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We measure experimentally the frequency of the large-scale instability developing on a liquid jet
incompletely atomized by a parallel fast gas stream. We demonstrate that this “flapping instability”
can be triggered by different mechanisms: in a first regime it is synchronized with the shear instability
developing upstream, provided the wavelength of this shear instability is larger than the liquid jet
diameter HL. When the shear instability exhibits wavelengths shorter than HL, a second regime is
observed where the flapping instability becomes independent of the gas stream velocity. This second
regime is characterized by a constant Strouhal number, provided the Froude number of the jet is
correctly taken into account.

I. INTRODUCTION

The destabilization of liquid jets is at the center of
many industrial processes where the aim is to form a
spray. In the case of assisted atomization, a liquid jet
is broken into droplets with the help of a parallel annu-
lar gas flow [1]. It has been demonstrated that in this
configuration the formation of drops results from a se-
ries of processes: a shear instability between the slow
liquid and high speed gas stream leads to the formation
of waves, the crest of these waves is accelerated by the
wind and destabilized into ligaments and then ultimately
broken into droplets [2–5]. When the jet is incompletely
atomized, large liquid lumps remain close to the axis. It
was pointed out by Farago & Chigier (1992) [6] that for
certain conditions the break-up of the liquid jet was non
axisymmetric (see figure 1), with a wavelenth very large
compared to the jet diameter. As pointed at in Eroglu et
al (1991) [7], the motion of the liquid jet exhibits in this
regime a flapping motion. The same instability, either
termed flapping or helicoidal instability, is observed in
subsequent studies involving the atomization of a liquid
jet, but is not studied as such [2, 5, 8–12]. Juniper &
Candel (2003) [10], who observe it when liquid injection
is recessed, suggest it is a wake instability. All the above
experiments were carried out with water jets, but the in-
stability has also been observed in the case of cryogenic
fluids, in conditions close to those of rocket engines [13],
see figure 1 bottom.

The aim of the present paper is to clarify the nature
of this instability in a wide range of geometries, gas and
liquid velocities. We will present measurements of the
frequency of the instability, and compare those to the
predictions of a linear stability analysis. We will show
that in a first regime the shear instability which develops
upstream controls the flapping instability, while for other
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FIG. 1. Top: large scale jet oscillations observed by Farago
& Chigier (1992) [6]. Bottom: lateral oscillations observed by
Locke et al 2010 on cryogenic fluids [13]

conditions a new regime where the flapping instability is
independent of the gas stream velocity takes place. Sec-
tion II introduces the experimental set-up and results.
Section III presents the stability analysis, and the com-
parison of its results to experimental data. Section IV
discusses the results obtained in the gas-independent sec-
ond regime.

II. EXPERIMENTAL RESULTS

A. Experimental setup

The injector used in this work is represented on Fig-
ure 2. It is composed of two coaxial steel cylinders: the
liquid goes through the inner cylinder, and the gas is
injected in the annular region between both cylinders.
Their length (≈ 1 m) is long enough to ensure fully devel-
oped flow conditions for both phases. The liquid injector
is formed of two tubes. The bottom one can be changed
in order to modify the exit diameter HL: the latter has
been varied from 5 to 20 mm. Water is supplied by an
overflowing tank, in order to ensure a stable flow rate
troughout measurements. For the larger liquid diame-
ters (HL = 15 mm and 20 mm), liquid velocities were
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FIG. 2. Coaxial injector used in the present work.

limited below 1m/s with this feeding system : a 100 l
bladder pressure tank was therefore used to reach higher
jet velocities. The liquid flow rate is measured with an
Oval flowmeter LSF445 (range 8 to 100 liters per hour,
uncertainty of 1% of measured value). The mean liquid
velocity UL is deduced from this measurement. Liquid
velocities were varied in the range [0.17 - 1.4] m/s.

The outer cylinder is also composed of two tubes: the
top one is equipped with a damping chamber (honey-
comb) and the bottom one can be changed to modify the
gas exit diameter DG, and hence the gas stream thick-
ness HG. This thickness HG spans the range 1.8 to 24
mm in the present experiments. The relatively long tube
(length/width ratio in the range 41-500 depending on liq-
uid diameter) allows the development of thick boundary
layers. Clean air at room temperature delivered from a
compressor feeds the gas stream. The maximum air ve-
locity UG0 is measured at the exit of the gas channel, at
the center of the gas ring (HG/2), with a Pitot tube and
a differential pressure sensor TSI DpCalc (uncertainty
1.5% of the read value). Mean velocity UG can be de-
duced from the flow rate, measured with a mass flow
meter Brooks SLA 5860. Gas velocities have been varied
in the range 10 to 140 m/s.

Velocity profiles in the gas stream are measured in the
exit section with a 5 µm hot wire and a DISA anemome-
ter, at a distance of 0.2 mm below the injector lip. Ex-
amples of velocity profiles for one injector are given in
figure 3. Position zero corresponds to the outer edge of
the separator lip between the liquid and gas injectors. We
can deduce from these profiles the vorticity thickness δG:
δG = ∆U/dUdr |max which is measured for each geometry as
a function of mean gas velocity UG. The hot wire mea-
surements also give access to velocity fluctuations and
turbulence intensity profiles (not shown). These profiles
indicate that for all geometries and UG in the range [15-
110] m/s the turbulence intensity, defined as the ratio
of the rms velocity urms to the mean velocity, is of the
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FIG. 3. Left: Velocity profiles in the gas channel for the
HL = 5 mm and HG = 5 mm geometry. Origin of the radial
distance is taken at the outer edge of the splitter lip. Right:
zoom showing the boundary layer is spatially resolved.

order of 10% close to the boundary layer, down to 4%
at the center of the gas channel. Turbulence intensity
is larger for the HL = 5 mm-HG = 12.5 mm geometry,
around 20% at the center of the channel, probably due
to the formation of recirculations within the gas channel
for this particular injector. The lip of the splitter tube
that separates the gas from the liquid has a thickness
of e = 0.2 mm for all injectors. For all the experimen-
tal conditions considered here, this lip thickness remains
smaller than the gas vorticity thickness (ratios δG/e be-
tween 1 and 3 for all conditions).

Pictures of the liquid jet are taken with a Vision Re-
search Miro M310 high-speed camera equipped with a
TAMRON 90 mm objective set at full aperture. The
spatial resolution is about 0.2 mm per pixel. The expo-
sure time was set to 90 µs. A typical example of collected
images is shown in figure 4: it illustrates the flapping mo-
tion characterized by lateral displacements larger than
the liquid jet injection radius. The image processing of
such pictures will be described in the following subsec-
tion.

B. Flapping frequency

In order to measure the frequency of the flapping in-
stability, raw shadowgraph images of the liquid jet are
processed in the following manner: Background elimina-
tion is performed, and a median filter is applied whose
size is chosen so as to eliminate drops and ligament struc-
tures. Its size must therefore be adjusted according to
the camera resolution and to the sizes of the structures
to be eliminated. In the present experiments, the filter
size ranges from 2 pixels to 40 pixels, in order to cut off
objects with a size smaller than 1x1 pixel up to 20x20
pixels respectively. A horizontal gray level profile is then
extracted for various downstream positions of the jet cen-
ter.

On each profile, the jet center position xC is
computed from the intensity profiles I(x) as xC =
(ΣxI(x))/(ΣI(x)), where x is the distance to the axis
of symmetry of the injector. For each flow condition,
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FIG. 4. Left: Typical image of a flapping jet for HL = 5 mm,
HG = 5 mm, UL = 0.28 m/s, UG = 19.5 m/s. Right: Raw
image and detected jet center shown in red dashed line.

the data set consists in a time series of 5000 pictures
taken at a sampling frequency of 1 kHz. For each time-
series, the computed liquid jet center is superimposed
onto the original pictures on a movie, in order to visually
check the correct functioning of the algorithm and also
the good tuning of the filter length. A typical output of
this data processing is shown in figure 4 right. The jet
center determination is quite accurate in regions where
the liquid jet is close to a cylinder-like shape. In other
regions, in particular whenever bag formation occurs, the
jet center is somewhat ill-defined, but the image process-
ing provides continuous information, and the resulting
spectra never exhibit spurious discontinuities because of
jet shape. A typical example of the spatial evolution
of the flapping frequency spectrum is given in figure 5:
the peak frequency remains the same whatever the down-
stream distance. The intensity of the peak increases with
downstream distance due to the increase in flapping am-
plitude.

Flapping frequency measurements are plotted in figure
6 against gas velocity UG0 (measured at the center of the
gas channel exit) for various geometries and UL. Given
the large number of parameters in this problem, and in
particular of length/velocity scales, we present first the
dimensional data as such: suggestions to properly nondi-
mensionalize this data will be introduced in the course of
the discussion in sections III and IV. Two groups of data
can be distinguished on figure 6:

- A first group where the flapping frequency increases
with gas velocity, which we label G1. This includes
all the data for the HL = 5 mm injector, and the
series for HL = 20 mm-HG = 24 mm.

- A second group where the flapping frequency is al-
most independent of gas velocity, named G2. This

FIG. 5. Spectrum of flapping frequency as a function of down-
stream distance from nozzle for HL = 5 mm, HG = 5 mm,
UL = 0.28 m/s and UG = 45.5 m/s.

group includes the data for all HL = 15 mm and
HL = 20 mm geometries, except the HL = 20 mm-
HG = 24 mm series.

Regime G1 where the flapping frequency monotonically
increases with gas velocity is reminiscent of the regime
observed in sheet atomization (see among others Lozano
& al 2005 [14], Arai & Hashimoto [15]), where the fast
gas stream leads to a similar flapping motion on a length
scale large compared to the liquid sheet thickness. How-
ever, the fact that we observe two distinct behaviors, in-
cluding one for which flapping frequency is independent
of gas velocity, is new and has never been described in
the literature neither for jets nor for sheets. Note that
Lozano & al (2005) [14] varied the liquid sheet thickness
by a factor as large as 10, but do not observe regime G2.

We now discuss the sensitivity of the flapping fre-
quency to liquid velocity. We plot on figure 7 (respec-
tively 8) the variations of frequency as a function of UL
for conditions corresponding to the G1 (respectively G2)
series. Flapping frequency increases with liquid velocity
irrespective of the regime. Yet, the increase of flapping
frequency with liquid velocity is not as regular for the
G2 regime compared to the G1 regime, in particular at
low UL. We attribute this to the acceleration due to
gravity, which induces strong spatial variations at low
UL: in particular, gravity significantly increases liquid
velocity and reduces the radius of the liquid jet over dis-
tances short compared with HL in the HL = 20 mm
case. Put differently, this corresponds to the fact that
the low velocity data of figure 8 corresponds to a Froude
number Fr = UL/

√
gHL of order one, while the data

at larger UL and in particular for the HL = 15 mm
series, corresponds to Fr significantly larger than one.
The influence of liquid velocity on frequency in regime
G2 can also be noticed on figure 6 b), by comparing the
two series of symbols 4 and N, which correspond respec-
tively to UL = 0.08 m/s and UL = 0.25 m/s, both for
HL = 15 mm and HG = 4.3 mm. The pressure bladder
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FIG. 6. a) Variation of flapping instability frequency with gas
velocity for different injector geometries and various liquid
velocities. Error bars represent the spectrum peak width at
mid-height. Values of HG and HL in the legend are in mm.
b) Same data, zoom on low frequency data.
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FIG. 7. Frequency of the flapping instability as a function of
liquid velocity UL, for the G1 series.

tank (see section II A) was needed to reach the conditions
of figure 8: even with this device, it was not possible due
to limitations in the maximum pressure allowable in our
set-up to reach higher UL than those of figure 8 for the
large HL geometries. Finally, note that a flapping fre-
quency increasing with liquid velocity is also observed by
Lozano et al. (2005) [14] in sheet atomization for liquid
velocities up to 1-1.5 m/s. At higher liquid velocities,
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FIG. 8. Frequency of the flapping instability as a function of
liquid velocity UL for G2 series.

they observe a variation of frequency with liquid velocity
which is no longer monotonic.

Diverse proposals, mostly empirical, have been made
in the literature regarding the scaling of the flapping fre-
quency with UG for the case of liquid sheets. Different
Strouhal numbers built on various length scales (namely
HL, HG, δG or some combination of these) have been
considered by authors. We have tested the propositions
from Arai & Hashimoto (1985) [15], Lozano et al 2001
[16], Couderc 2007 [17] and Odier et al 2014 [18], but
they all fail to collapse the data of figure 6. In particu-
lar, none of the above propositions provides a satisfactory
dependence of frequency on the liquid thickness HL.

The data of figure 6 suggest that two distinct mecha-
nisms can pilot the flapping instability. We will first focus
on the G1 series, for which frequency increases with both
UG and UL. This behaviour is similar to that of shear
instabilities identified in the context of liquid jet atom-
ization [3, 19]. We will therefore in the next subsection
characterize the shear instability occurring upstream of
the flapping instability.

C. Shear instability frequency

The shear instability occurs close to the nozzle exit,
while the flapping instability occurs (and has been char-
acterized) farther downstream. In order to detect a pos-
sible connection between both instabilities, we need to
identify a way to characterize them independently. We
choose to determine the frequency of the shear instabil-
ity via the variations of the local jet radius R(z, t), mea-
sured at a given downstream distance z. We apply the
following image processing under Matlab: Raw pictures
obtained with shadowgraphy and high-speed imaging of
the jet are background-removed, thresholded with Otsu’s
method, and segmented (bwlabel function). This series
of operations provides the area connected to the injector
exit, corresponding to the liquid tongue. For each down-
stream distance z, we extract the left/right borders of the
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FIG. 9. Flapping • and shear wave � frequency as a function
of air velocity. Experimental conditions: HL = 5 mm, HG =
5 mm, UL = 0.28 m/s.

jet, and compute the local jet radius R(z, t), given by the
distance between opposite borders at a given downstream
location z. These signals were extracted at regular posi-
tions between the nozzle exit and a downstream distance
of 3HL. Spectra of the local jet radius are obtained with
Fast Fourier Transform. Shannon criterion is always ful-
filled, and the frequency resolution is 0.24 Hz.

In figure 9, we plot the frequency of the shear waves
measured from the spectrum of R(z, t), along with the
flapping frequency (measured farther downstream fol-
lowing the method described in section II B) for the
HG = 5 mm and HL = 5 mm injector. The data show
that both frequencies are close: the flapping frequency
closely follows the frequency of the shear waves formed
near the nozzle. This closeness suggests a relation be-
tween both instabilities, but at the same time the fact
that the (downstream) flapping instability frequency is
systematically smaller than the (upstream) shear insta-
bility frequency suggests that the instabilities are actu-
ally not synchronous. The difference between both fre-
quencies is illustrated on figure 10 for the same injector
and liquid velocity as figure 9, and a fixed UG = 23.8 m/s.
The top spectra, obtained for several values of z, are that
of the radius R(t), and provide the shear instability fre-
quency ; the bottom spectra, also for several z, are the
spectra of the jet center location xC(t), which provide
the flapping frequency introduced in section II B, and
which is measured farther downstream. The spectra in
the middle are the spectra of the jet edge, and exhibit
two main distinct peaks: one corresponds to symmetri-
cal waves (top spectra) and the other one to the flapping
frequency (bottom spectra). This confirms that both fre-
quencies are actually present in the jet: the interface po-
sition is affected both by large-scale motions of the jet as
well as by interfacial waves on top of it. These features
are the same whatever the downstream position, down
to z = 3HL. Beyond this distance, it becomes difficult
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FIG. 10. Top: spectrum of jet radius for downstream dis-
tances from z = 4.1 mm down to 12.5 mm, with a step of
∆z = 2.1 mm, showing a maximum frequency of f = 77 Hz,
and a harmonic at 154 Hz. Middle: spectrum of jet edge at
same fixed z. Bottom: spectrum of jet center xC (see section
II B) from z = 6.9 mm down to z = 22.9 mm, ∆z = 4 mm.
The middle spectrum clearly corresponds to a sum of the top
and bottom spectra. Experimental conditions: HL = 5 mm,
HG = 5 mm, UL = 0.28 m/s and UG = 23.8 m/s.

to isolate a maximum frequency in the spectra of R(z, t).
A very interesting feature is that the flapping frequency
is not present in the jet radius spectrum (top graph):
this implies that flapping waves do not result from the
amplification of symmetric perturbations. However, the
close observation of shear waves shows that some of these
waves are not symmetric: we postulate that the flapping
results from the amplification of such non axisymmet-
ric waves. This is supported by figure 11, which gives
an example of an asymmetric wave and of its evolution
in time: oblique waves continuously evolve to ultimately
form large-scale structures characteristic of the flapping
instability.

Previous linear stability analyses on air/water jet at-
omization were focused on the search for 2D or varicose
perturbations [3, 20]. In the next section, we discuss the
stability of non axisymmetric perturbations in order to
assess their possible role in triggering the flapping insta-
bility.
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FIG. 11. Time evolution of an oblique shear instability wave,
for HL = 5 mm, HG = 5 mm, UL = 0.28 m/s and UG =
22 m/s

III. STABILITY ANALYSIS

A. Method

Stability analysis of the air/water mixing layer config-
uration for large velocity ratios and in the case of a finite
gas vorticity thickness δG was carried out by Marmottant
& Villermaux (2004) in the frame of an inviscid temporal
stability analysis [3]. This simple approach managed to
capture the scaling of shear waves frequency with UG at
large gas velocities, but underestimated frequencies by a
factor three. It was later shown that inclusion of viscosity
in the analysis led to a more complex pattern: when the
instability is convective (typically for larger liquid veloc-
ities) its mechanism is essentially viscous; for most con-
ditions relevant to experiments it is, however, absolute
[21–23]. Two distinct mechanisms can cause absolute in-
stability, either surface tension if WeUi = ρLU

2
i /σk

∗
i < 1,

or confinement if WeUi > 1 and M = ρGU
2
G/ρLU

2
L/ > 1.

We have introduced in these expressions the liquid and
gas densities ρL and ρG, the interfacial velocity Ui, sur-
face tension σ and the spatial growth rate k∗i of the most
dangerous shear mode [20]. When the instability is ab-
solute because of a confinement branch (i.e. at large
WeUi and M , which typically correspond to the larger
UG reached in atomization experiments), the unstable
perturbation is fed by Reynolds stresses, and it can be
shown that the energy budget is in this particular case
similar to that of the simplified inviscid approach.

Our aim in this study is to clarify the stability of non
axisymmetric modes, and compare their frequency to the
frequency of the varicose mode. The interface perturba-
tion can be developed on normal modes perturbations of
the form η = η̃ei(kz−ωt+nθ), where k is the wavenumber,
ω the pulsation, θ the azimuthal angle in a cylindrical
frame centered on the jet axis and n the number of the
corresponding Fourier mode. Number n = 0 corresponds
to varicose perturbations, while n = 1 corresponds to
a helical perturbation. Non-axisymmetric perturbations
with a plane of symmetry, such as illustrated on figure 11,
can be reconstructed with the superposition of two n = 1
and n = −1 modes. However, the inclusion of n 6= 0
modes in the viscous stability analysis makes it arduous

to decouple the equations for velocity/pressure pertur-
bations. Our strategy is to take advantage of the result
mentioned above: we will focus on conditions for which
the viscous stability analysis predicts that the mecha-
nism is inviscid for the n = 0 mode, and then look at
the stability and frequency of the n = 1 mode within the
assumptions of the simplified inviscid approach.

B. Stability analysis for helical modes

We consider the experimental shear instability data of
figure 9 (symbol �), for which HG = 5 mm HL = 5 mm
and UL = 0.28 m/s. We focus on the point UG = 45 m/s,
for which the frequency is measured at f = 155 Hz. We
first carry out for these conditions the spatio-temporal
viscous stability analysis already introduced in Matas et
al (2018) [20] for similar atomization conditions. The
details of this viscous analysis are presented in the ap-
pendix: the aim is to determine if the main destabilizing
mechanism is actually viscous, or on the contrary inviscid
for these particular conditions.

For the chosen conditions, we find that the shear
branch pinches with a confinement branch centered
around ki = 1300 m−1, corresponding to a confinement
length L ≈ 5 mm, see figure 12a. This pinching occurs
for a positive ωi = Im(ω)= 300 s−1: the instability is
absolute. The frequency at this pinch point is 165 Hz, in
relatively good agreement with the experimental value.
The physics behind this absolute instability, which is sim-
ilar to the resonance of a vibrated string, is basically that
the cross stream “wavelength” of the shear branch, given
by k−1i , matches the cross stream confinement length L
for the conditions of the saddle point. An energy budget,
carried out following the method initially introduced by
Boomkamp & Miesen (1996) [24], indicates that 65% of
the total kinetic energy rate of the corresponding eigen-
mode is pumped from Reynolds stresses in the fast gas
stream. The contribution of the power of viscous tan-
gential stresses at the interface, though not negligible,
only amounts to 18% of the total kinetic energy rate for
this case. Given that the energy budget is dominated by
the inviscid contribution, we now confidently turn to the
simplified inviscid stability analysis to discuss the relative
stability of the n = 0 and n = 1 modes.

This inviscid linear stability analysis is similar to the
one carried out in previous studies on the planar mixing
layer geometry [3, 19] except that it is here carried out
in cylindrical coordinates. The base flow consists in a
constant velocity equal to UL in the liquid phase, and in
an error function in the gas accounting for the vorticity
thickness δG. The equations in cylindrical coordinates
for the radial velocity perturbation ṽ(r) are the same as
the ones introduced in Matas et al (2013) [25], the only
difference being the boundary conditions. In the present
case, we set : (i) that this velocity must be zero on the jet
axis, ṽ(0) = 0 ; (ii) that velocity and normal stress must
be continuous across the liquid/gas interface at r = HL/2
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; (iii) that velocity and normal stress must be continuous
at a location r = R +HG + 20δG far from the interface,
where we connect our integrated solution to the analyt-
ical solution v(r) = dKn(r)/dr valid for a constant ve-
locity profile. Here Kn(r) is the modified Bessel function
of the second kind of order n. As mentioned previously,
though inviscid analysis captures the right physics and
trends of frequency with gas and liquid velocity, it un-
derestimates frequency by a factor three. The aim here
is to look at the stability of n = 1 modes: our strategy is
to artificially reduce the vorticity thickness δG, in order
to match frequencies for the n = 0 mode, and then com-
pare what the prediction is for the helical mode in the
same conditions. No deficit is included in the base flow
velocity profile in order to limit the number of parame-
ters to adjust: one could on the contrary include a finite
velocity deficit, which would limit the magnitude of the
δG reduction needed to match the experimental data (see
[19]), but again the aim here is to limit the number of
parameters within this approach.

We first carry out a spatial approach, i.e. solve the
resulting dispersion relation for real ω and complex k.
Figure 12b shows the variations of the spatial growth
rate ki as a function of frequency, for both the n = 0 and
the n = 1 shear modes, for the point at UL = 0.28 m/s
and UG = 45 m/s introduced previously. The n = 0
mode, symbol •, exhibits as expected a most dangerous
mode corresponding to the experimental frequency for
these conditions. The n = 1 mode (symbol �) presents
an interesting feature: at lower frequencies the spatial
growth rate converges to a finite value ki ≈ 700 m−1.
This is the signature of an absolute instability involving
a confinement branch. This is verified with a spatio tem-
poral approach, i.e. considering ωi = Im(ω) > 0. Figure
12c shows that for ωi = 90 s−1 the same n = 1 shear
branch pinches with a confinement branch (symbol �)
lying along the ki axis: the n = 1 branch in figure 12b
results from a branch switching between both branches
when ωi is decreased down to zero in the purely spatial
analysis. The confinement branch involved in the pinch-
ing is located around 550 m−1, which corresponds to a
confinement length L of order 10 mm ∼ 2HL. This fac-
tor 2 implies that the perturbation associated with the
helical mode has opposite phases on opposite sides of the
liquid jet: it can have a resonance for a wavelength of
2HL, while this cannot be observed for the varicose mode
which necessarily has identical phases on opposite sides.
The absolute instability takes over the convective one,
and the helical mode is therefore predicted to overcome
the varicose one (symbol • in figure 12b) for these condi-
tions. The fact that sinuous or helical modes can be more
unstable than axisymmetric modes is well known (see e.g.
Batchelor & Gill (1962) [26] who initially pointed to the
instability of helical modes in monophasic jets). The idea
is that for a finite radius of the liquid jet, wavy pertur-
bations at the jet surface are expected to be enhanced if
they are of opposite phase on opposite sides of the jet,
as is the case in flapping sheets for example. The radius
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FIG. 12. a) Absolute instability predicted by viscous spa-
tiotemporal stability analysis, for HL = 5 mm, HG = 5 mm,
UL = 0.28 m/s, UG = 45 m/s, δG = 145 µm, δL = 1 mm
and δd = 0.3. Absolute growth rate is ωi = 300 s−1. Open
symbols show the confinement branch, and solid symbols the
shear branch. They pinch for a frequency of 165 Hz ; b) Dis-
persion relation predicted by spatial inviscid stability analy-
sis for the same geometry and velocities, and δG = 52 µm.
c) Spatio temporal inviscid analysis for the same conditions,
with ωi = 90 s−1, showing how the n = 1 shear branch of b)
(symbol �) results from the pinching/branch switching with
a confinement branch lying along the ki axis (symbol �). d)
Variations of the growth rate of the most dangerous mode as
a function of liquid jet diameter HL, for fixed UL = 0.28 m/s
and UG = 45 m/s. For HL > 2.5 mm, the instability is abso-
lute for the n = 1 mode (symbol �).

of the liquid jet clearly plays an important part in en-
hancing the helical mode over the varicose one: we plot
on figure 12d the variations of the spatial growth rate
of both modes as a function of HL (all other parameters
are fixed). When the liquid jet diameter is decreased, the
varicose mode becomes less unstable, and its ki monoton-
ically decreases (symbol •). The behaviour for the n = 1
mode is more complex: for HL > 2.5 mm, corresponding
to λ < HL, the instability is absolute, with a confinement
branch located at ki ≈ π/HL. The absolute growth rate
ω0i (the value of ωi when the pinching occurs) reaches
a maximum for HL = HG = 5 mm, which is consis-
tent with the observation of Healey (2009) [27] that this
resonance mechanism is enhanced by a symmetric con-
finement. For HL < 2.5 mm, the instability is convective:
the growth rate of its most dangerous helical mode (sym-
bol �) decreases rapidly when HL is decreased, and the
helical mode eventually becomes less unstable than the
varicose mode for HL < 1.8 mm. This limit corresponds
to wavelengths such that λ > 1.5HL.
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The inviscid analysis therefore predicts that the helical
mode is more unstable than the varicose one, provided
the liquid diameter is not too small. How does the fre-
quency of this helical mode compare with that of the
varicose mode? At very small liquid diameters, when the
helical mode is convective, we find that the frequency of
the helical mode is slightly larger than that of the vari-
cose mode. However, when the helical mode causes an
absolute instability with a confinement branch, the fre-
quency of this mode will necessarily be smaller than the
frequency of the varicose mode, since the associated sad-
dle point is always located at low wavenumbers, hence at
a frequency smaller than that of the shear branch most
unstable mode: this is in agreement with the experimen-
tal observations of figure 9, where the flapping instabil-
ity exhibits a frequency smaller than that of the varicose
shear instability.

In order to provide an estimate for the flapping fre-
quency, we finally come back to the viscous analysis. It
has been shown in Matas et al (2018) [20] that when
the viscous instability is controlled by confinement, fre-
quency of the varicose mode at the saddle point could be
estimated at moderate gas velocities by

f ∼

√
ρG
ρL

δL
δG
UG + UL

L
(1)

where δL is the vorticity thickness on the liquid side,
and L is the cross-stream length relevant to confinement:
the confinement branch is located on the imaginary axis
around ki ≈ 2π/L. This length can a priori be either
HL or HG, or even a multiple of these, but there is yet
no clear criterion indicating which one should be cho-
sen. This may depend in particular on the precise shape
and maximum ki of the shear branch for the considered
liquid/gas velocities. The viscous stability analysis for
the varicose mode shows that in the HL = 5 mm-HG =
1.8 mm, HL = 5 mm-HG = 9.3 mm and HL = 5 mm-
HG = 12.3 mm cases the relevant confinement branch re-
mains controlled by L ≈ HL = 5 mm independent of the
value of HG. For the series HL = 20 mm-HG = 24 mm,
the only geometry with HL = 20 mm in the G1 cate-
gory, this length is L ≈ 20 mm [20]. This suggests that
the liquid diameter HL may be the relevant confinement
scale for the coaxial jet geometry. We plot on figure 13
the flapping frequency for the data of figures 6 and 7 as a
function of the prediction of equation (1) with L = HL:
we have only retained points for which WeUi > 1 and
M > 5, for which the inviscid confinement mechanism is
expected to be relevant. The data is correctly aligned, in
particular the series HL = 20 mm-HG = 24 mm (symbol
�) is aligned with the data for smaller geometries. In ad-
dition, equation (1) predicts frequency values to within
20% of experimental ones without any adjustable param-
eter.

10
1

10
2

10
1

10
2

(√
ρGδL
ρLδG

UG + UL

)
/HL

f fl
ap

 (
H

z)

FIG. 13. Experimental flapping frequency as a function of the
model of equation (1) for the subset of series G1 for which the
inviscid mechanism is expected to dominate (WeUi > 1 and
M > 5).

IV. GAS INDEPENDENT FLAPPING
INSTABILITY

Let us now discuss the frequency data corresponding
to regime G2. This regime corresponds to the series for
which flapping frequency is independent of gas velocity
on figure 6. Figure 14 shows both the flapping and shear
instability frequencies as a function of UG for the series
HL = 20 mm-HG = 5 mm, fixed UL = 0.28 m/s, per-
taining to regime G2. Clearly, both frequencies diverge
beyond UG = 50 m/s: the shear instability frequency
strongly increases with gas velocity while the flapping fre-
quency remains roughly constant when UG is increased
from 15 up to 140 m/s. Figure 15 illustrates the spatial
development of the instability for the same conditions
and UG = 90 m/s: the spectrum of interface position
is dominated at close distance from the nozzle by a fre-
quency of the order of 250 Hz (close to the shear insta-
bility frequency), but for z > 50 mm it exhibits a much
smaller frequency, around f ≈ 35 Hz (close to the flap-
ping frequency of figure 14). In this regime the flapping
instability is therefore not controlled by the upstream
shear instability.

In order to clarify what happens in this regime, we first
describe the general mechanism which leads the liquid jet
to flap. When a perturbation deforms the interface of the
liquid jet, the fast gas flow is itself strongly perturbated
and a wake is generated donwstream of the perturbation.
Non-symmetric perturbations on the liquid then lead to
strongly nonlinear non-symmetric perturbations in the
gas stream, via air recirculation and lift-off behind waves.
This mechanism has already been pointed out in the case
of atomized liquid sheets by Lozano & Barreras (2001)
[28]. This is illustrated on figure 16, extracted from a
previous study on a similar geometry, HL = 8 mm and
HG = 1.7 mm, for UG = 10 m/s and UL = 0.4 m/s
[29]: the gas flow (indicated by longer white arrows) de-
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FIG. 14. Comparison between flapping frequency (H) and
shear instability (4) frequency as a function of gas velocity
for HL = 20 mm, HG = 5 mm and fixed UL = 0.28 m/s:
for UG > 50 m/s the flapping instability does not follow the
shear instability and remains constant when UG is increased.
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FIG. 15. Spatial variation of the interface position spectrum
for HL = 20 mm HG = 5 mm UL = 0.28 m/s and UG =
90 m/s: frequency decreases as one moves away from the
nozzle.

taches after flowing past the liquid wave, and recircu-
lates (white circular arrows). This is also illustrated in a
high speed video deposited as suplemental material, for
HL = 5 mm, HG = 5 mm, UG = 15 m/s and UL = 0.22
m/s [30]: this video is taken at a frequency of 29 kHz
and exposure time 4 µs, and shows the liquid jet rotated
of 90◦ from its original vertical orientation. Gas flow is
seeded with glycerine droplets (size < 5 µm), illuminated
by an Argon laser slice in a plane containing the jet axis.
Both the video and figure 16 show large recirculations
behind non axisymmetric shear instability waves, which
exert a couple on the liquid jet, and ultimately lead it
to bend and deviate from its axis. This corresponds to

FIG. 16. PIV visualization of the velocity field in the air
stream around an atomized water jet, UG = 10 m/s and
UL = 0.4 m/s, from Matas & Cartellier (2013) [29]. Large re-
circulations appear downstream of the shear instability waves
formed on the liquid surface. These recirculations will am-
plify the slight dissymmetry in the liquid jet by exerting a
torque on the corresponding jet segment (see figure 11).

the sequence introduced above on figure 11. However, if
shear waves are not spaced enough, i.e. when their wave-
length is not large enough compared to the typical size
HL of air recirculations, the previous mechanism is in-
validated. We believe this is what happens for the data
of series G2. The data of figure 8, where frequency in
this regime increases with UL, suggests that the relevant
time scale for this regime must be built with UL. Our
experimental data suggest that length HG does not affect
the frequency in this regime (compare for example series
� and H in figure 6). We then choose to retain as the
relevant length scale HL, and build a Strouhal number
St = fHL/UL to non dimensionalize flapping frequency.
This Strouhal number is plotted against the Froude num-
ber Fr = UL/

√
gHL in figure 17. The data show that

this Strouhal is constant and of order one for Fr > 1.
For lower Fr, St becomes much larger: this is due to the
fact that as mentioned in section II B for the lowest UL
investigated the relative increase in liquid velocity due to
acceleration by gravity cannot be neglected over a dis-
tance of HL. For the UL = 0.08 m/s and HL = 15 mm
series for example, after a free fall distance of z = HL liq-
uid velocity reaches 0.55 m/s, i.e. almost seven times the
liquid velocity at injection. More precisely, UL should be
replaced by UL(1 + 2Fr−2)1/2. Similarly, the jet radius
after a free fall distance of HL decreases due to mass con-
servation and becomes HL(1 + 2Fr−2)−1/4. We plot on
figure 17 (bottom) the variations of the modified Strouhal
number St′ = St(1 + 2Fr−2)−3/4 taking into account
these modified velocity and length: most of the data is
gathered around St′ ≈ 0.5.

We finally discuss the issue of the boundary between
regimes G1 and G2. The flapping instability mechanism
is related with the gas recirculation and lift-off around
asymmetric perturbations, and as mentioned above we
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Same caption as in figures 6 and 8 ; Bottom: Same plot for
Strouhal number St′ built with radius and velocity after a
free fall of distance HL.

believe the spacing between axial waves is a key param-
eter when examining the action of the gas on the jet.
This spacing, namely the wavelength of the shear waves,
is difficult to measure, in particular because of the strong
spatial variations in velocity induced by the gas flow and
gravity. Our strategy is to infer λ from the shear waves
frequency (measured via the spectra of radius variations,
see section II) and velocity of the waves, which is ex-
pected to be close to Uc = (

√
ρGUG +

√
ρLUL)/(

√
ρG +

√
ρL) ≈

√
ρG/ρLUG + UL when the perturbation be-

comes non linear [31, 32]: λ = Uc/fshear. We then com-
pute the ratio HL/λ, which for a given geometry is a
measure of the ability of a shear wave to generate a wake
large enough to destabilize the liquid jet. Figure 18 left
shows that the data labeled G1, for which the flapping in-
stability follows the shear instability, clearly corresponds
to HL/λ < 0.6: when the spacing between shear waves
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FIG. 18. Left: Histogram of HL/λ for all experimental points
of figures 6 and 7: regime G1 is observed for smaller HL/λ
; Right: ratio of shear frequency to flapping frequency as a
function of HL/λff , for all data points of figures 6 and 7
(same legend).

is large enough, the flapping is synchronized with the
shear instability. Conversely, most of the series belong-
ing to the G2 data, for which the flapping is not related
to the shear instability, correspond to HL/λ > 0.6, i.e.
to small wavelengths as argued previously. The estimate
of the wavelength can be refined by considering as in
figure 17 that it must be based on a free fall liquid ve-
locity instead of UL. Following this idea, figure 18 right
represents for all the data points of figures 6 and 7 the
ratio of the shear instability and flapping frequency, as a
function of HL/λff . Here λff stands for the estimated
wavelength accounting for free-fall velocity after a length
HL: λff = (

√
ρG/ρLUG + UL

√
1 + 2Fr−2)/fshear. The

largest fshear/fflapping correspond as expected to the
largest HL/λff ratios, while both frequencies remain
close to each other for larger wavelengths.

The first regime occurs when the wavelength associated
with the shear instability is larger than the jet radius.
Conversely, the second regime occurs when the shear-
instability wavelength becomes too small compared with
the jet radius: in this case the system prefers to amplify
a larger scale, comparable with the jet size HL. In that
regime, the flapping arises from an opportunistic amplifi-
cation of noisy perturbations and its response is no longer
connected with the shear instability.

V. CONCLUSION

We have presented measurements of the frequency of
the flapping instability, which leads an incompletely at-
omized liquid jet to exhibit oscillations on a scale large
compared to its radius. By analyzing the variations of the
flapping frequency over a large range of flow conditions
and injector geometries, we have demonstrated the exis-
tence of two regimes: a first regime named G1 where fre-
quency increases with gas velocity, and a second regime
named G2 where frequency is independent of gas veloc-
ity. We have shown that in the first regime the flapping
instability is triggered by the wake downstream of non ax-
isymmetric modes of the shear instability. The flapping
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frequency in this regime directly depends on the mecha-
nism which controls the shear instability, and which can
be either confinement or a Yih mechanism cut off by
surface tension. In this regime the flapping frequency
is therefore itself a function of the parameters affecting
these complex instabilities: liquid and gas velocity, but
also geometry and vorticity thickness.

In regime G2, the shear instability wavelength is too
small compared with the jet radius for its wake to desta-
bilize the jet. Hence, the system amplifies incoming
perturbations with a resulting frequency of the order of
UL/HL which is no longer connected with the shear in-
stability. At low Froude numbers this frequency must be
corrected as (UL/HL)(1 + 2Fr−2)3/4 to account for the
acceleration due to gravity. The transition between the
two regimes is at first order controlled by the parameter
HL/λ. In this G2 regime only UL and HL are expected to
determine frequency, and other parameters (in particular
UG and δG) have no effect whatsoever on the instability.

In future work it would be interesting to determine
if the above picture is also relevant for liquid sheet at-
omization, and in particular, if the second regime can be
observed on liquid sheets in the limit of small shear insta-
bility wavelengths or equivalently of thick liquid sheets.

Finally, we have not discussed in this work the ques-
tion of the size of the liquid fragments generated down-
stream. By stretching the liquid jet and redistributing
liquid lumps, the flapping instability will evidently have
a strong impact on the size and velocity distributions of
the generated spray: the question of how this impacts the
classical drop formation mechanisms will be the object of
future work.
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APPENDIX: VISCOUS LINEAR STABILITY
ANALYSIS

The base flow profile is purely axial, and of the form
introduced in [21], i.e. a sum of error functions, with a
finite velocity at the interface mimicking the wake of the

splitter plate.





U(r) = UL0 erf
(
R−r
δL

)
+ Ui

[
1 + erf

(
r−R
δdδL

)]

for 0 < r < R

U(r) =
[
UG erf

(
r−R
δG

)
+ Ui

[
1− erf

(
r−R
δdδL

)]]

×
(

1+erf
(
HG−r+R

δG

)
2

)

for R < r < LG

where UL0 is the liquid velocity far from the interface,
δL the liquid vorticity thickness and LG is the radial dis-
tance at which a boundary condition with a solid wall is
enforced, LG = 10(R + HG) for the present work. The
contribution proportional to the interfacial velocity Ui
models the wake downstream the splitter plate, namely
a vorticity layer of thickness δdδL : δd = 1 corresponds
to the absence of a velocity deficit, while δd � 1 corre-
sponds to a near zero velocity at the interface [21]. The
magnitude of the interfacial velocity Ui is imposed by the
continuity of tangential stresses:

Ui =
UGµG/δG + ULµL/δL

µG + µL
δdδL

where µG and µL are respectively the gas and liquid dy-
namic viscosities.

We next look at the stability of a small velocity per-
turbation u(r, θ, z, t) superimposed on the above velocity
profile. After linearization, we expand the perturbation
on normal modes ũ(r, n, k, ω)ei(nθ+kz−ωt). We only look
for axisymmetric perturbations, hence we take n = 0.
We then introduce the stream function φ, related to the
respectively axial and radial velocity components ũ and
ṽ with:

ũ =
1

r

dφ

dr
ṽ = − ik

r
φ

The equation for φ(r, k, ω) is then a classical circular Orr-
Sommerfeld equation:

(Uk − ω)

(
φ′′ − φ′

r
− k2φ

)
+ φk

(
U ′

r
− U ′′

)
= −iνG/L

[
φ′′′′ − 2

r
φ′′′ +

3

r2
φ′′ − 3

r3
φ′ − 2k2

{
φ′′ − φ′

r

}
+ k4φ

]

where νG/L is the kinematic viscosity of the gas/liquid
phase. We enforce boundary conditions at the outer wall:
φ(LG) = 0 and φ′(LG) = 0, as well as on the axis of sym-
metry of the system φ(0) = 0 and φ′(0) = 0. Two solu-
tions are then integrated in the gas phase from r = LG to
r = R, and two solutions in the liquid phase from r = 0
to r = R (with Fortran 90). Continuity of respectively
normal and tangential velocity and stress at the interface
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close the system:

i) φL = φG
ii) φ′G − φ′L = kφG

kUi−ω (U ′G(R)− U ′L(R))

iii) µG

(
φ′′′G −

φ′′G
R

)
− φ′G

[
iρG (kUi − ω)− µG

R2 + 3µGk
2
]

+φG

(
ikρGU

′
G(R) + 2µG

k2

R

)
+ iσ k

2

R2
1

kUi−ω
(
1− k2R2

)

= µL

(
φ′′′L −

φ′′L
R

)
− φ′L

[
iρL (kUi − ω)− µL

R2 + 3µLk
2
]

+φL

(
iρLkU

′
L(R) + 2µL

k2

R

)

iv) µG

[
k2φG +

kU ′′G(R)
ω−kUi φG + φ′′G −

φ′G
R

]

= µL

[
k2φL +

kU ′′L(R)
ω−kUi φL + φ′′L −

φ′L
R

]

where σ is the liquid/gas surface tension.

As in Matas (2015) [23], we carry out a spatio tem-
poral analysis: we solve for spatial branches, for a fixed
complex ωi = Im(ω). If when ωi is decreased the shear
branch pinches with either a confinement branch or a
surface tension branch for ωi > 0, then the instability is
absolute and the corresponding value of ωi is the abso-
lute growth rate ωi0. If no pinching occurs when ωi has
reached zero, then the instability is convective.
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