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We investigate freely expanding sheets formed by ultrasoft gel beads, and liquid and viscoelastic drops,
produced by the impact of the bead or drop on a silicon wafer covered with a thin layer of liquid nitrogen
that suppresses viscous dissipation thanks to an inverse Leidenfrost effect. Our experiments show a unified
behavior for the impact dynamics that holds for solids, liquids, and viscoelastic fluids and that we
rationalize by properly taking into account elastocapillary effects. In this framework, the classical impact
dynamics of solids and liquids, as far as viscous dissipation is negligible, appears as the asymptotic limits of
a universal theoretical description. A novel material-dependent characteristic velocity that includes both
capillary and bulk elasticity emerges from this unified description of the physics of impact.
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The impact of bodies is at the core of a wide range
of fundamental and practical areas including, aerosols,
erosion, coating, biomechanics, sport, biotechnology, etc.
The way in which a liquid drop or an elastic bead deforms
during its impact on a solid surface is a fascinating rapid
daily life process. It had, however, eluded explanation until
the past 20 years, when high-speed video technology began
to allow time-resolved observations [1].
Owing to the numerous environmental and industrial

applications, the impact of liquid drops on solid surfaces
has been studied extensively from the pioneering work of
Worthington [2] until now [1,3] and displays extremely
diverse and surprising phenomena. The impact may result
in the drop spreading over the solid surface, receding,
splashing, or rebounding, depending on the impact veloc-
ity, the drop size, the properties of the liquid (its density,
viscosity, viscoelasticity), the surface and interfacial ten-
sions, and the roughness and wettability of the solid
surface. On repellent surfaces (those include superhydro-
phobic surfaces [4], hot plates above the Leidenfrost
temperature [5] or sublimating surfaces [6]), and for high
impact velocity v0, a rebound phenomenon is systemati-
cally observed [6]. In this case, once the viscous forces are
negligible, the spreading dynamics results solely from a
balance between inertia and capillary forces, which is
characterized by the Weber number We ¼ ðρd0v20Þ=γ,
where ρ, and γ are the liquid density and surface tension
respectively. The balance leads to a rebound time τR ∝
ðρd30=γÞ1=2 independent of the impact velocity [4,7] and to a
maximum spreading factor, λmax, defined as the ratio
between the diameter of the sheet at its maximal expansion,
dmax, and the diameter of the drop, d0, which is only a
function of We. The experimentally measured scaling
λmax ∝ We0.4 [6,8] is close to the predicted scaling,

λmax ∝ We1=2 [1], which is, however, difficult to observe
because of the presence of splash at high We.
On the other hand, the impact of an elastic bead on a

solid surface has by contrast attracted less attention. Tanaka
et al. [9,10] have reported on the impact of compliant solid
spherical balls of a cross-linked gel of centimeter size in
nonsticking conditions. They have shown that the spread-
ing dynamics can be rationalized from a balance between
inertia and bulk elastic forces and depends on the adimen-
sional Mach number M ¼ v0=Us, where Us ¼

ffiffiffiffiffiffiffiffiffiffiffi
G0=ρ

p
is

the velocity of transverse sound waves in the elastic
medium and G0 is the shear modulus of the gel. At high
impact velocity (λmax ≫ 1), a maximum spreading factor
λmax ∝ M and a rebound time independent of the impact
velocity τR ∝ ðρd20=G0Þ1=2 are predicted.
Notably, the impact of yield stress fluids reveals either a

solidlike behavior [11] or a liquidlike behavior depending
on the experimental conditions [12]. Despite the inter-
mediate between liquid and solid behavior of some com-
plex fluids, the impact dynamics of liquids [4] and solids
[9] have apparently nothing in common even though they
seem separately rather well understood. In this Letter, we
show that their behavior can be unified. Here we revisit the
impact dynamics of both ultrasoft elastic beads, and drops
of viscoelastic or simple fluids, all with the same milli-
metric size d0 in the same experimental conditions such that
viscous dissipation and/or solid friction effects can be
safely neglected. The elastic and viscoelastic samples have
been carefully chosen, so that the elastocapillary length
lec ≡ 3γ=G0 lies in the range 0.1 × d0 ≲ lec ≲ 10 × d0.
When lec ≪ d0, one expects that the deformation of the
samples is dominated by surface tension, whereas in the
opposite case (lec ≫ d0), surface tension effects can
be neglected, and the deformations of the samples should
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be dominated by bulk elasticity. In intermediate cases both
effects play a role. Note that for simple liquids lec ¼ 0. The
importance of considering the surface energy for the
mechanics of soft materials is indeed an emerging field
[13] that has been recently highlighted for instance in the
framework of composite materials [14], wetting [15,16], or
adhesion [17] phenomena.
Here we reveal, for the first time to the best of our

knowledge, a coupling of elasticity and surface tension of
solids with dynamics. Moreover, the finite deformations
that occur in our experiments are definitively far larger than
those involved in the previous studies of elastocapillarity.
We describe the dynamics of sheets that result from the
impact of various classes of samples on a repellent surface.
We focus more particularly on the maximum spreading
factor and on the time to reach the maximum size of the
sheet (roughly half of the rebound time) as a function of the
impact velocity. We show that the previous models used to
describe the impact of solids (respectively, liquids) do not
hold for ultrasoft beads (respectively, viscoelastic drops).
By including elastocapillary effects in these models, we
obtain excellent agreement between theory and experi-
ments for solids and viscoelastic liquids. A new material-
dependent velocity characteristic of the generalized elastic
deformations of materials emerges from this unified
description, which we show to be also valid for the impact
of simple liquids.
To substantially eliminate the role of friction or adhesion

with the solid surface in the impact dynamics, we work in
inverse Leidenfrost conditions [6]. This is achieved by
impacting a drop or a bead at ambient temperature on a
polished silicon wafer (Si-Mat silicon materials) covered
with a thin layer of liquid nitrogen (N2) at T ¼ −196 °C
[see Fig. 1(a)]. Expanded polystyrene is used to build a
container of dimensions 35 cm × 35 cm that is filled with
liquid nitrogen (the depth of the liquid is typically 10 cm).

Plexiglass is used to cover the polystyrene container and
form an enclosed chamber, which is filled with N2 gas so as
to minimize humidity and N2 evaporation. The level of
liquid N2 in the bath is maintained below the silicon wafer
to prevent the boiling droplets of liquid N from hovering on
the wafer. Two holes are drilled in the polystyrene container
to make inlets for compressed N2 gas and liquid N2. Before
each impact, the silicon wafer is first cleaned by blowing
N2 gas and then a thin layer (typical thickness 50 nm as
measured by ellipsometry) of liquid N2 is deposited on the
wafer. Liquid and viscoelastic drops are injected from a
syringe pump through a needle. The size of the falling drop
is dictated by the inner diameter of the nozzle and the
equilibrium surface tension of the sample. In order to
maintain a constant drop size, needles with different
diameters are used to account for the various sample
surface tensions. In the case of elastic beads, a needle
attached to a syringe via a flexible tube pins the bead by
gently sucking air. On ceasing the suction, the bead is
released. Because the drop or bead is much warmer than
liquid N2, upon impact a vapor cushion forms at the liquid
interface due to the evaporation of N2, providing a unique
scenario of nonwetting and slip conditions that eliminate
viscous dissipation [6,12].
We perform impact experiments using three classes

of materials: ultrasoft beads of crosslinked gels, liquid
drops, and drops of viscoelastic fluids, all beads and drops
sharing a fixed diameter d0 ¼ 3.7 mm. Water (surface
tension, γ ¼ 72 mN=m) and mixtures of water and ethanol,
with ethanol molar fractions 0.033 (γ ¼ 50 mN=m) and
0.17 (γ ¼ 32 mN=M) are used as Newtonian liquids.
Polyacrylamide gels are prepared by copolymerization of
acrylamide as a monomer and methylenebisacrylamide as a
comonomer in the presence of tetramethylenediamine
(0.6 g=L) and sodium persulfate (0.93 g=L) as initiators
in water [18]. Solutions of the monomer and comonomer
are mixed in a beaker prior to the addition of the initiators.
The solution is quickly swirled and 26.5 μL (corresponding
to a drop diameter of 3.7 mm) of the solution is transferred
immediately to an Eppendorf tube, filled with poly(meth-
ylhydrosiloxane) oil. This oil has a density nearly equal to
that of water (1.006 g=mL at 25 °C) allowing the drop to
float drop, while slowly polymerizing. After the completion
of polymerization (typically after 80 min), the gel bead is
taken out of the oil using a pipette and wiped to remove oil
from their surfaces. Sample elasticity is tuned by varying
the concentrations of the monomer and comonomer. The
shear modulus of the gel, G0, is measured using an
indentation technique on bulk pieces of gel. In brief, a
rigid sphere is indented in the gel fully covered with pure
water and the force along with the indentation depth is
measured. G0 varies between 11 and 740 Pa. We use as
viscoelastic samples surfactant-stabilized oil droplets
(microemulsions) of diameter 12 nm, suspended in water
and reversibly linked by telechelic polymers. The average

N2 gas Liq. N2

bead or drop i ii

iii iv

FIG. 1. (left) Experimental setup. (right) Snapshots of liquid,
viscoelastic, and solid samples at maximum expansion after
impact. (i) Ethanol/water mixture with surface tension γ ¼
50 mN=m and impact velocity v0 ¼ 4.35 m=s. (ii) viscoelastic
fluid with shear modulus G0 ¼ 10 Pa, γ ¼ 50 mN=m,
v0 ¼ 3.8 m=s. [(iii), respectively, (iv)] elastic beads with G0 ¼
35 Pa (respectively, 334 Pa) and v0 ¼ 4.35 m=s. Scale bars:
6 mm.
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number of telechelic stickers per oil droplet is 4, the mass
fraction of oil droplets ϕ varies in the range ð1–3Þ%. A
detailed description is provided in Ref. [19]. The samples
are viscoelastic Maxwell fluids, characterized by an elastic
plateau G0 and a unique relaxation time τ, determined by
shear rheology. τ ranges between 0.1 and 4 s, andG0 ranges
between 2 and 21 Pa. Because the relaxation time of the
viscoelastic fluids is much larger, the typical duration of an
impact (∼10 ms), for impact experiments, the viscoelastic
drops can be considered as elastic beads (large Deborah
number). The deformations of these viscoelastic drops are
therefore expected to follow those of elastic beads having
the same diameter, shear modulus, and surface tension. We
assume that the surface tension of the polyacrylamide bead
is equal to that of pure water, and that of the viscoelastic
fluid is equal to that of a bare liquid microemulsion
(γ ¼ 28 mN=m) [20].
Time series images are recorded after impact using a

high-speed camera Phantom V7.3 operated at a rate of
6700 frames=s. The impact velocity v0 is varied in the range
ð1–5Þ m=s by changing the height at which the drop or bead
is released. In all cases, the drop or bead expands radially up
to a maximal diameter dmax and then recedes and rebounds.
Figure 1 shows typical snapshots of liquid, solid, and
viscoelastic sheets taken at their maximal expansion.
Let one consider first an elastic bead. During its spread,

the bead undergoes a biaxial deformation that is quantified
at each time by a characteristic stretching ratio, λ ¼ d=d0,
with d the diameter of the sheet, yielding a stored bulk
elastic energy Ebulk

Ebulk ∼
1

2

πd30
6

G0

�
2λ2 þ 1

λ4
− 3

�
: ð1Þ

For a large maximal spreading factor (λmax ≫ 1), the
bulk elastic energy at maximal expansion simplifies to
Emax
bulk ∼ ½ðπd30Þ=6�G0λ

2
max. Balancing this energy with the

kinetic energy at impact Ek ¼ 1
2
ρðπ=6Þd30v20 leads to the

simple scaling λmax ∝ ðv0=UsÞ ¼ M. Figure 2(a) shows the
variation of λmax withM for elastic beads with shear moduli
varying over almost 2 orders of magnitude. Although
experimental data are in very good agreement with the
simple theoretical expectation (λmax ∝ M) for rather stiff
samples, they clearly deviate for soft beads (G0 typically
smaller than 60 Pa). Interestingly, deviations occur when
the elastocapillary length lec (with γ ¼ 72 mN=m, the
surface tension of the gel constituted mainly of water) is
larger than the diameter of the beads d0 [21], indicating
that the surface elasticity Emax

surf ∼
1
2
πγλ2maxd20 dominates over

the bulk elastic energy Emax
bulk. Thus, adding the surface

energy at maximum expansion in the energy balance
(Ek ≈ Emax

bulk þ Emax
surf ) leads to

λmax ≈
1ffiffiffi
2

p v0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

L þ U2
S

p ¼ 1ffiffiffi
2

p v0
U⋆ : ð2Þ

Here UL ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið3γÞ=ðρd0Þ
p

is the typical velocity of free
oscillations of a drop [4]. We thus define a new character-
istic velocity of the material for generalized elastic defor-
mations as U⋆ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U2
L þU2

S

p
.

Equation (2) can be alternatively expressed in
terms of the elastocapillarity length lec: λmax≈
ð1= ffiffiffiffiffi

v0
p Þðv0=ULÞ½1þðd0=lecÞ�−1=2. If US≫UL (d0 ≪ lecÞ,

surface tension effects can be neglected and the expansion
of an elastic bead is uniquely dominated by its elastic
modulus, as observed by Tanaka et al. [9]. On the other
hand, when US ≪ UL (d0 ≫ lec), the bulk elasticity is
negligible in comparison to surface elasticity, thus recov-
ering the predictions of Richard et al. [4] for a simple
liquid.
To confront the theoretical scaling of Eq. (2) with

experiments, λmax is plotted against v0=U⋆ in Fig. 2(b).
We find that all data acquired for elastic beads (plain
symbols) collapse onto a master curve exhibiting a perfect
linear variation, whatever the value of the elastic modulus
is. Although Eq. (2) should in principle be valid only in the
case of very large deformations (λmax ≫ 1), we find that the
asymptotic linear relation describes the experimental

(a) (b)

(c) (d)

(e)

FIG. 2. Maximal spread parameter, (a) for elastic beads as a
function of the Mach Number, (b) for elastic beads, simple
liquids, and viscoelastic fluids as a function of the impact velocity
v0 rescaled by the velocity of generalized elastic deformations
U⋆. Time at maximum deformation τmax divided by the impact
time τ0, (c) for elastic beads as a function of the Mach Number,
(d) for elastic beads, simple liquids, and viscoelastic fluids as a
function of v0=U⋆. Each experiment has been repeated five times.
Error bars correspond to � standard deviation. (e) τmax as a
function of v0 for elastic beads and liquid drops. The symbols are
the same for all plots.
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results very well even for moderate deformations
(λmax ≈ 2). Notably, we find that data acquired using
viscoelastic drops [half-plain symbols in Fig. 2(b)], and
Newtonian liquid drops for which U⋆ ¼ UL (US ¼ 0)
[empty symbols in Fig. 2(b)], collapse on the same master
curve. In spite of a neat universal scaling, data tend,
however, to deviate from the linear prediction at high
impact velocities for simple liquids and viscoelastic fluids
due to splashing, leading to a loss of volume [22,23], or
inertial dissipations in the rim [24]. Overall, our results
establish a unified scaling of the maximum deformation of
elastic beads, viscoelastic, and liquid drops, under the
conditions of negligible viscous dissipation provided the
bulk and surface elasticity are correctly taken into account.
We measure the time evolution of the sheet diameter d for

the three classes of samples (elastic, viscoelastic, and liquid).
For the sake of clarity we just show data at a fixed impact
velocity (v0 ¼ 4.35 m=s) for elastic beads with varying
stiffness [Fig. 3(a)]. All curves show similar features of
expansion and retraction, themaximumdiameter of the sheet
being reached earlier in times with increasing elasticity. We
model the spreading dynamics as a one-dimensional (1D)
harmonic oscillator, as previously done independently for
Newtonian drops [25,26] and elastic beads [27]. The con-
servation of total (elastic and kinetic) energy reads in the limit
of large deformation (λ ≫ 1):

1

2
m _d2 þ 1

2
kd2 ¼ 1

2
kd2max; ð3Þ

where d is the diameter of the sheet at time t, m ¼ ρπd30=6
is the mass of the sheet equal to that of the impacting object,
and k ¼ πγ þ πðd0=3ÞG0 is the spring constant that com-
bines the bulk and surface elastic contributions. The time
elapsed from impact to reaching maximum expansion,
τmax, is then a quarter of the period of oscillation: τmax≈
½π=ð2 ffiffiffi

2
p Þ�ðd0=U⋆Þ. Note that τmax is half the rebound time

τR, but is much easier to measure. Interestingly, we measure
[Fig. 2(e)] that τmax is independent of the impact velocity in
accordancewith the 1D harmonic oscillator prediction. Once
τmax is rescaled with the collision time τ0 ¼ d0=v0 a similar

dependance of τmax=τ0 with the reduced impact velocity
v0=U⋆ as for themaximum spread parameter λmax [Eq. (2)] is
recovered:

τmax

τ0
≈

π

2
ffiffiffi
2

p v0
U⋆ : ð4Þ

While for the softest beads, experimental data τmax
depart from a linear dependence with M [see Fig. 2(c)],
as expected if surface effects are negligible [27], they nicely
follow the theoretical predictions of Eq. (4) for all explored
elastic moduli and impact velocities [see Fig. 2(d)], con-
firming the crucial importance of elastocapillary effects.
Experimental results for simple liquids and viscoelastic
fluids also merge on the same master curve, with a
deviation from the theoretical linear variation at high
impact velocity for the liquid samples due to the loss of
mass induced by splashing. The unified universal behavior
of the impact of elastic beads, viscoelastic, and Newtonian
drops is also confirmed for the dynamics of the sheet, that is
predominantly a simple harmonic motion driven by surface
tension and bulk elastic energy. Using adimensional units
d̃ ¼ d=dmax and t̃ ¼ ωt with ω ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiðk=mÞp

, Eq. (3) reduces

to the adimensional equation _̃d
2 þ d̃2 ¼ 1. Using the same

rescaling for the experimental data, a nice collapse of all
data sets [Fig. 3(b)], corresponding to different bulk and/or
surface elastic properties of the impacting objects, is
observed at least for the expansion regime t ≤ ðτÞ. Weak
deviations from this simple general behavior occurs in the
retraction regime as already observed for elastic beads [27]
or Newtonian drops [25], which originates in terms of the
existence of a rim, or drop break-up, or departure from a
cylindrical symmetry [26].
In conclusion, we have highlighted the importance of

elastocapillarity to properly describe the physics of impact.
When viscous and solid friction dissipations are negligible,
the spreading dynamics caused by an impact can be
described with a unique scaling law with a characteristic
spreading velocity that includes both surface and bulk
elasticity.We have experimentally demonstrated the validity
of the scaling, whatever the nature of the impacting object;
soft elastic beads, viscoelastic drops, or liquid drops.
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811 (2002).

[5] A.-L. Biance, C. Clanet, and D. Quéré, Phys. Fluids 15,
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