Unravelling socio-motor biomarkers in schizophrenia - Archive ouverte HAL
Article Dans Une Revue npj Schizophrenia Année : 2017

Unravelling socio-motor biomarkers in schizophrenia

Yuan Shen
Laura Cohen
Robin Salesse
  • Fonction : Auteur
Mathieu Gueugnon
  • Fonction : Auteur
Ludovic Marin
Benoît G. Bardy

Résumé

We present novel, low-cost and non-invasive potential diagnostic biomarkers of schizophrenia. They are based on the‘mirror-game’, a coordination task in which two partners are asked to mimic each other’s hand movements. In particular, we use thepatient’s solo movement, recorded in the absence of a partner, and motion recorded during interaction with an artificial agent, acomputer avatar or a humanoid robot. In order to discriminate between the patients and controls, we employ statistical learning techniques, which we apply to nonverbal synchrony and neuromotor features derived from the participants’movement data. The proposed classifier has 93% accuracy and 100% specificity. Our results provide evidence that statistical learning techniques, nonverbal movement coordination and neuromotor characteristics could form the foundation of decision support tools aiding clinicians in cases of diagnostic uncertainty.
Fichier principal
Vignette du fichier
41537_2016_Article_9.pdf (916.13 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-01761364 , version 1 (08-06-2021)

Licence

Identifiants

Citer

Piotr Slowiński, Francesco Alderisio, Chao Zhai, Yuan Shen, Peter Tino, et al.. Unravelling socio-motor biomarkers in schizophrenia. npj Schizophrenia, 2017, 3, pp.8. ⟨10.1038/s41537-016-0009-x⟩. ⟨hal-01761364⟩
163 Consultations
76 Téléchargements

Altmetric

Partager

More