
with ζ k defined in Eq. ( 20) and p 1 = m 1 .

In the case of the Beta kernel (see Appendix B.6), one is looking for a value of σ such that the vector p * N (σ) has the following properties: • Fig. 4a: the root σ N of D N (σ), D * N (σ) and p * N (σ) exists and can be identified through a similar procedure than that described in sections 3.3 and 3.4.

• p * k (σ) ∈ ]0, 1[ , ∀k ∈ {1, . . . , N -1} • p * N (σ) = 0 p * N (σ)
• Fig. 4b: the root σ N is not defined but the minimum of D N (σ) is located at the σ value for which p * N -1 (σ) is on the boundary of the hypercube ]0, 1[ N -1 .

• Fig. 4c: D N (σ), D * N (σ) and p * N (σ) admit multiple roots.

• Fig. 4d: the root σ N is defined, but there is a range ]σ v 1 , σ v 2 [ with σ v 2 < σ N , highlighted in light grey, such that in this interval the convergence criteria are undefined because

∀σ ∈]σ v 1 , σ v 2 [, p * N -1 (σ) / ∈ ]0, 1[ N -1 .
The algorithm proposed in sections 3. (c) If j < N and p * j σ

(k-1) r > 1 • Compute σ t 2 = σ t 1 + σ t 1 -σ (k-1) l q * j (σt 1 ) q * j (σt 1 ) 2 -q * j σ (k-1) l * q * j σ (k-1) r and p * N (σ t 2 ), with q * j (σ) = 1 -p * j (σ). (d) Else, that is if j = N or p * j σ (k-1) r < 0 • Compute σ t 2 = σ t 1 + σ t 1 -σ (k-1) l p * j (σt 1 ) p * j (σt 1 ) 2 -p * j σ (k-1) l * p * j σ (k-1) r and p * N (σ t 2 ). (e) Set σ (k) l
as the highest value between σ (k-1) l , σ t 1 and σ t 2 such that the correspond-

ing vector p * N lies in ]0, 1[ N . (f) Set σ (k)
r as the lowest value between σ (k-1) r , σ t 1 and σ t 2 such that the corresponding

vector p * N does not lie in ]0, 1[ N . Stop the computation if σ (k) r -σ (k) l < ε σ 2 or if p * N σ (k) l < ε p * N (0)
, with ε a relative tolerance (e.g. ε = 10 -10 ). As previously, once convergence is achieved, the weights w P and nodes ξ P of the reconstruction can be obtained by computing a Gaussian quadrature rule based on the recurrence coefficients a * P -1 σ

(k) l and b * P -1 σ (k) l
. This algorithm will converge to the root σ N for cases similar to Fig. 4a; to the minimum of D N (σ) for cases similar to Fig. 4b; to one of the multiple roots for cases similar to Fig.

4c. In the case illustrated in Fig. 4d, the algorithm may or may not identify the existing root, depending on whether one of the intermediate tested σ values lies in the greyed area.

One could try to develop a more robust algorithm, that will always find the root if it is defined, even in the case shown in Fig. 4d. An other improvement would be to ensure a consistent result when multiple roots exist, for instance by converging toward the lowest root, so that a small perturbation in the raw moments will only cause a small change on the resulting σ value. Nothing prevents the current algorithm from converging toward one root for a moment set and toward another one after a small perturbation of this set which could induce instabilities in large-scale simulations. Note that these limitations already existed in previous EQMOM implementations and do not result from the new approach developed in this article.

Comparison of EQMOM approaches

Method

The new EQMOM moment-inversion procedure only requires computation of the realisability criteria of the vector of degenerated moments m * 2P (σ) in order to identify σ. These computations were already performed in the original approach [START_REF] Nguyen | Solution of population balance equations in applications with fine particles: Mathematical modeling and numerical schemes[END_REF] to ensure the realisability of the vector m * 2P -1 (σ) prior to the quadrature computation and ulterior steps.

It is therefore obvious that the new approach will always require a lower number of floating point operations (FLOP). In order to quantify this reduction on FLOP number, and the actual performance gain, two implementations of the Gauss EQMOM moment-inversion procedure are compared.

The first tested implementation is the one described in Fig. 1b, whose computational cost is similar to that of Nguyen et al. [START_REF] Nguyen | Solution of population balance equations in applications with fine particles: Mathematical modeling and numerical schemes[END_REF]. As it only requires the matrix A -1 2P (σ), it will benefit the same optimizations as the second approach as far as the linear system is concerned. The second tested implementation is the one described in section 3.3, based on the realisability of m * 2P (σ) through the computation of the recurrence coefficients a * P -1 (σ) and b * P (σ).

Both approaches are implemented in MATLAB [START_REF]MATLAB, version 9.0 (R2016a[END_REF] functions which take as input a vector of moments (size 2P + 1 × 1) and returns the vectors w P , ξ P (size P × 1) and the scalar σ. These implementations integrate a simple FLOP counter distinguishing each operation (+, -, * , /, exp, √ ) and counting the number of call to these operations for each step of computation (linear system, Chebyshev algorithm, quadrature computation and others).

In order to evaluate the number of operations used in the computation of the eigenvalues and eigenvectors of the Jacobi matrix (Eq. ( 6)), the Jacobi and the Francis algorithms which are suited for symmetric matrices [START_REF] Ford | Chapter 19 -The Symmetric Eigenvalue Problem[END_REF] are used in place of the MATLAB built-in "eig" function [START_REF]MATLAB, version 9.0 (R2016a[END_REF]. Finally, the number of tested σ values (i.e. the number of calls to the linear

system m * 2P (σ) = A -1 2P (σ) • m 2P ) is measured too.
10 4 realisable sets of 11 moments were randomly generated through a two step process:

1. Generate two random vectors a 4 and b 5 .

• Elements of a 4 are distributed along a normal distribution: a k ∼ N (0, 25), k ∈ {0, . . . , 4}.

• Elements of b 5 are distributed along an exponential distribution b k ∼ Exp(5), k ∈ {1, . . . , 5}.

2. Use a reversed Chebyshev algorithm to compute the vector of moments m 10 corresponding to a 4 and b 5 .

A routine applied both moment-inversion procedures on all generated moment sets and varied the actual number of moments 2P + 1 ∈ {5, 7, 9, 11}. This routine also measured the wall-time of each of these calls.

Results

Results of the comparison are given in Table 1. The Jacobi algorithm was the fastest one to compute the eigenvalues and eigenvectors in the cases P = 2 and P = 3 whilst the Francis algorithm was faster for P = 4 and P = 5. Table 1 only shows the results corresponding to that fastest algorithm for each case, in order to have the lowest estimate in FLOP and run-time gain between both implementations.

The first main observation is a decrease in the number of tested σ values. This decrease is due to the fact that in the former approach, if m * N -1 (σ) turns out not to be realisable, the objective function is set to a arbitrarily high negative value. The use of such an arbitrary value slows down the convergence of the non-linear equation solver. Meanwhile, the new approach never makes use of arbitrary values, all the elements of the vector b * P (σ) are used one after the other which yields a better choice of the next tested σ value.

The second observation was expected and is a significant drop in the total number of FLOP. This is mainly justified by the fact that the quadrature computation is only called once in the new approach whilst it is called for most tested σ values in the former momentinversion procedure. This quadrature, which consists in the computation of the eigenvalues and eigenvectors of a tridiagonal symmetric matrix, is the most expensive operation used in the EQMOM moment-inversion procedure.

Overall, one observes a net decrease in the number of floating-point operations and in the computation run-time of 80% to 85% for these implementations of Gauss EQMOM and the tested 10 4 moment sets.

Conclusion

The first developments relative to the Extended Quadrature Method of Moments are quite recent [START_REF] Chalons | A multi-Gaussian quadrature method of moments for gas-particle flows in a LES framework[END_REF]. Most of these developments were dedicated to widening the use of this method to new application cases, in particular by adding new reconstruction kernels to the EQMOM formalism, and to demonstrate its stability and accuracy compared to other methods. This article summarised all of these developments, relative to the Gaussian kernel [START_REF] Chalons | A multi-Gaussian quadrature method of moments for gas-particle flows in a LES framework[END_REF], to the Log-normal kernel [START_REF] Madadi-Kandjani | An extended quadrature-based moment method with log-normal kernel density functions[END_REF] and to the Gamma and Beta kernels [START_REF] Yuan | An extended quadrature method of moments for population balance equations[END_REF]. It was also shown that at least two other kernels are perfectly compatible with the EQMOM formalism:

the Laplace and Weibull kernels. In a previous work, the solution of a PBE in some specific setups was a Laplace-like distribution [START_REF] Pigou | An assessment of methods of moments for the simulation of population dynamics in large-scale bioreactors[END_REF]. Moreover, the Weibull distribution is often met in the modelling of biological systems. We then hope that the scientific community will find a good use for these developments.

The youth of EQMOM explains that there is still room left for improvements. The core of this method -the moment-inversion procedure-is an iterative process which is its computational bottleneck. Nguyen et al. [START_REF] Nguyen | Solution of population balance equations in applications with fine particles: Mathematical modeling and numerical schemes[END_REF] proposed some modifications, compared to previous implementations, in order to stabilise the method and to speed-up its resolution, namely the use of Ridder's method instead of bounded-secant or dichotomic methods to solve the non-linear problem, and the realisability checks performed prior to the quadrature computation.

Further improvements were proposed by shifting the resolution toward a new paradigm.

This results in a significant decrease in computational cost of about 80% -85% in terms of required floating-point operations. This resulted in our MATLAB implementations in a similar gain in terms of computation wall-time.

In multiple works [START_REF] Nguyen | Solution of population balance equations in applications with fine particles: Mathematical modeling and numerical schemes[END_REF][START_REF] Yuan | An extended quadrature method of moments for population balance equations[END_REF][START_REF] Pigou | An assessment of methods of moments for the simulation of population dynamics in large-scale bioreactors[END_REF], EQMOM has been compared to other methods (Maximum Entropy approach or sectional methods) and exhibited (i) similar accuracy even with a lower number of resolved variables, and (ii) faster or comparable computation times. The new improvements of EQMOM will make it even more competitive as its stability and accuracy are kept while reducing the gap in terms of numerical cost between EQMOM and other cheaper methods such as Gauss or Gauss-Radau quadratures.

We strongly believe that transparency about these developments will help further refinements of EQMOM. For that reason, all sources used to generate figures and data in this article are provided as supplementary data. We also release all our EQMOM source codes both with this article and in an open-access GIT repository (url: https://gitlab.com/open-eqmom).

It will be updated as well as supplemented with implementations of EQMOM in languages other than MATLAB. In the case of the Beta reconstruction kernel, some suggestions for further improvements in terms of accuracy and stability were listed in section 3.5. These will be tackled in ulterior work.

Appendix B.1.2. Moments and linear system

Moments of the Gaussian kernel are given by:

+∞ -∞ ξ k δ (G) σ (ξ, ξ m )dξ = k/2 j=0 k! j!(k -2j)! σ 2 2 j ξ k-2j m (B.2) Moments of the distribution n(ξ) = P i=1 w i δ (G)
σ (ξ, ξ i ) are given by the linear system

m n = A (G) n (σ) • m * n (B.3) with A (G) i,j (σ) =    0 if j > i or (i -j mod 2) = 1 i! ( i-j 2 )!j! σ 2 2 i-j 2 otherwise (B.4)
The inverse of this matrix is given by:

A (G)-1 i,j (σ) 
=    0 if j > i or (i -j mod 2) = 1 i! ( i-j 2 )!j! -σ 2 2 i-j 2 otherwise (B.5)
which translates, for the case n = 4 into:

      m 0 m 1 m 2 m 3 m 4       =       1 0 0 1 σ 2 0 1 0 3σ 2 0 1 3σ 4 0 6σ 2 0 1       •       m * 0 m * 1 m * 2 m * 3 m * 4       (B.6)       m * 0 m * 1 m * 2 m * 3 m * 4       =       1 0 0 1 -σ 2 0 1 0 -3σ 2 0 1 3σ 4 0 -6σ 2 0 1       •       m 0 m 1 m 2 m 3 m 4       (B.7) Appendix B.1.3. Moment preserving nested quadrature
The approximation of integral properties using Gauss EQMOM is performed through the following nested quadrature: 

+∞ -∞ f (ξ)n(ξ)dξ ≈ 1 √ π P i=1 w i Q j=1 ω j f ξ i + σλ j √ 2 
ξ k δ (L) σ (ξ, ξ m )dξ = ξ k m z k 2 with z = e σ 2 /2 (B.18) Moments of the distribution n(ξ) = P i=1 w i δ (L) σ (ξ, ξ i ) are given by m k = m * k z k 2 (B.19)
This can be translated into a linear system

m n = A (L) n (σ) • m * n (B.20) with A (L)
n (σ) a diagonal matrix:

A (L) i,j (σ) = z i 2 if i = j 0 otherwise (B.21)
whose inverse matrix is directly given by

A (L)-1 i,j (σ) = z -i 2 if i = j 0 otherwise (B.22) Appendix B.3.

Low cost nested quadrature

A variable change allows approximating integral properties over a LogN EQMOM reconstruction using Gauss-Hermite quadratures [START_REF] Madadi-Kandjani | An extended quadrature-based moment method with log-normal kernel density functions[END_REF]: G(s) then admits a single root that can be computed numerically with the Ridder's method.

+∞ 0 f (ξ)n(ξ)dξ ≈ 1 √ π P i=1 w i Q j=1 ω j f ξ i exp σλ j √ 2 
One can also narrow down, at a very low cost, the search interval [0, 1[ by using the property • if c < 1, cancel the operation as the moments are not realisable;

g n = G n n + 1 = m 2 m 0 m 2 1 - (2n) 
• if c = 1, s = 0 is the root of G(s);

• if c < 2, set s l = 0, v l = c -1, s r = 1 2 and v r = c -2 and go to step 3.

• otherwise, set s l = 0, v l = c -1 and go to step 2. • if h = c, then s = i i+1 is a root of G(s);

• if h < c, set s l = i i+1 and v l = c -h;

• if h > c, set s r = i i+1 , v r = c -h and go to step 3.

3. Apply the Ridder's method to G(s) on the interval [s l , s r ] (a) compute s t 1 = 1 2 (s l + s r ) and v t 1 = G(s t 1 );

(b) compute s t 2 = s t 1 + (s t 1 -s l )

vt 1 √ v 2 t 1
-v l vr and v t 2 = G(s t 2 );

(c) set s l the highest value between s l , s t 1 and s t 2 whose image by G is positive;

(d) set s r the lowest value between s r , s t 1 and s t 2 whose image by G is negative;

(e) stop the computation if v l < ε(c -1) with ε a relative tolerance (e.g. ε = 10 -10 ) and consider s l as a root of G(s). 

Gauss-

I p(x) a Q and b Q P 0 Hermite R exp (-x 2 ) a k = 0 b k = k/2 √ π Laplace c R exp (-|x|) /2
Apply Chebyshev algorithm to

P 2Q-1 with P k = 0 if k odd k! if k even 1 Laguerre f R + x α exp (-x) a 0 = 1 + α a k = 2 + a k-1 b k = k(k + α) Γ (1 + α) d Wigert a,f R + 1 γx √ 2π exp log 2 (x) 2γ 2 a k = z 2 + 1 z 2k -1 z 2k-1 b k = z 2k -1 z 6k-4 z = exp(γ 2 /2) 1 
Weibull a,f R + γx γ-1 exp (-x γ ) Apply Chebyshev algorithm to P 2Q-1 with P k = Γ (1 + k/γ) 1

Legendre b ]-1, 1[ 

1 a k = 0 b k = k 2 4k 2 -1 2 Jacobi b,f ]-1, 1[ (1-x) α (1+x) β a k = β 2 -α 2 δ k (δ k +2) b k = 4k(k+α)(k+β)(k+α+β) δ 2 k (δ 2 k -1) δ k = 2k+α+β

Figure 1 :

 1 Figure 1: Comparison of the computation of convergence criteria based on (a) D N (σ), (b) D * N (σ) and (c) the realisability criteria of the support Ω ξ . CA: Chebyshev Algorithm. QC: Quadrature Computation. The convergence criteria are highlighted in light blue. Inspired by Fig. 1 from Nguyen et al. [1].

Figure 2 :

 2 Figure 2: Evolution of the different convergence criteria for both Gaussian (a and b) and Laplace (c and d) kernels depending on σ value. The two initial moment sets are m (1) 6 = [1 1 2 5 12 42 133] T and m (2) 6 = [1 2 7 17 58 149 493] T .

  +∞[ if and only if a k ∈ R and b k > 0, ∀k ∈ N. One looks for a value of σ such that the associated degenerated moments m * 2P -1 (σ) are within the realisable moment space and the moments m * 2P (σ) are on the boundary of this moment space. Then, if the Chebyshev algorithm is used to compute the recurrence coefficients a * P -1 (σ) = [a * 0 (σ), . . . , a * P -1 (σ)] T and b * P (σ) = [b * 1 (σ), . . . , b * P (σ)] T from the vector m * 2P (σ), the condition of realisability can be written in terms of values of b * P (σ): looking for the EQMOM reconstruction parameters with the Gaussian and Laplace kernels is equivalent

Fig. 2

 2 Fig. 2 makes use of the developments from Appendix B.1 and Appendix B.2, about the Gaussian and Laplace kernels respectively, to show the evolution of D 6 (σ), D * 6 (σ) and b * k (σ), k ∈ {1, 2, 3} for two sets of 7 moments (P = 3). This figure illustrates the fact that indeed the approaches based on D N (σ), D * N (σ) and b * P (σ) are equivalent as they share the same circled root.

r = σ 1 3 .

 13 r such that σ (0) l < σ P and σ (0) r > σ P , and then update these bounds to shrink the search interval. These initial values will be σ with σ 1 the analytical solution of b * 1 (σ) = 0. Iterate over k (a) Choose σ t ∈ σ Compute b * P (σ t ). (c) If all elements of b * P (σ t ) are positive, set σ

r and b * P (σ t 2 , σ t 1

 21 and σ t 2 such that the corresponding vector b * P contains only positive values. (e) Set σ (k) r as the lowest value between σ (k-1) r, σ t 1 and σ t 2 such that the corresponding vector b * P contains at least one negative value.Stop the computation if σ * P (0), with ε a relative tolerance (e.g. ε = 10 -10 ). Then compute the weights w P and nodes ξ P of the EQMOM reconstruction by computing a Gauss quadrature based on the recurrence coefficients a * P -1 σ

B. 3 , 2 .

 32 Appendix B.4 and Appendix B.5 respectively). In these cases, one must 1. Compute m * N (σ) = A -1 N (σ) • m N with A N (σ) the matrix associated to the chosen kernel (see Appendix B.3, Appendix B.4, Appendix B.5). Apply the Chebyshev algorithm to m * N (σ) to access the recurrence coefficients a * P (σ) and b * P (σ).

3 .

 3 Compute ζ * N (σ) = [ζ * 1 (σ), . . . , ζ * N (σ)]T using the relations in Eq. (21).

Figure 3 :

 3 Figure 3: Evolution of the different convergence criteria for the Weibull kernel depending on σ value. The initial moment sets are m (a) 6 = [1 1.5 12 131 15200 18033 2.16e5] T , m (b) 6 = [1 5.5 78 1285 22225 4.05e5 7.88e6] T and m (c) 6 = [1 1 2 5 14 42 133] T .

2 .= σ 2 with σ 2 the solution of ζ * 2 (σ) = 0. 3 .

 223 negative. The minimum of D N (σ) is then usually located at the highest order defined root. For instance, in the case shown in Fig. 3c, the minimum of D 6 (σ) is located at the root σ 5 of ζ * 5 (σ). The moment-inversion procedure for reconstruction kernels defined on Ω ξ = ]0, +∞[ is then reduced to the identification of the defined root σ k , k ∈ {2, . . . , N }, of highest index. The algorithm proposed in section 3.3 already converges toward this root and only requires little adjustments: 1. Check the realisability of the raw moments m 2P = m * 2P (0) by computing ζ * N (0) and checking the positivity of all elements. Initialise an interval σ Iterate over k (a) Identify j the index of the first negative element of ζ * N σ

1 σ

 1 with ε a relative tolerance (e.g. ε = 10 -10 ). Then compute the weights w P and nodes ξ P of the EQMOM reconstruction by computing a Gaussian-quadrature based on the recurrence coefficients a * P -

22 )

 22 Leaving aside the obvious condition H 0 = m 0 > 0, the conditions H k > 0 and H k > 0 induce a lower bound m - k and an upper bound m + k for the values of m k , k ∈ {1, . . . , N }. Consequently, one can define the canonical moments of the distribution p N = [p 1 , . . . , p N ] T as

  Fig. 4 shows the evolution of the canonical moments and the convergence criteria D 6 (σ) and D * 6 (σ) for four different sets of 7 moments with the developments relative to the Beta kernel (see Appendix B.6). Each of these sets corresponds to one of the four situations encountered when dealing with Beta EQMOM:

1 .= σ 2 with σ 2

 12 3 and 3.4 can still be applied here by replacing the convergence criteria by the canonical moments, and by checking that the values of p * N (σ) all lie in the interval ]0, 1[ instead of checking only for positivity: Check the realisability of the raw moments m 2P = m * 2P (0) by computing p * N (0) and checking that all elements lie in ]0the analytical solution of p * 2 (σ) = 0. 3. Iterate over k (a) Identify j the index of the first element of p * N σ (k-1) r that is either negative or higher than 1. (b) Compute σ t 1 = 1 2 σ (k-1) l + σ (k-1) r and p * N (σ t 1 ).

Figure 4 :

 4 Figure 4: Evolution of the different convergence criteria for the Beta reconstruction kernel and four initial moment sets. These sets can be found in the figure source code provided as supplementary data.

(B. 23 ) 4 -

 234 with w P , ξ P and σ the EQMOM reconstruction parameters computed from m 2P ; ω Q and λ Q are the weights and nodes of a Q-nodes Gauss-Hermite quadrature rule (see Appendix C).Parameters of this nested quadrature do not depend on σ of the main quadrature nodes ξ P . Consequently, ω Q and λ Q only need to be computed once. It is worth noting that this quadrature does not preserve the moments of the distribution and only yields exact results for f (ξ) = log(ξ) k , k ∈ {0, . . . , 2 min(P, Q) -1}.Appendix B.3.4. Moment preserving nested quadrature[START_REF] Passalacqua | An open-source quadrature-based population balance solver for OpenFOAM[END_REF] suggested the use of Gauss-Wigert quadratures[START_REF] Wilck | A general approximation method for solving integrals containing a lognormal weighting function[END_REF] to preserve the moments of aA 15σ 3 25σ 2 -10σ 1 0 -σ 5 31σ 4 -90σ 3 65σ 2 -15σ 1 Appendix B.4.3. Low cost nested quadraturewhich is monotonous, defined on s ∈ [0, 1[ and has the following limits

= m 2 m 0 m 2 1 and h 1 = 2 .

 12 ! (n!)2 (B.43)with n an integer, which induces the following recurrence relation:g n = c -h n (B.44) h n+1 = 4 -2 n + 1 h n (B.45) with cThe proposed algorithm to identify the root of G(s) is1. Compute c = m 2 m 0 m 2 1

2 .

 2 Initialise i = 1, h = 2 and iterate (a) increment i by 1; (b) compute h = h * 4 -2 i

  2 α+β+1 × B (α+1, β+1) e a Wilck [33]. b Shen et al. [34]. c Not standard Gauss-quadrature. d Γ(x) = +∞ 0 t x-1 e -t dt. e B(x, y) = Γ(x)Γ(y) Γ(x+y) . f α > -1, β > -1, γ > 0.

Table 1 :

 1 Table of comparison of the Gauss EQMOM implementations corresponding to Fig.1b and 1c. The count of FLOP details the operations related to (i) the matrix-vector product A -1 2P (σ) • m 2P , (ii) the Chebyshev Algorithm (CA), (iii) the Quadrature Computation (QC) and (iv) a miscellaneous category. Results are given as mean±standard-deviation.

				P = 2	P = 3	P = 4	P = 5
	New		A -1 2P (σ) 282 ±123	843 ±210	1842 ±328	3418 ±527
	approach		CA	227 ±92	564 ±134	1146 ±195	2026 ±301
		FLOP	QC	52 ±1	546 ±56	1225 ±144	2151 ±213
			Misc.	93 ±37	100 ±23	116 ±19	131 ±18
			Total	654 ±252	2053 ±357	4328 ±536	7727 ±834
		Evaluations	15 ±6	17 ±4	19 ±3	21 ±3
		Run-time (ms)	6 ±3	13 ±5	23 ±6	33 ±7
	Former		A -1 2P (σ) 298 ±164	1095 ±391	2683 ±741	5352 ±1450
	approach		CA	223 ±115	724 ±246	1662 ±442	3184 ±836
		FLOP	QC	823 ±421	9485 ±3245	23734 ±5387	46870 ±10002
			Misc.	228 ±119	395 ±137	634 ±155	959 ±224
			Total	1572 ±818	11700 ±3939	28713 ±6467	56365 ±12138
		Evaluations	16 ±8	21 ±7	27 ±7	32 ±9
		Run-time (ms)	15 ±9	73 ±30	105 ±28	162 ±40
	Gain in	FLOP		58.4% ±26.9% 82.5% ±6.6.% 84.9% ±3.9% 86.3% ±3.3%
		Evaluations	6.3% ±60.0%	19.0% ±33.0% 29.6% ±21.4% 34.4% ±20.7%
		Run-time	60.0% ±31.2% 82.2% ±10.0% 78.1% ±8.2% 79.6% ±6.6%

  Table C.1: Specifics of Gauss quadratures used for EQMOM nested quadratures.
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Appendix A. Chebyshev algorithm

The Chebyshev algorithm allows to compute the three-term recurrence coefficients of the monic polynomials orthogonal to a measure dµ(ξ) whose moments are given by the vector m N = [m 0 , . . . , m N ]. This version of the algorithm fills column-wise a N + 1 × N +1 2 matrix denoted S.

First, fill the first column with the moments S i,0 = m i , compute a 0 = m 1 /m 0 and fill the second column with S i,1 = S i+1,0 -a 0 S i,0 , ∀i ∈ {1, . . . , N -1}.

Then iterate for j ∈ 2, . . . , N -1 2 : a j-1 = S j,j-1 S j-1,j-1 -S j-1,j-2 S j-2,j-2 b j-1 = S j-1,j-1 S j-2,j-2 S i,j = S i+1,j-1 -a j-1 S i,j-1 -b j-1 S i,j-2 , i ∈ {j, . . . , N -j}

Appendix B. Kernels for EQMOM

There exists multiple variations of the EQMOM method depending on the Kernel Density Function that is used for the reconstruction in Eq. [START_REF] Yuan | An extended quadrature method of moments for population balance equations[END_REF]. This section details the specificities of multiple KDF that were found to be compatible with the EQMOM procedure. It details for each kernel 1. the actual expression of that kernel δ σ (ξ, ξ m );

2. the expression of its moments;

3. the matrix A n (σ) that allows the transfer between the raw moments of the reconstruction m n and its degenerated moments m * n ;

4. the nested quadrature rules suiting this kernel;

5. the analytical solutions available for one-node EQMOM (P = 1).

Two-nodes analytical solutions exist for the Gaussian, Gamma, Laplace and Log-normal kernels and are accessible using the same methodology than that used by Chalons et al. [START_REF] Chalons | A multi-Gaussian quadrature method of moments for gas-particle flows in a LES framework[END_REF] for the Gaussian kernel. These solutions are not detailed here but are implemented in the MATLAB code given in supplementary data.

All definitions of matrices A n (σ) are given using zero-offset. The element of the first line and column of this matrix then reads A 0,0 (σ). The Gaussian kernel δ

σ (ξ, ξ m ) was first used in EQMOM by Chalons et al. [START_REF] Chalons | A multi-Gaussian quadrature method of moments for gas-particle flows in a LES framework[END_REF]. It is

Single node analytical solution

The case P = 1 has the following analytical solution:

The Laplace kernel δ

Moments and linear system

Moments of the Laplace kernel are given by

Moments of the distribution n(ξ) = P i=1 w i δ (λ) σ (ξ, ξ i ) are given by the linear system

The inverse matrix is defined by The approximation of integral properties using Laplace EQMOM is performed through the following nested quadrature:

with w P , ξ P and σ the EQMOM reconstruction parameters computed from m 2P ; ω Q and λ Q are the weights and nodes of a Q-nodes "Gauss-Laplace" quadrature rule (see Appendix C).

Appendix B.2.4. Single node analytical solution

The case P = 1 has the following analytical solution:

The Log-normal kernel δ 

with w P , ξ P and σ the EQMOM reconstruction parameters computed from m 2P ; ω The case P = 1 has the following analytical solution: 

. Moments and linear system

Moments of the Gamma kernel are given by

Moments of the distribution n(ξ) = P i=1 w i δ (Γ) σ (ξ, ξ i ) are given by the linear system

with A Gauss-Laguerre quadrature can be used to approximate integral properties over a Gamma EQMOM reconstruction:

with w P , ξ P and σ the EQMOM reconstruction parameters computed from m 2P ; ω Q and λ Q are the weights and nodes of a Q-nodes Gauss-Laguerre quadrature rule of parameter α = 0 (see Appendix C). The advantage of this quadrature is that it only requires ω Q and λ Q to be computed once. However, this quadrature will not preserve the moments of the distribution.

Appendix B.4.4. Moment preserving nested quadrature

A generalized Gauss-Laguerre quadrature preserves the moments of a Gamma EQMOM reconstruction: [START_REF] Wilck | A general approximation method for solving integrals containing a lognormal weighting function[END_REF] with w P , ξ P and σ the EQMOM reconstruction parameters computed from m 2P ; ω

are the weights and nodes of a Q-nodes Gauss-Laguerre quadrature rule of parameter

The accuracy of this quadrature comes with a cost related to the computation of ω

and λ

for each value of α i .

Appendix B.4.5. Single node analytical solution

The case P = 1 has the following analytical solution: 

This can be translated into a linear system

n (σ) a diagonal matrix:

whose inverse matrix is directly given by Q are the weights and nodes of a Q-nodes "Gauss-Weibull" quadrature rule of parameter σ (see Appendix C). The weights and nodes of the nested quadrature need to be computed for each value of σ, i.e. for each Weibull EQMOM approximation of the NDF.

Appendix B.5.5. Single node numerical solution

The parameters w 1 , ξ 1 and σ of the one-node Weibull EQMOM must be solution of the following system:

The first equation gives w 1 = m 0 but no explicit solution exists for the two other equations.

One can however notice that s = σ 1+σ must be a root of

The Beta kernel δ

σ (ξ, ξ m ) was first used in EQMOM by Yuan et al. [START_REF] Yuan | An extended quadrature method of moments for population balance equations[END_REF]. It is defined 1) dx the beta function.

Appendix B.6.2. Moments and linear system

Moments of the Beta kernel are given by

Moments of the distribution n(ξ) = P i=1 w i δ (β) σ (ξ, ξ i ) are given by the linear system

with the elements of A 

The inverse of this matrix is also easily defined from A (Γ)-1 n (σ): 

. This nested quadrature only requires ω Q and λ Q to be computed once, but will not preserve the moments of the distribution.

Appendix B.6.4. Moment preserving nested quadrature A Gauss-Jacobi quadrature will preserve the moments of the distribution:

with w P , ξ P and σ the EQMOM reconstruction parameters computed from m 2P ; ω

are the weights and nodes of a Q-nodes Gauss-Jacobi quadrature rule of parameters

The moment-preserving property of this quadrature comes with the need to compute ω

for each node of the main Beta EQMOM quadrature.

Appendix B.6.5. Single node analytical solution

The case P = 1 has the following analytical solution: Table C.1 details for each Gauss quadrature:

Appendix C. Gaussian quadratures

• the weight function p(x);

• the integration support I;

• the computation of recurrence coefficients a Q-1 and b Q-1 ;

• the zero-th order moment P 0 of p(x).

The recurrence coefficients are used to construct the Jacobi matrix J Q associated with p(x) on I (see Eq. 6). The nodes λ Q are the eigenvalues of J Q , and the weights ω Q are given by ω j = P 0 v 2 1,j with v 1,j the first component of the normalised eigenvector belonging to the eigenvalue λ j .