
HAL Id: hal-01761341
https://hal.science/hal-01761341v1

Submitted on 10 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

OLCPM: An Online Framework for Detecting
Overlapping Communities in Dynamic Social Networks

Souâad Boudebza, Rémy Cazabet, Faiçal Azouaou, Omar Nouali

To cite this version:
Souâad Boudebza, Rémy Cazabet, Faiçal Azouaou, Omar Nouali. OLCPM: An Online Framework
for Detecting Overlapping Communities in Dynamic Social Networks. Computer Communications, In
press, �10.1016/j.comcom.2018.04.003�. �hal-01761341�

https://hal.science/hal-01761341v1
https://hal.archives-ouvertes.fr

OLCPM: An Online Framework for Detecting
Overlapping Communities in Dynamic Social Networks

Souâad Boudebzaa,∗, Rémy Cazabetb,d, Faiçal Azouaoua, Omar Noualic

aEcole nationale Supérieure d’Informatique, BP 68M, 16309, Oued-Smar, Alger, Algérie.
http://www.esi.dz

bSorbonne University, UPMC University, CNRS, LIP6 UMR 7606, Paris, France.
cDivision de Recherche en Thorie et Ingnierie des Systmes Informatiques,CERIST, Rue des

Frres Aissiou, Ben Aknoun, Alger, Algrie.
dUniv Lyon, Universite Lyon 1, CNRS, LIRIS UMR5205, F-69622 France.

Abstract

Community structure is one of the most prominent features of complex net-

works. Community structure detection is of great importance to provide insights

into the network structure and functionalities. Most proposals focus on static

networks. However, finding communities in a dynamic network is even more

challenging, especially when communities overlap with each other. In this arti-

cle, we present an online algorithm, called OLCPM, based on clique percolation

and label propagation methods. OLCPM can detect overlapping communities

and works on temporal networks with a fine granularity. By locally updating

the community structure, OLCPM delivers significant improvement in running

time compared with previous clique percolation techniques. The experimental

results on both synthetic and real-world networks illustrate the effectiveness of

the method.

Keywords: Community Detection, Temporal Network, Dynamic,

Overlapping, Social Network, Clique, Label Propagation

2010 MSC: 00-01, 99-00

∗Corresponding author
Email address: s_boudebza@esi.dz (Souâad Boudebza)

Preprint submitted to Journal of Computer Communications April 10, 2018

1. Introduction

The analysis of complex networks is a fast growing topic of interest, with

applications in fields as various as neural networks, protein networks, computer

networks or geographical networks. One of the most prominent application

domain is social network analysis.

The study of social networks can be traced back to the beginning of the

19th century, since the initial work on sociometry [1]. This subject has gained

new momentum in recent years, mainly due to the advent of the information

age and internet, which has led to the extensive popularity of online social

networks, producing large social datasets that can be studied by researchers.

The goal of social network analysis is to analyze relationships among social

entities and to understand the general properties and features of the whole

network, typically by means of graph theory. Nodes in the graph represent

social actors within the network (people, organization, groups, or any other

entity) and edges characterize social interactions or relations between nodes

(friendship, collaboration, influence, idea, etc.).

One of the most prominent features of social networks is their community

structure, characterized by the existence of nodes collections called communi-

ties, where nodes within a collection tend to interact more with each other than

with the rest of the network [2]. Individuals within the same community often

share similar properties, such as interests, social ties, location, occupation, etc.

Therefore, the ability to detect such communities could be of utmost impor-

tance in a number of research areas, such as recommender systems [3][4], email

communication [5], epidemiology [6], criminology [7], marketing and advertising

[8, 9], etc.

There are many challenges facing community detection. One of the most

important, in particular for social networks, is overlap of communities: in such

networks, individuals often belong to several social groups. For instance, indi-

viduals often belong to familial and professional circles; scientists collaborate

with several research groups, etc. The second challenge lies in the fact that

2

real-world communities are time-evolving. The community structure changes as

the social entities and their interactions evolve. These changes can be modeled

as addition and removal of nodes and edges from the graph. For instance, in

online social networks like Facebook, changes are introduced by users joining

or withdrawing from the network, or by people adding each other as ”friend”.

These changes may lead to a significant transformation of the network com-

munity structure. Palla et al.[10] propose six types of events which may occur

during the evolution of communities: birth, growth, shrink, merge, split, and

death. The communities can grow or shrink, as members are added or removed

from an existing community. As time goes by, new communities can be born,

and old communities may disappear. Two communities can become closely re-

lated and merge into a single one, or, conversely, a single community can split

into two or more distinct ones.

1.1. Rationale for an online version of the Clique Percolation Method

A growing number of methods have been proposed to reveal overlapping

and evolving community structures [11, 12]. One of the most prominent of

these methods was proposed by Palla et al.[10]. The clique percolation method

(CPM) [13] is used to extract the community structure at each time step of an

evolving network. Then, communities in consecutive time steps are matched.

The CPM method, thanks to its community definition, has interesting prop-

erties compared with other popular methods such as Louvain and infomap

[14, 15]:

• It is deterministic, i.e., two runs on two networks with the same topology

will yield the same results.

• Communities are defined intrinsically, i.e., each community exists inde-

pendently from the rest of the network, unlike methods using a global

quality function such as the modularity [16], that suffer from resolution

limits [17] binding the size of communities to the size of the network.

• Communities can overlap, i.e., a node can be part of several communities.

3

These properties represent an advantage when working with social networks

and with dynamic networks. In particular, a well-known problem with the

discovery of evolving communities is the so-called instability of methods [18],

which can be summarized as follows: because community detection methods

are unstable, the difference observed in the partition between two consecutive

periods of the network might be due either to significant changes in the network

or to random perturbations introduced by the algorithm itself. This problem

is due to (1) the usage of stochastic methods, as two runs on very similar

(or even identical) networks can yield very different results if the algorithm

reaches different local maximum, (2) non-intrinsically defined communities, as a

modification of a community might be due to changes introduced in an unrelated

part of the network.

Given these observations, CPM appears as a natural candidate to be used

for dynamic community detection. The method adapting CPM to the dynamic

case [10], however, suffers from at least two weaknesses for which we propose

solutions in this article, one due to CPM itself, and other to its adaptation to

the dynamic case:

• All cliques need to be discovered anew at each step, both in the new graph

snapshot and in a joint graph between snapshots at t and t− 1, which is

computationally expensive for networks with many steps of evolution.

• Nodes must belong to a cliques of size at least k to be part of a com-

munity, and as a consequence, some nodes might not be affected to any

community. As most social networks have a scale-free degree distribution,

a large number of nodes remain without a community.

To circumvent these issues, we propose a new two-step framework for detect-

ing overlapping and evolving communities in social networks. First, built upon

the classical algorithm CPM, we introduce an Online CPM algorithm (OCPM)

to identify the core nodes of communities in real time. To do that, we pro-

pose to use stream graph as a network model. At every change in the network,

the community structure is updated at the local scale. This allows significant

4

improvements in computational complexity compared with dynamic CPM [10].

Second, to deal with the coverage problem of CPM, we propose a label propa-

gation post-process (OLCPM)and thus, nodes not embedded in any community

will be assigned to one or more communities.

The rest of the paper is organized as follows: section 2 discusses the re-

lated work on overlapping and evolving community detection algorithms. In

Section 3, we present the different types of dynamic networks and introduce

a fully dynamic network model. Section 4 presents the OLCPM framework of

dynamic community detection: OCPM algorithm and Label propagation based

post process. Experimental results are described in section 5.

2. Related work

In this section, we first introduce the Clique Percolation Method (CPM)

[13] and its dynamic version [10], on which our proposal is built on. Then,

we present a brief overview of some relevant research work on overlapping and

dynamic community detection.

Palla et al.[10] were among the first to propose an approach for dealing with

dynamic and overlapping community detection. Their approach has two main

steps: i) static community identification and ii) community matching. In the

first step, the CPM method [13] is used to extract the community structure

at each time step. In this method, a community is defined as the union of all

k-cliques (complete subgraphs of size k) that can be reached from each other

through a series of adjacent k − cliques (sharing k − 1 nodes). In the second

step, communities are matched between consecutive snapshots. The following

process is used: for each pair of consecutive snapshots, a joint graph is created,

containing the union of nodes and links from both networks. CPM is then

applied to the resulting graph. The communities in the joint graph provide

a natural connection between communities in the consecutive snapshots. If a

community in the joint graph contains a single community in each corresponding

snapshot, then they are matched. If the joint graph contains more than one

5

community from either snapshot, the communities are matched in descending

order of their relative node overlap. Overlap is computed for every pair of

communities from the two snapshots as the fraction of the number of common

nodes to the sum of the number of nodes in both communities.

The work of Palla et al. [10] falls into the category of community match-

ing approaches, i.e., methods with a static community detection step and a

matching step. Most of the earliest algorithms proposed for dynamic commu-

nity detection were following a similar approach, with variations in the method

used for detection in each snapshot (MOSES in [19]), Louvain in [14], etc.) and

for community matching (Jaccard Coefficient in [19], Core nodes in [20], etc).

In recent years, several authors have proposed methods based on a differ-

ent approach, allowing to work on dynamic graphs provided as a stream. In

this case, there are too many modifications of the network to run a complete

algorithm at each step. Therefore, these methods update communities found

at previous steps based on local rules. Below, we introduce examples of such

methods. More details can be found in [12].

• Xie et al.[21] extended LabelRank [22] algorithm which is a stabilized

and deterministic variant of Label propagation algorithm [23] to deal

with evolving communities in dynamic networks. The extended algorithm

called LabelRankT is based on a conditional update rule by which only

nodes involved in change between two consecutive snapshots are updated.

• Nguyen et al.[24] proposed AFOCS, an adaptive framework for detecting,

updating and tracing the evolution of overlapping communities in dynamic

mobile networks. During the initialisation step, AFOCS identifies all pos-

sible basic network communities which represent the densely connected

part of the network, whose internal density is greater than a certain level,

and merge those with the highest overlaps with each other. In a second

step, AFOCS adaptively update the community structure, as the dynamic

network evolves in time.

• Cazabet and Amblard [25] proposed an online algorithm called iLCD.

6

In this work, the dynamic network is considered as a sequence of events

(adding or removing edges). iLCD is using a multi-agent system: each

community is an agent on the network, which can integrate or reject nodes.

The agents are bounded by a certain number of operating rules, like up-

dating existing communities, creating new communities or merging similar

ones. Communities can be updated at each apparition or deletion of links.

• Rossetti et al.[26] defined TILES, which also proceeds in a streaming fash-

ion, i.e., dynamics of the network is described as flows of interactions (also

called perturbations) between users where nodes and edges can be created

or removed over time. Each perturbation is considered as a fall of domino

tile: every time a new interaction appears in the network, TILES up-

dates the community locally and then propagates the changes to the node

surroundings to adjust the neighbors’ community memberships.

A weakness of these algorithms is the absence of any guarantee that the

communities found represent an optimal solution at the global level, because

communities at each step are based on communities found in a previous step

by applying a set of local rules. More precisely, these methods suffer from the

risk of community drift, in which the solution can be dragged away from an

originally relevant solution. Another consequence is that communities found by

these algorithms at step t depend on the particular sequence of previous graph

modifications: the same graph produced by a different graph’s history would

yield a different partition.

On the contrary, due to the nature of the definition of communities in CPM,

we are able in this article to provide an algorithm that handles a flow of changes

with local modifications, while guaranteeing that the same state of the graph

will always yield the same community structure.

3. Dynamic Network Model

Various temporal models have been proposed to deal with dynamic networks.

We distinguish three broad approaches:

7

• Aggregated graphs model the dynamic network as a single static net-

work by aggregating all contacts between each pair of nodes in a single

edge. This representation does not allow longitudinal analysis, for instance

tracking the evolution of communities.

• Series of snapshots model the evolving network through a series of

snapshots, each of which is a static network representing contacts that

exist at the corresponding time, or during the corresponding time window.

The main issue of this approach is to determine the ’right’ number of

time windows, i.e., the temporal granularity. Tracking communities across

network sequences can be difficult if important temporal information is

lost between snapshots.

• Temporal networks conserve all known temporal information. There

are two main models: series of contact and interval graph [27]. In a se-

quence of contact, interaction is represented as a triple (i, j, t) where i and

j are the interacting entities and t is the time when the relationship is

activated. In an interval graph, interaction is represented as a quadru-

plet (i, j, t, δt) which means that i is involved in contact with j from t to

δt. In these models, only the temporal information about interactions is

represented, there is no temporal information about nodes.

In the following, we introduce our own formalism for evolving graphs, which

is better suited to deal with stream graphs, i.e., graphs whose modifications

occur as a flow, not necessarily known a priori. This formalism has the same

expressivity as interval graphs.

3.1. Stream graph

Networks are often represented by a graph G = (V,E), where V is the set of

nodes and E is the set of edges between nodes. We represent dynamic graphs

as an ordered sequence of events, which can be node addition, node removal,

edge addition or edge removal. We use the following notations:

8

• Inserting or removing a node is represented as triples (v, e, t), where v is

the node, e is the event observed among {+,−}(insert (+) or remove(−)),

and t is the time when the event occurs.

• Inserting or removing an edge is represented as quadruplets (u, v, e, t),

where u and v are endpoints of the edge, e is the event observed among

{+,−}(insert (+) or remove(−)), t is the time when the event occurs.

Note that this formalism, for edges, is identical in nature to an interval

graph, but is more convenient for stream algorithms, as new operations can be

added at the end of the ordered sequence of events without affecting previous

ones.

4. OLCPM Framework

Our framework comprises two main steps. First, we propose to adapt the

classical algorithm CPM [13] for static overlapping community detection to deal

with evolving networks. We propose an online version of CPM called OCPM

(Online CPM). This algorithm is based on analyzing the dynamic behaviors

of the network, which may arise from inserting or removing nodes or edges,

i.e., every time a change is produced in the network, we update locally the

community structure alongside the involved node or edge.

As stated earlier, CPM may not cover the whole network, i.e., some nodes

have no community membership. To deal with this problem, we assume that

the communities corresponding to OCMP contain core nodes, and we propose

a way to discover the community peripheral nodes. In the second step of our

framework, we extend OCMP using label propagation method and we propose

OLCPM (Online Label propagation CPM). These proposals will be presented

in detail in the next section.

4.1. OCPM: Online Clique Percolation Method

This section proposes the first step of our framework OLCPM, an online

Clique Percolation Method (OCPM). This method takes two inputs:

9

1

2

3 4

1

2

3 4

(a) Example with k=3

1

2

3 54 6 7

1

2

3 54 6 7

(b) Example with k=4

Figure 1: Examples of adding an edge with both endpoints outside any community. (a)

Example for k = 3: when the edge(1, 2) is added, a new community {1, 2, 3, 4} is created from

two adjacent k-cliques {1, 2, 3} and {1, 2, 4}. (b) Example for k = 4: the insertion of edge(1, 2)

leads to the creation of two communities {1, 2, 3, 4} and {1, 2, 5, 6, 7} from respectively two

groups of not-adjacent k-cliques {{1, 2, 3, 4}} and {{1, 2, 5, 6},{1, 2, 6, 7}}

.

• SE, chronologically ordered sequence of events which models networks

modification, following the format: (n, e, t) or (i, j, e, t) as defined in sec-

tion 3.1

• the parameter K, which determines the clique size; it is an integer value

greater than or equal to 3

The OCPM method maintains after each modification three elements:

• G(V,E) the current state of the network

• AC the set of currently alive communities

• DC the set of dead communities

It is therefore possible to know the community structure status at every

network modification step.

4.1.1. Definition of the OCPM algorithm

Note: To facilitate the readability of the paper, we decided to put all for-

mal algorithms in the Appendix, and to only include the rationale of these

10

1

2

3
5

4

6

1

2

3
5

4

6

(a) Simple grow

1

4

5

2 6

7

3

1

4

5

2 6

7

3

1

4

5

2 6

7

3

(b) Grow and merge

1

2

3

5

4

6

7

1

2

3

5

4

6

7

(c) New community

Figure 2: Example of adding an edge with an external endpoint and internal one(for k = 3).

(a) The community {1, 2, 3, 4, 6} grows with node 5 when adding edge (3, 5). (b) When the

edge (4, 7) is added, the communities {1, 2, 3, 4} and {4, 5, 6} grow with node 7, and then

merged. The resulting community takes the identity of the one that contains more nodes.(c)

By adding edge (3, 6), a new community {3, 5, 6, 7} is created.

algorithms in the body of the article. Please refer to the Appendix for further

details.

The core of the OCPM algorithm can be defined by an algorithm that up-

dates the current state of all variables according to a sequence of events SE, as

detailed in Algorithm 1. The task carried out by the algorithm depends on the

type of event encountered:

• Add a new node: adding an isolated node n has no influence on the

community partition. In this case, only n is added to the graph G and no

other action is performed until the next event.

• Add a new edge: when a new edge (i, j) appears, we add this edge to

the graph G. According to the type of edge, we distinguish two cases:

11

1

2
3

5

4

6

7

1

2
3

5

4

6

7

1

2
3

5

4

6

7

(a) Grow and Merge

1

3

5

2
6

4

7

1

3

5

2
6

4

7

(b) Grow

Figure 3: Examples of adding an edge with two internal endpoints(k=3). (a) The communities

{1, 2, 3, 4} and {2, 5, 6, 7} grow with the nodes of adjacent k-cliques {{1, 3, 5}, {2, 3, 5}} formed

when adding the edge (3, 5), and then merged. (b) The community {1, 2, 3, 4, 6} grows with the

nodes of adjacent k-cliques {{1, 7, 8}, {1, 5, 8}, {1, 2, 8}} formed when adding the edge (3, 5).

– When inserting an external edge, i.e., both its endpoints are outside

any community, we check if one or more new k-cliques (KCliques()

function Algorithm 6) are created. If it is the case, we gather all

adjacent k-cliques one to the other. Then, for each group of adjacent

k-cliques, we create a single community. Figure 1 shows two examples

of adding external edges and the changes it brings to the community

structure. (See Algorithm 3)

– In all other cases, i.e., when a new edge appears with one or two

internal extremities, we check all k-cliques created when adding this

edge and not belonging to any community. Then, all adjacent k-

cliques are grouped together and for each group, we check if there

are other adjacent k-cliques included in any community to which

belongs any node in this group. If they exist, the corresponding

communities will grow with the nodes of this group and they can

eventually be merged (Merge()function Algorithm 7). Otherwise, a

new community appears containing nodes of this group. Figures 2

and 3 depict some examples of adding edges with one or two internal

endpoints and the changes to the community structure. (Algorithm

12

1

23

5

4

6

1

23

5 6

(a) Shrink

8

5
6

7

4

2 1

3

8

5
6

7 2 1

3

(b) Shrink and Split

1

3

2

5
4

6 7 1

3

2

5
4

7

(c) Death

Figure 4: Example of removing internal node (k=3 for (a) and (b), k=4 for (c)). (a) When

removing the node 4, the members {4, 5, 6} leaves out the community {1, 2, 3, 4, 5, 6}.(b) When

removing the node 4, the community {1, 2, 3, 4, 5, 6, 7, 8} shrinks, i.e., it loses this node and

all its edges, and then splits into two communities: {5, 6, 7, 8} and {1, 2, 3}. (c)By removing

the node 6, the community {1, 2, 3, 4} shrinks and the community {3, 5, 6, 7} dies

2)

• Delete node: In this case, we remove the node from the graph G, and

all its edges are removed as well. If the node is external, i.e., it doesn’t

belong to any community, the community structure is not affected and no

action is performed until the next event. When the removed node belongs

to one or more communities, we check for each community to which this

node belongs whether it still contains at least a k-clique after the node

is removed. This community dies if it loses all k-cliques(see figure (c)

4). Otherwise, the community shrinks, i.e., it loses this node and all its

associated edges. Here, we distinguish two cases:

– The community may remain coherent and the community structure

doesn’t change(see figure (a) 4).

– The community may become disconnected and therefore, it will be

13

1

3

5
2

6
4

71

3

5
2

6
4

7

(a) No change in the community structure

1

3

5
2

6
4

7 1

3

5
2

6
4

7

(b) Community split

Figure 5: Examples of removing internal edge (k=4). (a) The community structure doesn’t

change when removing the edge (4, 7). (b) When removing the edge (4, 6), the community

splits into two small communities, each of which contains a group of adjacent k-cliques in the

original community.

break up into small communities (see figure (b) 4).

The split function (Algorithm 8) deals with these two cases. After the

community shrinking, its structure is recalculated keeping the principle of

CPM -checking all maximal cliques of size not less than k. The resulting

community having the largest number of nodes keeps the identity of the

original one, where the others have new identities.

The Algorithm 4 describes this case.

• Delete edge: First, we remove the edge from the graph G. The removal of

an edge with two endpoints belonging to the same community(ies)(called

internal edge) follows the same mechanism as internal node removal: the

communities to which belong the two extremities of this edge may split

or die. For each of them, we check whether it still contains k-cliques. If

so, we use the function Split (Algorithm 8) to check whether or not the

community is divided into smaller parts. Otherwise, this community dies

(see Algorithm 5). Figure 5 shows two examples of removing internal Edge

and the changes that it brings to the community structure.

For all other types of edges, the community structure doesn’t change.

Here, we detail some functions used in our algorithm:

14

• Kcliques(): (Algorithm 6) This function takes a set of nodes SN as input

parameter and returns all maximal cliques of size not less than k containing

this set. In order to optimize the performance of our algorithm, k-cliques

are locally launched in the subgraph including the set SN and all common

neighbors among its members.

• Merge(): (Algorithm 7) This function is used for merging adjacent com-

munities. The resulting community takes the identity of the one with the

highest number of nodes.

• Split(): (Algorithm 8) This function is used for splitting a community if

possible. It takes as input a community and creates from it one or more

communities. We proceed as follows: first, we identify all maximal cliques

of size not less than k in this community and we aggregate adjacent k-

cliques with each other. Then, for each of the aggregated k-cliques, we

create a new community. The community which has the largest number

of nodes keeps the identity of the original one.

Table 1 summarizes the actions which can be carried out by OCPM according

to graph events.

Event Actions

Add new node -

Add new edge
External Birth

Other Grow+[Merge], Birth

Delete Node
External -

Internal Shrink+[Split], Death

Delete Edge
Internal Split, Death

Other -

Table 1: Actions that can be performed according to graph events. Brackets denotes events

that can only follow the preceding community event.

15

4.1.2. Complexity of the algorithm

Instead of computing all k-cliques for the whole network at each event oc-

curring in the network, OCPM updates the community structure on the local

scale, and thus only the community structure alongside the node or the edge

involved in the event is recomputed. For certain events, like adding or deleting

an isolated node or deleting an external edge, the community structure doesn’t

change and hence, the computational time saving reaches its maximum. For

instance, if we have n k-cliques when such event is produced, the computational

time savings will be n times the average time for calculating k-cliques. For other

events, the computational time saving is also significant. See section 5.1 for an

empirical evaluation of the complexity.

4.1.3. Community tracking process

One of the difficulties when tracking the evolution of communities is to de-

cide which community is a continuation of which. Our framework allows a trivial

matching in the case of continuation (no merge or split) of communities. In the

case of merge and split, deciding which community keeps the original identity

is a well-known problem with no consensus in the literature [12]. In OCPM, we

took the simple yet reasonable decision to consider that the largest community

involved in a merge or split have the same identifier as the merged/split one.

This strategy can be replaced without altering the algorithm logic. A more ad-

vanced process could be added to solve problems of instability, e.g. communities

merging and quickly splitting back to their original state.

4.2. OLCPM: Online Label propagation CPM

This section describes the second step of our framework. A post-processing

based on label propagation is set out on the output communities of OCPM to

discover the peripheral nodes. This module is called OLCPM (Online Label

propagation CPM).

There is a twofold reason for using a post-process extending core-communities

found by OCPM:

16

• In a network evolving at fast path, one can update core-communities effi-

ciently after each event, and run the post-process only when the current

state of communities needs to be known, thus saving computation time

• It is known that the periphery of communities is often not well defined

and unstable. As seen earlier, and because OCPM is deterministic and

it searches for core-communityies, it reduces this instability problem. By

using the label propagation mechanism only as a post-process for analysis,

communities at t do not depend on the periphery of communities that

might have been computed at t− 1, but only on the stable part found by

OCPM.

4.2.1. OLCPM algorithm

First, each core-community (community found by OCPM) spreads to neigh-

boring peripheral nodes (nodes not covered by OCPM) a label containing its

identity and a weight representing the geodesic distance (the length of the

shortest path) between this neighboring node and any other node in the core-

community. Each peripheral node has a local memory allowing the storage of

many labels. Label propagation process is based on breadth-first search (BFS).

When all labels have been shared, nodes are associated with all communities

with which they have the shortest geodesic distance. Note that nodes can,

therefore, belong to several communities, if they are at the same distance of

community found by OCPM. This algorithm is defined formally in Algorithm

9.

Figure 6 presents an illustration of this process.

5. Experiments

In this section, we begin by evaluating the effectiveness of OCPM algorithm.

Thus, we compare the time complexity of OCPM with the dynamic version of

CPM [10]. Second, we are interested in the quality of the communities that

OLCPM is able to find, considering both synthetic and real-world networks.

17

C1,2

C1,1

C1,1

C2 ,1 C1 ,1

C2 ,2 C1 ,1

C2 ,2

C2 ,1

C2 ,2

C2 ,1

C2 ,1 C1 ,2

(a) Label spreading step

(b) Community structure after label analysis (k=3)

Figure 6: Peripheral community updates by OLCPM. (a) Label spreading step. (b) Commu-

nity structure after label analyses (for K=3). Green nodes are members of the community

C1; Yellow nodes are members of the community C2; uncolored nodes have no affiliation.

5.1. Measuring OCPM complexity gain for highly dynamic networks

In this section, we compare the empirical complexity of the original dynamic

version of CPM (hereafter, DyCPM)[10] and our proposed version (OCPM).

We generate synthetic dynamic networks, and compare how the running time

of both algorithms vary with the properties of the network and of its dynamic.

Note that we compare OCPM only with CPM because both algorithms try

to solve the same problem, i.e, they have the same definition of communities.

Other streaming algorithms introduced in section 2 have an ad hoc definition

of communities introduced together with the method, and does not have the

same properties, such as being deterministic and not being dependent on the

network history. Their complexity is, in theory, similar to the one of OCPM

(local updates at each modification).

5.1.1. Generation of dynamic networks with community structure

We propose a simple process to generate dynamic networks with realistic

community structure. First, a static network is generated using the LFR bench-

mark [28], the most used benchmark for community detection. Then, for this

18

network, we generate a step by step evolution. In order to conserve the network

properties (community structure, size, density), we define an atomic modifica-

tion as the following process:

1. Choose randomly a planted community as provided by LFR

2. Select an existing edge in this community

3. Select a pair of nodes without edges in this community

4. Replace the selected existing edge by the selected not-existing one.

We define a step of evolution as the combination of a atomic modifications.

In order to test the influence of the number of modifications between steps, we

test different values of a.

Note that we use synthetic networks instead of real networks at this step

since:

• We are only interested in measuring time complexity of algorithms. Syn-

thetic networks are mostly criticized for having unrealistic community

structures, while here we are mainly interested in the size and rate of

evolution of the networks.

• It allows controlled experiments. With real evolving networks, changes in

the structure/size of the network could affect computation time at each

step, and we could not control the number of modifications between snap-

shots, or vary the size of networks while keeping constant properties.

5.1.2. Experimental process

The LFR benchmark [28] is, as of today, the most widely used benchmark

to evaluate community detection methods. It is known to generate realistic

networks with heterogeneous degrees and community sizes.

It has the following parameters : N is the network size, k is the average de-

gree of nodes, kmax the maximum degree, t1 and t2 are power-law distribution

coefficients for the degree of nodes and the size of community respectively, µ is

the mixing parameter which represents the ratio between the external degree of

19

the node with respect to its community and the total degree of the node, minc

and maxc are the minimum and maximum community size respectively, On is

the number of overlapping nodes , Om is the number of community memberships

of each overlapping node.

In order to obtain realistic networks, we first generate an original network

with n nodes using the LFR benchmark, with fix parameters k = 7, maxk = 15,

and µ = 0.4. Other parameters stay at their default values. In order to test the

influence of the network size, we test different values of n.

Figure 7: Evolution of time complexity when varying the size of the network (number of

nodes), and keeping other parameters constant (average node degree, community, size, etc.).

DyCPM complexity increases exponentially with the size of the network, while OLCPM one

stays constant or slightly decreases. Expressed in base 50, i.e, 10 on the vertical axis means

10 times slower than with 50 nodes.

As can be seen in figures 7 and 8, the complexity of both algorithms de-

pends on very different parameters. With OLCPM, the time needed to update

communities after a modification step does not increase proportionally to the

size of the network at any given time, but increases linearly with the number of

atomic modifications.

On the contrary, the complexity of DyCPM depends on the properties of the

static network, but not on the number of atomic modifications between steps.

20

Figure 8: Evolution of time complexity when varying the number of atomic changes by step.

DyCPM complexity is independent relatively to a while OLCPM’s complexity increases lin-

early with a Time.

As expected, OLCPM is appropriate to deal with stream graphs, in which

modifications are known at a fine granularity, as the cost of each update is low.

On the contrary, DyCPM is appropriate to deal with network snapshots, i.e., a

dynamic network composed of a few observations collected at regular intervals.

5.2. Measuring OLCPM communities quality

To quantify the quality of communities detected by OLCPM framework,

we used both synthetic and real-world networks with ground truth commu-

nity structure. We remind the reader that communities found by DyCPM

and OCPM are identical, the difference lies only in the label propagation post-

process of OLCPM.

Normalized Mutual Information (NMI) is used as the measurement criterion.

This measure is borrowed from information theory [29] and widely adopted for

evaluating community detection algorithms. It measures the similarity between

a ground truth partition and the one delivered by an algorithm. As the original

definition is only well defined for partitions (each node belong to one and only

one community), a variant of the NMI adapted for covers (nodes can belong

21

to zero, one or more communities) have been introduced in [30]. This variant

is the most used in the literature for comparing overlapping communities. We

used the original implementation by the authors 1. The NMI value is defined

between 0 and 1, with a higher value meaning higher similarity.

5.2.1. Static Synthetic networks

We use the LFR benchmark [28] to generate realistic artificial networks.

We use two different network sizes, small networks(1000 nodes) and large

networks(5000 nodes), and for a given size we use two ranges for community size:

small communities, having between 10 and 50 nodes and large communities,

having between 20 and 100 nodes. We generate eight groups of LFR networks.

In the first four networks, µ ranges from 0 to 0.5 (steps of 0.1) while Om is

set to 100 for small networks and 500 for large networks (5000 nodes). In the

other networks, µ is fixed to 0.1 and On ranges from 0 to 500 (steps of 100) for

small networks and from 0 to 2000 (steps of 500) for large networks. All these

networks share the common parameters: k = 10, maxk = 30, t1 = 2, t2 = 1,

On = 2. The parameter settings are shown in table 2.

Network group ID N minc maxc µ On

N1 1000 10 50 0-0.5 100

N2 1000 20 100 0-0.5 100

N3 5000 10 50 0-0.5 500

N4 5000 20 100 0-0.5 500

N5 1000 10 50 0.1 0-500

N6 1000 20 100 0.1 0-500

N7 5000 10 50 0.1 0-2000

N8 5000 20 100 0.1 0-2000

Table 2: LFR parameter setting

1https://sites.google.com/site/andrealancichinetti/software

22

https://sites.google.com/site/andrealancichinetti/software

CPM and OLCPM are run for k = 4. The NMI values of communities

detected by CPM and OLCPM are depicted in figure 9. Note that communities

found by CPM and OCPM are identical, therefore the observed differences are

only due to the post process.

0

0,2

0,4

0,6

0,8

1

0 0,1 0,2 0,3 0,4 0,5

N
M

I

µ

N1 (N= 1000, S)

CPM

OLCPM

0

0,2

0,4

0,6

0,8

1

0 0,1 0,2 0,3 0,4 0,5

N
M

I

µ

N3 (N= 5000, S)

CPM

OLCPM

0

0,2

0,4

0,6

0,8

1

0 0,1 0,2 0,3 0,4 0,5

N
M

I

µ

N2 (N= 1000, B)

CPM

OLCPM

0

0,2

0,4

0,6

0,8

1

0 0,1 0,2 0,3 0,4 0,5

N
M

I

µ

N4 (N= 5000, B)

CPM

OLCPM

0

0,2

0,4

0,6

0,8

1

0 100 200 300 400 500

N
M

I

On

N5(N= 1000, S)

CPM

OLCPM

0

0,2

0,4

0,6

0,8

1

0 500 1000 1500 2000

N
M

I

On

N7(N= 5000, S)

CPM

OLCPM

0

0,2

0,4

0,6

0,8

1

0 100 200 300 400 500

N
M

I

On

N6(N= 1000, B)

CPM

OLCPM

0

0,2

0,4

0,6

0,8

1

0 500 1000 1500 2000

N
M

I

On

N8 (N= 5000, B)

CPM

OLCPM

Figure 9: Performance of CPM and OLPM for k = 4 on the LFR benchmark networks. The

plots show the NMI scores as a function of the mixing parameter µ (upper half plots) and

of the number of overlapping nodes On (lower half plots) for different network sizes (small

networks in the left hand plots and large networks in the right hand plots) and different

community sizes ((S) ranges from 10 to 50 and (B) ranges from 20 to 100).

23

In most cases, OLCPM achieves the highest results, except for the two cases

where: (1) the community structure becomes very fuzzy (On >= 400 for small

networks or On >= 1500 for large networks) or (2) the value of µ is large (greater

than 0.3). In these cases, OLCPM performs similar or slightly worse than CPM.

When the community structure becomes too fuzzy for CPM, the irrelevant core-

communities provided are probably worsened by the post-process.

As a conclusion, we can consider that in situations in which CPM finds

meaningful communities in a network, the proposed post-process improves the

solution.

5.2.2. Dynamic Real-world networks

In order to evaluate the community detection results of our framework OL-

CPM on real temporal networks, we leverage a high-resolution time-varying

network describing contact patterns among high school students in Marseilles,

France [31]. The dataset was collected by the SocioPatterns collaboration us-

ing wearable sensors, able to capture proximity between individuals wearing

them. The dataset was gathered during nine days (Monday to Tuesday) in

November 2012. Data collection involved 180 students from five classes. Prox-

imity relations are detected over 20-second intervals. Data collection involved

students’ classes corresponding to different specializations: ’MP’ classes focus

more on mathematics and physics, ’PC’ classes on physics and chemistry, and

’PSI’ classes on engineering studies. These classes represent the expected ground

truth community structure.

We construct a dynamic network composed of 216 snapshots, each corre-

sponding to 1 hour of data. Nodes correspond to students, and there is an

edge between two nodes in a snapshot if the corresponding students have been

observed in interaction at least once during the corresponding period. (Please

refer to the original article [31] for details about the meaning of interaction. To

sum up, two students are in interaction if they stand face-to-face at a distance

between 1 and 1.5 meters.)

We compute the communities at each step using both DyCPM and OLCPM

24

(Communities yielded by DyCPM and OCPM are identical). Then, for each

snapshot, we compute the NMI according to [30]. Results are displayed in

Figure 10. We show results for k=3 and k=4, which yield the best results.

The average NMI over all snapshots is provided in Table 3.

Algorithm DyCPM k=3 DyCPM k=4 OLCPM k=3 OLCPM k=4

Average NMI 0.024 0.004 0.059 0.044

Table 3: Average NMI scores of OLCPM and DyCPM [10] for k = 3 and k = 4 on SocioPat-

terns collaboration networks [31].

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

7 13 19 1 7 13 19 1 7 13 19 1 7 13 19 1 7 13 19 1 7 13 19 1 7 13 19 1 7 13 19 1 7 13

NM
I

Day	&	Hour

pallak3 pallak4 OLCPMPP OLCPMPP4

SATURDAY SUNDAY MONDAY TUESDAYFRIDAYTHURSDAYWEDNESDAYTUESDAYMONDAY

DyCPM k=3 DyCPM k=4 OLCPM k=3 OLCPM k=4

Figure 10: NMI values of OLCPM and CPM [13] for k = 3 and k = 4 in on SocioPatterns

collaboration networks [31].

We can observe that the average NMI of OLCPM is higher than the original

DyCPM, and that values of NMI are also higher for most snapshots.

The longitudinal visualization of Figure 10 illustrates the relevance of study-

ing the evolution of a network with a fine granularity: only looking at this plot,

we can see that the class structure is not always present in the data. For in-

stance, we can observe that there is no community structure during evenings

and weekends, or that the community structure is less observable during several

days around lunchtime (Thursday, Friday, second Monday). One can then look

in more details to the communities found and their evolution to interpret these

observations. In this example, we were able to run DyCPM because of the small

25

size of the network, the restriction to one-hour interval, and the limitation to 9

days of data, but, as shown previously, it would not be possible to extend this

analysis to a much larger number of steps due to the increase in complexity.

6. Conclusion

In this paper, we proposed OLCPM framework to discover overlapping and

evolving communities in social networks. We proposed OCPM, an online version

of CPM [13], working on a fully dynamic network model, i.e., described as flows

of events, where nodes or edges can be added or removed over time. Instead

of calculating all k-cliques for the whole network at each event occurring in the

network, our method updates only the community structure alongside the node

or the edge involved in the event. This local update of the community structure

provides a significant improvement in computational time.

To cope with the covering problem of CPM, nodes belonging to OCPM

communities are considered as core nodes and we proposed a post-process based

on label propagation to discover peripheral nodes.

The experimental results of our framework in both artificial and real-world

networks show good performance in both computing time and quality detection.

Our method has some drawbacks, some of which are related to CPM itself,

like the dependency of the parameter k (clique size). We intend to propose a

heuristic for finding appropriate values of k.

Currently, the post-process is run from scratch at each step, and although it

is not as costly as a clique-finding problem, running it at each step for a large

network can become very costly. For future research, it would be interesting to

extend OLCPM by developing an online version of the post-process.

References

[1] J. Moreno, Who shall survive? A new approach to the problem of human

interrelations., Nervous and Mental Disease Publishing Company, Wash-

ington, 1934.

26

[2] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, D. Parisi, Defining

and identifying communities in networks, Proceedings of the National

Academy of Sciences 101 (9) (2004) 2658.

URL http://scholar.google.de/scholar.bib?q=info:Yu5P1ZhsmNUJ:

scholar.google.com/&output=citation&hl=de&as_sdt=2000&ct=

citation&cd=0

[3] L. Boratto, S. Carta, A. Chessa, M. Agelli, M. L. Clemente, Group rec-

ommendation with automatic identification of users communities, in: Pro-

ceedings of the 2009 IEEE/WIC/ACM International Joint Conference on

Web Intelligence and Intelligent Agent Technology - Volume 03, WI-IAT

’09, IEEE Computer Society, Washington, DC, USA, 2009, pp. 547–550.

doi:10.1109/WI-IAT.2009.346.

URL http://dx.doi.org/10.1109/WI-IAT.2009.346

[4] W. Deng, R. Patil, L. Najjar, Y. Shi, Z. Chen, Incorporating community

detection and clustering techniques into collaborative filtering model, in:

Proceedings of the Second International Conference on Information Tech-

nology and Quantitative Management, ITQM 2014, National Research Uni-

versity Higher School of Economics (HSE), Moscow, Russia, June 3-5, 2014,

2014, pp. 66–74. doi:10.1016/j.procs.2014.05.246.

URL https://doi.org/10.1016/j.procs.2014.05.246

[5] F. Moradi, T. Olovsson, P. Tsigas, An evaluation of community detection

algorithms on large-scale email traffic, in: Experimental Algorithms - 11th

International Symposium, SEA 2012, Bordeaux, France, June 7-9, 2012.

Proceedings, 2012, pp. 283–294. doi:10.1007/978-3-642-30850-5_25.

URL https://doi.org/10.1007/978-3-642-30850-5_25

[6] S. Kitchovitch, P. Lió, Community Structure in Social Networks: Ap-

plications for Epidemiological Modelling, PloS one 6 (7) (2011) e22220.

doi:10.1371/journal.pone.0022220.

27

http://scholar.google.de/scholar.bib?q=info:Yu5P1ZhsmNUJ:scholar.google.com/&output=citation&hl=de&as_sdt=2000&ct=citation&cd=0
http://scholar.google.de/scholar.bib?q=info:Yu5P1ZhsmNUJ:scholar.google.com/&output=citation&hl=de&as_sdt=2000&ct=citation&cd=0
http://scholar.google.de/scholar.bib?q=info:Yu5P1ZhsmNUJ:scholar.google.com/&output=citation&hl=de&as_sdt=2000&ct=citation&cd=0
http://scholar.google.de/scholar.bib?q=info:Yu5P1ZhsmNUJ:scholar.google.com/&output=citation&hl=de&as_sdt=2000&ct=citation&cd=0
http://scholar.google.de/scholar.bib?q=info:Yu5P1ZhsmNUJ:scholar.google.com/&output=citation&hl=de&as_sdt=2000&ct=citation&cd=0
http://dx.doi.org/10.1109/WI-IAT.2009.346
http://dx.doi.org/10.1109/WI-IAT.2009.346
http://dx.doi.org/10.1109/WI-IAT.2009.346
http://dx.doi.org/10.1109/WI-IAT.2009.346
https://doi.org/10.1016/j.procs.2014.05.246
https://doi.org/10.1016/j.procs.2014.05.246
http://dx.doi.org/10.1016/j.procs.2014.05.246
https://doi.org/10.1016/j.procs.2014.05.246
https://doi.org/10.1007/978-3-642-30850-5_25
https://doi.org/10.1007/978-3-642-30850-5_25
http://dx.doi.org/10.1007/978-3-642-30850-5_25
https://doi.org/10.1007/978-3-642-30850-5_25
http://dx.doi.org/10.1371/ journal.pone.0022220

[7] E. Ferrara, P. D. Meo, S. Catanese, G. Fiumara, Detecting criminal orga-

nizations in mobile phone networks, CoRR abs/1404.1295.

URL http://arxiv.org/abs/1404.1295

[8] D. McKenzie-Mohr, W. Smith, Fostering Sustainable Behavior: An Intro-

duction to Community-based Social Marketing, Education for sustainabil-

ity, New Society Publishers, 1999.

URL https://books.google.dz/books?id=2ZnKy6BMpTQC

[9] D. Fenn, M. Porter, M. McDonald, S. Williams, N. Johnson, N. Jones,

Dynamic communities in multichannel data: An application to the for-

eign exchange market during the 2007–2008 credit crisis, Chaos 19 (2009)

033119–8.

URL http://dx.doi.org/10.1063/1.3184538

[10] G. Palla, A.-L. Barabasi, T. Vicsek, Quantifying social group evolution,

Nature 446 (7136) (2007) 664–667. doi:10.1038/nature05670.

URL http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=

Retrieve&db=pubmed&dopt=Abstract&list_uids=17410175

[11] Q. Wang, E. Fleury, T. Aynaud, J.-L. Guillaume, Communities in evolving

networks: definitions, detection and analysis techniques, in: Dynamics of

Time Varying Networks, Ganguly, Mukherjee, Mitra, Peruani, Choudhury,

2013.

[12] R. Cazabet, F. Amblard, Dynamic community detection, in: Encyclopedia

of Social Network Analysis and Mining, Springer New York, 2014, pp. 404–

414.

[13] G. Palla, I. Derényi, I. Farkas, T. Vicsek, Uncovering the overlapping

community structure of complex networks in nature and society, Nature

435 (7043) (2005) 814–818.

URL http://dx.doi.org/10.1038/nature03607

28

http://arxiv.org/abs/1404.1295
http://arxiv.org/abs/1404.1295
http://arxiv.org/abs/1404.1295
https://books.google.dz/books?id=2ZnKy6BMpTQC
https://books.google.dz/books?id=2ZnKy6BMpTQC
https://books.google.dz/books?id=2ZnKy6BMpTQC
http://dx.doi.org/10.1063/1.3184538
http://dx.doi.org/10.1063/1.3184538
http://dx.doi.org/10.1063/1.3184538
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=17410175
http://dx.doi.org/10.1038/nature05670
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=17410175
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=17410175
http://dx.doi.org/10.1038/nature03607
http://dx.doi.org/10.1038/nature03607
http://dx.doi.org/10.1038/nature03607

[14] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre, Fast unfolding

of communities in large networks, Journal of Statistical Mechanics: Theory

and Experiment 2008 (10) (2008) P10008.

URL http://stacks.iop.org/1742-5468/2008/i=10/a=P10008

[15] M. Rosvall, C. T. Bergstrom, Maps of random walks on complex networks

reveal community structure, Proceedings of the National Academy of Sci-

ences 105 (4) (2008) 1118.

[16] M. Girvan, M. E. J. Newman, Community structure in social and biological

networks, PNAS 99 (12) (2002) 7821–7826.

[17] S. Fortunato, M. Barthelemy, Resolution limit in community detection,

Proceedings of the National Academy of Sciences 104 (1) (2007) 36–41.

[18] T. Aynaud, J.-L. Guillaume, Static community detection algorithms for

evolving networks, in: Modeling and Optimization in Mobile, Ad Hoc

and Wireless Networks (WiOpt), 2010 Proceedings of the 8th International

Symposium on, IEEE, 2010, pp. 513–519.

[19] D. Greene, D. Doyle, P. Cunningham, Tracking the evolution of commu-

nities in dynamic social networks, in: Proceedings of the 2010 Interna-

tional Conference on Advances in Social Networks Analysis and Mining,

ASONAM ’10, IEEE Computer Society, Washington, DC, USA, 2010, pp.

176–183. doi:10.1109/ASONAM.2010.17.

URL http://dx.doi.org/10.1109/ASONAM.2010.17

[20] Y. Wang, B. Wu, X. Pei, Commtracker: A core-based algorithm of tracking

community evolution, Advanced Data Mining and Applications (2008) 229–

240.

[21] J. Xie, M. Chen, B. K. Szymanski, Labelrankt: Incremental community de-

tection in dynamic networks via label propagation, CoRR abs/1305.2006.

URL http://dblp.uni-trier.de/db/journals/corr/corr1305.html#

abs-1305-2006

29

http://stacks.iop.org/1742-5468/2008/i=10/a=P10008
http://stacks.iop.org/1742-5468/2008/i=10/a=P10008
http://stacks.iop.org/1742-5468/2008/i=10/a=P10008
http://dx.doi.org/10.1109/ASONAM.2010.17
http://dx.doi.org/10.1109/ASONAM.2010.17
http://dx.doi.org/10.1109/ASONAM.2010.17
http://dx.doi.org/10.1109/ASONAM.2010.17
http://dblp.uni-trier.de/db/journals/corr/corr1305.html#abs-1305-2006
http://dblp.uni-trier.de/db/journals/corr/corr1305.html#abs-1305-2006
http://dblp.uni-trier.de/db/journals/corr/corr1305.html#abs-1305-2006
http://dblp.uni-trier.de/db/journals/corr/corr1305.html#abs-1305-2006

[22] J. Xie, B. K. Szymanski, Labelrank: A stabilized label propagation algo-

rithm for community detection in networks, CoRR abs/1303.0868.

URL http://arxiv.org/abs/1303.0868

[23] J. Xie, B. K. Szymanski, Community detection using A neighborhood

strength driven label propagation algorithm, CoRR abs/1105.3264.

URL http://arxiv.org/abs/1105.3264

[24] N. P. Nguyen, T. N. Dinh, S. Tokala, M. T. Thai, Overlapping commu-

nities in dynamic networks: Their detection and mobile applications, in:

Proceedings of the 17th Annual International Conference on Mobile Com-

puting and Networking, MobiCom ’11, ACM, New York, NY, USA, 2011,

pp. 85–96. doi:10.1145/2030613.2030624.

URL http://doi.acm.org/10.1145/2030613.2030624

[25] R. Cazabet, F. Amblard, Simulate to detect: A multi-agent system for

community detection, in: Proceedings of the 2011 IEEE/WIC/ACM Inter-

national Conference on Intelligent Agent Technology, IAT 2011, Campus

Scientifique de la Doua, Lyon, France, August 22-27, 2011, 2011, pp. 402–

408. doi:10.1109/WI-IAT.2011.50.

URL https://doi.org/10.1109/WI-IAT.2011.50

[26] G. Rossetti, L. Pappalardo, D. Pedreschi, F. Giannotti, Tiles: an online

algorithm for community discovery in dynamic social networks, Machine

Learning (2016) 1–29doi:10.1007/s10994-016-5582-8.

URL http://dx.doi.org/10.1007/s10994-016-5582-8

[27] P. Holme, J. Saramäki, Temporal networks, Physics Reports 519 (3) (2012)

97–125.

[28] A. Lancichinetti, S. Fortunato, Community detection algorithms: a com-

parative analysis, arXiv e-print 0908.1062, physical Review E 80, 056117

(2009) (Aug. 2009).

URL http://arxiv.org/abs/0908.1062

30

http://arxiv.org/abs/1303.0868
http://arxiv.org/abs/1303.0868
http://arxiv.org/abs/1303.0868
http://arxiv.org/abs/1105.3264
http://arxiv.org/abs/1105.3264
http://arxiv.org/abs/1105.3264
http://doi.acm.org/10.1145/2030613.2030624
http://doi.acm.org/10.1145/2030613.2030624
http://dx.doi.org/10.1145/2030613.2030624
http://doi.acm.org/10.1145/2030613.2030624
https://doi.org/10.1109/WI-IAT.2011.50
https://doi.org/10.1109/WI-IAT.2011.50
http://dx.doi.org/10.1109/WI-IAT.2011.50
https://doi.org/10.1109/WI-IAT.2011.50
http://dx.doi.org/10.1007/s10994-016-5582-8
http://dx.doi.org/10.1007/s10994-016-5582-8
http://dx.doi.org/10.1007/s10994-016-5582-8
http://dx.doi.org/10.1007/s10994-016-5582-8
http://arxiv.org/abs/0908.1062
http://arxiv.org/abs/0908.1062
http://arxiv.org/abs/0908.1062

[29] L. Danon, A. Dı́az-Guilera, J. Duch, A. Arenas, Comparing community

structure identification, Journal of Statistical Mechanics: Theory and Ex-

periment 2005 (2005) P09008.

[30] A. Lancichinetti, S. Fortunato, J. Kertesz, Detecting the overlapping

and hierarchical community structure of complex networks, ArXiv E-

printsarXiv:0802.1218.

[31] J. Fournet, A. Barrat, Contact patterns among high school students, PLoS

ONE 9 (9) (2014) e107878. doi:10.1371/journal.pone.0107878.

URL http://dx.doi.org/10.1371%2Fjournal.pone.0107878

31

http://arxiv.org/abs/0802.1218
http://dx.doi.org/10.1371%2Fjournal.pone.0107878
http://dx.doi.org/10.1371/journal.pone.0107878
http://dx.doi.org/10.1371%2Fjournal.pone.0107878

Appendices

This Appendix contains the algorithms defining the OCPM and OLCPM meth-

ods.

32

input : K,G,AC,DC, SE

output: Update AC,DC,G

1 for ev ∈ SE do

2 switch e do

3 case Add Node do

4 V ← V ∪ {n};

5 break;

6 end

7 case Add Edge do

8 E ← E ∪ {(i, j)};

9 if (Ci 6= ∅)or(Cj 6= ∅) then

10 AddNonExternalEdge(i, j, t, AC,DC,G);

11 else

12 AddExtrenalEdge(i, j, t, AC,G);

13 end

14 break;

15 end

16 case Remove Node do

17 V ← V \{n};

18 E ← E\{∀(i, j), i = n or j = n};

19 if (Cn 6= ∅) then

20 RemoveInternalNode(n, t, AC,DC,G);

21 end

22 break;

23 end

24 case Remove Edge do

25 E ← E\{(i, j)};

26 if (Ci ∩ Cj 6= ∅) then

27 RemoveIntrnalEdge(i, j, t, AC,DC,G);

28 end

29 break;

30 end

31 end

32 end

Algorithm 1: Online Clique Percollation Method (OCPM)

33

input : i, j, t, AC,DC,G

output: Update AC,DC

1 KC ← KCliques({i, j}, G);

2 KC′ ← {kcl ∈ KC,∀cm ∈ AC, kcl * cm};

3 AKC ← AdjKCliques(KC′);

4 for c ∈ AKC do

5 Cc ← {};

6 for e ∈ c do

7 Cc ← Cc ∪ {Ce};

8 end

9 AdjC ← {};

10 for cm ∈ Cc do

11 if |cm ∩ c| > K − 1 then

12 AdjC ← AdjC ∪ {cm};

13 end

14 end

15 if AdjC 6= ∅ then

16 for cm ∈ AdjC do

17 Growth(cm, c,AC);

18 end

19 if |AdjC| > 1 then

20 Merge(AdjC, t, AC,DC);

21 end

22 else

23 Birth(c, t, AC);

24 end

25 end

Algorithm 2: Add Non-External Edge

34

input : i, j, t, AC,G

output: Update AC

1 KC ← KCliques({i, j}, G);

2 AKC ← AdjKCliques(KC);

3 for c ∈ AKC do

4 Birth(c, t, AC);

5 end

Algorithm 3: Add External Edge

input : n, t, AC,DC,G

output: Update AC,DC

1 for c ∈ Cn do

2 KC ← KCliques(c,G);

3 if KC = ∅ then

4 Death(c, t, AC,DC);

5 else

6 Shrink(c, n,AC);

7 Split(c, t, AC,G);

8 end

9 end

Algorithm 4: Remove Internal Node

35

input : i, j, t, AC,DC,G

output: Update AC,DC

1 for c ∈ Cij = {∀cm, cm ∈ (Ci ∩ Cj)} do

2 KC ← KCliques(c,G);

3 if KC = ∅ then

4 Death(c, t, AC,DC);

5 else

6 Split(c, t, AC,G);

7 end

8 end

Algorithm 5: Remove Internal edge

input : SN :Set of nodes,G

output: SKC: Set of Set of nodes

1 for n ∈ SN do

2 N ← Neighbors(n,G);

3 L← L ∪ {N};

4 end

5 CN ← ∩l∈Ll;

6 SCL←MaximalCliques(CN,K);

Algorithm 6: KCliques

36

input : Adjc, t, AC,DC

output: UpdateAC,DC

1 mc← c, |c| = maxx∈Adjc|x|;

2 Adjc← Adjc\{mc};

3 mc← ∪x∈Adjc x;

4 for x ∈ Adjc do

5 Death(c, t, AC,DC);

6 end

Algorithm 7: Merge

input : c, t, AC,G

output: UpdateAC

1 KCc← KCliques(c,G);

2 Adjc← AKCliques(KCc);

3 c← mc, |mc| = maxx∈Adjc|x|;

4 Adjc← Adjc\{c};

5 for cm ∈ Adjc do

6 Birth(cm, t, AC);

7 end

Algorithm 8: Split

37

input : AC,G

output: UpdateAC

1 PN ← {n, n ∈ c∀c ∈ AC};

2 //Label spreading

3 for c ∈ AC do

4 d← 1;

5 S ← c;

6 x:N ← Nieghbors(S);

7 N ← N ∩ PN ;

8 if N 6= ∅ then

9 for n ∈ N do

10 Label(n, c.id, d);

11 end

12 S ← N ;

13 d← d+ 1;

14 goto x:

15 end

16 end

17 //label Analyses

18 for n ∈ PN do

19 idc← LabelAnalysis(n.label);

20 Growth(idc, n);

21 end

Algorithm 9: OLCPM

38

	Introduction
	Rationale for an online version of the Clique Percolation Method

	Related work
	Dynamic Network Model
	Stream graph

	OLCPM Framework
	OCPM: Online Clique Percolation Method
	Definition of the OCPM algorithm
	Complexity of the algorithm
	Community tracking process

	OLCPM: Online Label propagation CPM
	OLCPM algorithm

	Experiments
	Measuring OCPM complexity gain for highly dynamic networks
	Generation of dynamic networks with community structure
	Experimental process

	Measuring OLCPM communities quality
	Static Synthetic networks
	Dynamic Real-world networks

	Conclusion

