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Abstract 

     A circular object placed on a rotating turntable demonstrates an interesting motion. Such motion 

consists of the rolling object exhibiting a spiral motion with increasing radius and the center of the 

spiral drifting towards the center of the turntable. This paper suggests a novel approach to the 

dynamics of the motion when the contact between the cylindrical rolling object and the turntable 

is a line. Under an assumption that the rolling objects contact point with the turntable is quasistatic, 

this paper approximates a theoretical model to solve for the maximum radius of the spiral orbit 

and the frequency of such circular motion. The theoretical model will include the effect of various 

parameters on the motion, such as, the coefficient of rolling friction, the coefficient of kinetic 

friction, the coefficient of pivoting friction and the geometry of the rolling object. 



I. INTRODUCTION

The motion of a rolling object, when placed on a rotating turntable, is complicated at

first sight, but analyzable. Some authors1–5 proved that the ball would execute a constant

circular motion, under the assumption that the static friction is applied to the ball. However,

this assumption cannot be held accountable for experimental results because the presence of

kinetic friction is inevitable on a rapidly rotating turntable. Through this realistic approach,

Weltner proved the center of the circular motion of the ball drifts towards the center of the

turntable due to the presence of rolling friction2, and Ehrlich solved the ball will follow a

certain circular trajectory with gradually increasing radii when the ball slips6. As depicted

by Fig. 1, the objects draw a spiral trajectory.

FIG. 1: Explanation of the motion of the rolling object : description of variable Rmax , the

maximum radius of the non-slipping stage, and the movement of the rolling object towards

the center of the turntable.

Ehrlich extended the analysis of the balls motion by exploring the transition between
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rolling with and without slipping.6 Before the transition from a non-slip condition to a

slipping condition, the ball continues the spiral (divergent) motion in constant frequency.

However, after the transition, the frequency of the motion changes and the ball notably

slips.

Although the contact part between the ball and the turntable is a point, the contacting

region between the cylindrical rolling objects, such as a ring or a disc, and the turntable is

a line. In addition, the discs have fixed axis of rotation. Therefore, the motion of the disc is

far more complicated than the motion of the ball. Some authors studied about the dynam-

ics of the rolling and sliding discs on a non-rotating surface.9–13 Also, previous researches

handled the energy dissipation of the disc due to the pivoting friction.14–17 Pivoting friction

applies torque at the opposite direction of the z axis rotation to decrease the z axis angular

momentum.

Moreover, while preceding researches are focused on the rolling object on a turntable

as a ball or just a simple motion of a disc, such as its rotation and precession on a fixed

surface, we also analyzed the motion of a disc and a ring as a rolling object on a turntable.

The various geometry of the rolling object was then taken into account with the normalized

moment of inertia to explicate the motion of the different rolling objects.

In addition, previous research papers1–8 lack the quantitative experimental verification of

their theoretical model. One paper6 does contain qualitative data obtained from simulations,

but only to a certain limit where it cannot be thoroughly compared in contrast to the

observed motion.

In order to verify the theory, and for a firm grasp of the idea of the motion itself, this paper

corroborates the theoretical approach through experiments, unlike preceding researches. The

measured variables chosen to be researched in this paper are the frequency of the objects

circular motion and the maximum radius of the objects orbit (refer to Fig. 1), which varies

under change of the geometry of the object, the frequency of the turntable, and the coefficient

of friction. The maximum radius of the orbit is the radius of the circular motion just before

the transition into the slipping stage. Reasons for such variance will be elaborated in the

following sections.
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II. THE EQUATIONS OF MOTION

We derive the equations of motion about the rolling object on a turntable rotating at a

constant frequency. Two theoretical models describe two different motions:

(A) Model that describe the motion of the rolling object with a contact point, such as a

ball or a sphere.

(B) Model that describe the motion of the rolling object with a contact line, such as a

ring, a disc, or a cylinder.

The suggested models (A) and (B) refer to kinetic friction model for contact point and

kinetic friction model for contact line.

A. Kinetic Friction Model for Contact Point

In order to analyze the motion of the rolling object in the presence of kinetic friction, we

derive the equations of motion in an inertial frame of reference with its origin at the center

of the turntable. The kinetic friction acts to decrease the momentum of the contact point

between the rolling object and the turntable.

The equation of the motion of the center of mass is written as

∑
~F = m~̇vf = −µmgv̂re (1)

The relative velocity between the bottom of the rolling object and the surface of the turntable

is expressed as

~vre = ~vf + ω ×
(
−ak̂

)
− Ωk̂ × ~r (2)

The kinetic friction in this system also produces a torque about the center of mass of the

rolling object. The torque produced by kinetic friction is

~τk =
(
−ak̂

)
× (−µmgv̂re) (3)

In addition to kinetic friction, this model considers the rolling friction. The rolling friction

is caused by three factors: the deformation of the rolling object, the collision of micro-level

bumps between the rolling object and the turntable, and the adhesion between the rolling

object and the turntable.5 The torque created by rolling friction is assumed to decrease the
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TABLE I: Summary of nomenclature

~r Position vector of the rolling object

l Rotational axis of the rolling object parallel to xy plane

~vf Velocity in fixed coordinate

~vr Velocity in rotational coordinate

~vre Relative velocity between a point at the bottom of the rolling object and the turntable

m Mass of the rolling object

ρ Density of the rolling object

a Radius of the rolling object

θz Z axis angular displacement(Angle between l̂ and x̂)

~ω Angular velocity of the rolling object

~ωz Z axis angular velocity of the rolling object

I Moment of intertia of the rolling object

Il Moment of inertia of the rolling object about l axis

Iz Moment of inertia of the rolling object about z axis

I ′ Normalized Moment of inertia of the rolling object

Ω Magnitude of angular velocity of the turntable

k̂ Unit vector pointing upward from the turntable

µ Coefficient of kinetic friction

g Gravitational acceleration

β Coefficient of rolling friction

k Coefficient of pivoting friction

angular momentum of the rolling object with a constant magnitude. The rolling friction

torque is then defined as

~τr = −βmgaω̂ (4)

Therefore, the dynamic equation for the rotation of the rolling object is written as

∑
~τ = I~̇ω =

(
−ak̂

)
× (−µmgv̂re)− βmgaω̂ (5)
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By rearranging Eq. (1) and Eq. (5), we get two final equations as below

~̇vf = −µgv̂re (6)

~̇ω =
µmgak̂ × v̂re − βmgaω̂

I
(7)

In addition to the kinetic friction model, we can analyze the divergent motion using the

characteristics of the contact point between the rolling object and the turntable. This paper

defines a divergent motion as a spiral motion with an increasing radius. When the rolling

object is in its non-slipping stage, the objects contact point is during its divergent motion.6

Then the velocity of the rolling object with a quasistatic contact point is expressed as

~vrel = ~ω × ak̂ (1 + δ) + Ωk̂ × ~r ≈ ~ω × ak̂ + Ωk̂ × ~r (8)

where δ is an infinitesimal. With Eq. (8) we could approximate the spiral motion of

the rolling object as a quasicircular motion with a quasistatic contact point. With this

approximation, the model explains the frequency of the circular spiral motion of the rolling

object and the maximum radius of the orbit, the radius of the circular orbit just before the

transition to the slipping stage.

By substituting Eq. (6) in Eq. (7), we obtain

~̇ω =
amk̂ × ~̇vf − βmgaω̂

I
(9)

Because the magnitude of torque produced by rolling friction is negligible compared to the

magnitude of torque produced by kinetic friction, we approximate ~̇ω as

~̇ω =
amk̂ × ~̇vf

I
(10)

Combining Eq. (10) and the time derivative of Eq. (8)
(
~̇vf ≈ ~̇ω × ak̂ + Ωk̂ × ~vf

)
, we obtain

the equation of the motion
I +ma2

I
~̇vf − Ωk̂ × ~vf = 0 (11)

In this phenomenon of an object rolling on a turntable, the moment of inertia does not give

the true information about the geometry of the object. On that account, we introduce a

new variable, normalized moment of inertia I ′, which is defined as follows:

I ′ =
I

ma2
(12)
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By arranging Eq. (11) about ~̇vfand substituting Eq. (12), we get the equation of motion in

terms of the normalized moment of inertia as

~̇vf =
I ′

I ′ + 1
Ωk̂ × ~vf (13)

Eq. (13) is an equation of a circular motion with angular velocity

Ω′ =
I ′

I ′ + 1
Ω (14)

If we denote the maximum radius of the orbit as Rmax , the transition between the non-

slipping stage and the slipping stage occurs when centrifugal force equates to the kinetic

friction force as

mΩ′2Rmax = µmg (15)

By arranging Eq. (15) about Rmax and substituting Eq. (14), we attain the general equation

about Rmax

Rmax = µg

(
I ′ + 1

I ′Ω

)2

(16)

B. Kinetic Friction Model for Contact Line

We derive the equations of motion in an inertial frame of reference with its origin at

the center of the turntable. To analyze the motion of the cylindrical rolling object with a

contact line on the turntable, such as disc, ring, or cylinder, we derive the force equation,

the net torque about the l axis and the net torque equation about the z axis. Because

the contact part between the rolling object and the turntable is a line, the direction of the

kinetic friction is different for each part of the contact points. Therefore, we should consider

each infinitesimal parts, dm, of the disc to calculate the kinetic friction force.

The kinetic friction force is

~F = m~̇vf =

∫
d~F = −

∫
µgv̂redm = −

∫ d/2

−d/2
µgρπa2v̂redl (17)

Considering the z axis rotation, the relative velocity between a point on the contact line and

the surface of the turntable is expressed as

~vre = ~vf + ~ω ×
(
−ak̂

)
− Ωk̂ ×

(
~r +~l

)
+ ~ωz ×~l (18)
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FIG. 2: Explanation of the system of disc rolling on the turntable: description of l axis, z

axis, and contact line.

or using unit vectors, the relative velocity can also be expressed as

~vre = (ẋ− lωz sin θz − aω sin θz + (y + l sin θz) Ω) î

+ (ẏ + lωz cos θz + aω cos θz − (x+ l cos θz) Ω) ĵ (19)

The kinetic friction and rolling friction applied on the object also produce the torque

about the l axis. Because we only account for the rotation about l axis in this torque

equation, the torque is produced by the component of the force perpendicular to l axis. The

equation of the net torque about the l axis can be modeled as∑
~τ = Il~̇ω =

(
−ak̂

)
×
(
l̂ × ~F × l̂

)
− βmgaω̂

=
(
−ak̂

)
×

(
l̂ ×

(
−
∫ d/2

−d/2
µgρπa2v̂redl

)
× l̂

)
− βmgaω̂ (20)

or using trigonometry, net torque equation about l axis can also be expressed as∑
~τ = amv̇f sin

(
arctan

ÿ

ẍ
− θz

)
l̂ − βmgaω̂ (21)
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In addition, the kinetic friction and pivoting friction torque applied on the object produce

the torque about the z axis. The torque produced by kinetic friction is expressed as

~τ = Iz~̇ω =

∫
~l×d~F = −

∫ d/2

−d/2

~l × µgρπa2v̂redl (22)

According to the results of previous studies16,17, the pivoting friction is approximately defined

as

τp = −kmgω̂z (23)

Therefore, the net torque equation of z axis is written as

τz = Iz ~̇ωz = −
∫ d/2

−d/2

~l × µgρπa2v̂redl − kmgω̂z (24)

or using trigonometry, the net torque equation of z axis can be expressed as∑
~τz = −

(∫ d/2

−d/2
lµgρπa2 | v̂re | sin

(
arctan

ÿ

ẍ
− θz

)
dl

)
ẑ − kmgω̂z (25)

By combining Eq. (17), Eq. (21), Eq. (25), we can solve for the motion of the rolling object

with contact line on the turntable.

Using the equations of the motion, we can analyze the divergent motion of the rolling

object with a contact line. We assume that the rolling object is quasistatic during its

divergent motion and the rolling object is thin enough to suppose that the kinetic friction

applied on each points on the contact line has a consistent direction. Because the direction

of the kinetic friction on each points is consistent, the net torque about z axis is negligible,

so that

~F = m~̇vf = −
∫ d/2

−d/2
µgρπa2v̂redl ≈ −µmgv̂re (26)

∑
~τz = Iz ~̇ωz = −

∫ d/2

−d/2

~l × µgρπa2v̂redl − kmgω̂z ≈ 0 (27)

Assuming that initially θz ≈ 0 and ωz ≈ 0, the y component velocity of the rolling object

when the contact point is quasistatic is expressed as

~̇y = ~ω × ak̂ (1 + δ) + Ωk̂ × ~y ≈ ~ω × a~k + Ωk̂ × ~y (28)

when δ is an infinitesimal. Since θz ≈ 0 and rolling friction is negligible compared to the

torque applied by kinetic friction,∑
~τ = Il~̇ω = amv̇f sin

(
arctan

ÿ

ẍ
− θz

)
l̂ − βmgaω̂ ≈ amv̇f sin

(
arctan

ÿ

ẍ

)
l̂ (29)
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Because mv̇f sin
(
arctan ÿ

ẍ

)
is y component of the net force,

mv̇f sin

(
arctan

ÿ

ẍ

)
= Fy = mÿ (30)

Using Eq. (28) and Eq. (29), we can arrange the equation about angular acceleration:

~̇ω =
amÿ

Il
l̂ (31)

Combining Eq. (31) and the time derivative of Eq. (28)(~̈y ≈ ~̇ω×ak̂+Ωk̂× ~̇y), we can obtain

~̈y =
Il

Il +ma2
Ωk̂ × ~̇y (32)

Using the normalized moment of intertia I ′, we can rewrite Eq. (32) as

~̈y =
I ′

I ′ + 1
Ωk̂ × ~̇y (33)

Eq. (33) is an equation of an oscillation with angular velocity Ω′ = I′

I′+1
Ω. Because the

circular motion is observed through the rolling motion of the object with contact line, we can

conclude that the rolling object executes circular motion with angular velocity Ω′ = I′

I′+1
Ω,

which is analogous to the circular motion of the ball. The transition between the non-

slipping stage and slipping stage occurs at Rmax, when centrifugal force equates to kinetic

friction force as

mΩ′2Rmax =

∫ d/2

−d/2
µgρπa2v̂redl ≈ µmgv̂re (34)

Therefore, Rmax is approximately expressed as Eq. (16).

III. COMPUTER SIMULATION

To calculate the trajectory of motion of the rolling object, we use the Ordinary Differential

Equation (ODE) solvers in MATLAB. We employ ode 113, which solves non-stiff differential

equations by using a variable order method.

By employing Eq. (6) and Eq. (7), we can implement the computer simulation of kinetic

friction model for the contact point. By separating the equations using unit vectors, we

obtain the following four equations:

ẍ =
−µg (ẋ− aωy + Ωy)√

(ẋ− aωy + Ωy)2 + (ẏ + aωx − Ωx)2
(35)
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ÿ =
−µg (ẏ − aωx + Ωx)√

(ẋ− aωy + Ωy)2 + (ẏ + aωx − Ωx)2
(36)

ω̇x = −mga
I

 −µ (ẏ − aωx + Ωx)√
(ẋ− aωy + Ωy)2 + (ẏ + aωx − Ωx)2

+
βωx√
ω2
x + ω2

y

 (37)

ω̇y =
mga

I

 −µ (ẋ− aωy + Ωy)√
(ẋ− aωy + Ωy)2 + (ẏ + aωx − Ωx)2

− βωy√
ω2
x + ω2

y

 (38)

Using Eq. (36), Eq. (37), Eq. (38) and Eq. (39), we solve the differential equation using

ODE solvers in MATLAB, thereby enabling computer simulations.

The radius of the turntable was set as 5.5m and the angular velocity of the turntable was

set as 20rad/s. For convenience, we set the default setting of the rolling object as a ball with

a radius 1m and mass 1kg and the initial position as 5m from the center of the turntable.

In addition, the default value of the coefficient of rolling friction is 0.01 and default value of

the coefficient of kinetic friction is 0.5. We change the dimensionless constants, such as the

coefficient of kinetic friction, the coefficient of rolling friction, and the normalized moment

of inertia, of the system.

We set the initial velocity to be 0 in the lab frame, the initial motion of the ball to be

significantly close to a non-slipping condition, and the initial angular velocity of the ball

close to 100rad/s. For convenience purposes, the initial angular velocity of the simulation

while changing the coefficient of rolling friction and kinetic friction was 102.5rad/s and the

initial angular velocity of the simulation while changing the normalized moment of inertia

was 101rad/s.

Simulations while changing the dimensionless constants (coefficient of kinetic friction,

coefficient of rolling friction and normalized moment of inertia) were executed in order to

observe the various effects that they have on the motion of the rolling object. The simulations

while changing the coefficient of rolling friction and kinetic friction was executed for 25

seconds and the simulation while changing the normalized moment of inertia was executed

for 50 seconds. The result of the simulations were drawn onto a quarter of the turntable,

with the trajectory line of the rolling object represented in Fig. (3)-(8).

From the simulation, it was observed that the frequency of the circular motion, the

maximum radius, and the time taken for the transition between the non-slip and slipping

condition are independent with the alteration of the coefficient of rolling friction. However,
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(a) (b) (c)

FIG. 3: Computer simulation of the motion while changing the coefficient of rolling

friction. The computer outputs are gained through the ODE solver is plotted in the

Cartesian coordinate. A quarter of the turntable with its edge is drawn as a dotted curve,

and the trajectory of the rolling object, as a solid line, on the graph. The coefficient of

rolling friction is (a) 0, (b) 0.01, and (c) 0.03. The simulation is executed for 25 seconds.

(a) (b) (c)

FIG. 4: Magnified image of Fig. 3. The center of the circular motion drifted more towards

the center of the turntable, as the coefficient of rolling friction increased.

as the coefficient of rolling friction was increased, the rate of the center of the circular motion

drifting towards the center of the turntable increases. When rolling friction is not applied

to the system, the circular motion was concentric.

In the system of a rolling ball on a turntable, kinetic friction is the force that enables

the circular motion, and can be identified as the main force in the system. According to

the simulation, the frequency of the circular motion was independent to the coefficient of

kinetic friction in the system. On the other hand, kinetic friction had a close relation to
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(a) (b) (c)

FIG. 5: Computer simulation of the motion while changing the coefficient of kinetic

friction. The computer outputs are gained through the ODE solver is plotted in the

Cartesian coordinate. A quarter of the turntable with its edge is drawn as a dotted curve,

and the trajectory of the rolling object, as a solid line, on the graph. The coefficient of

kinetic friction is (a) 0, (b) 0.3, and (c) 0.5. The simulation is executed for 25 seconds.

(a) (b) (c)

FIG. 6: Magnified image of Fig. 5. The transition between the non-slip and slipping

condition took longer as the coefficient of kinetic friction increased.

the transition between the non-slip and slipping condition. Because the transition between

rolling with and without slipping occurs when the centrifugal force exceeds the kinetic friction

force, the rolling object with a greater coefficient of kinetic friction executes a non-slip motion

for a longer period of time and the maximum radius of the orbit increases. The simulations

exhibit the transition at the maximum radius of the orbit as theoretically suggested in Eq.

(16). As the coefficient of kinetic friction was increased, the rolling object sustained the

motion without slipping for longer period.
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(a) (b) (c)

FIG. 7: Computer simulation of the motion while changing normalized moment of inertia.

The computer outputs are gained through the ODE solver is plotted in the Cartesian

coordinate. A quarter of the turntable with its edge is drawn as a dotted curve, and the

trajectory of the rolling object, as a solid line, on the graph. The normalized moment of

inertia is (a) 2/5, (b) 2/3, and (c) 1. The simulation is executed for 50 seconds.

(a) (b) (c)

FIG. 8: Magnified image of Fig. 7. The maximum radius before slipping decreased and

frequency of the motion increases as normalized moment of inertia increased.

As the normalized moment of inertia increases, maximum radius of the orbit decreases

and the frequency of the circular motion, before the transition to slipping motion, increases.

The maximum radius of the orbit and frequency of the circular motion analyzed through

the simulations follow the suggested model of Eq. (14) and Eq. (16).

The time intervals between the local maxima are equivalent before the ball starts to

slip. Therefore, the circular motion without slipping has constant frequency as theoretically

solved in Eq. (14). After the maximum radius of the orbit, we can observe that the frequency
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FIG. 9: Computer simulation of x-t graph of the motion. Approximately at 9 second, the

frequency of the motion is altered and the distance from the turntable diverges. Before,

the frequency of the motion is constant, and the radius of the motion increased gradually.

of the motion changes drastically. The frequency of the motion decreases drastically after

the transition between rolling with and without slipping.

The simulation of the kinetic friction model executed a spiral motion with its radius in-

creasing and the center of the circular motion drifting towards the center of the turntable.

In addition, after a certain period, the rolling object is expelled from the turntable after

it starts slipping. Because the precision of the initial condition is inevitably limited, the

simulated trajectory cannot be identical to the experimental trajectory. However, the dis-

tance from the center of the turntable to the contact point can be used to measure Rmax.

The difference of the local maximum and the local minimum, which are adjacent, should be

largest before the ball escapes. We define Rmax of our computed or measured trajectory as

half of the largest difference. We note that our definition correctly reproduces Rmax for an

ideal circular orbit. The apparent period and frequency of the motion can be obtained by

projecting the trajectory onto one dimension of the plane of the turntable.
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FIG. 10: Observation of the motion. The data was obtained through tracking the ball with

the interval of 1/24 second. The initial position was 0.1m from the center of the turntable.

The transition between rolling with and without slipping is observable.

IV. EXPERIMENTAL APPROACH

A. Methodology

Before the main experiments, we executed preliminary experiments to measure the coef-

ficient of kinetic friction and the normalized moment of inertia. We measured the coefficient

of kinetic friction between the rolling object and the surfaces of three different turntables by

analyzing the motion of a steel ball without rolling on the inclined plane with an equivalent

surface. The coefficient of kinetic friction between the steel ball and the vinyl coated paper is

0.7194, aluminum foil is 0.7016, and the acrylic plate is 0.6750. We measured the normalized

moment of inertia of four rolling objects through the analysis of the non-slipping rotating

motion of the rolling objects on the inclined plane. The normalized moment of inertia of the
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ball is 0.4013, the disc is 0.4412, ring 1 is 0.5812, and ring 2 is 0.6679. We used a turntable

of radius 20cm connected to a DC supplier and recorded the motion using video camera

(Samsung Electronics, model HMX-S16). We initially fixed the position of the rolling object

inside the lab frame to approximately execute a non-slipping rotation. We executed video

analysis using software Tracker. We manually measured the maximum radius of the orbit by

the method shown above and without slipping and frequency by calculating the difference

between the local maxima in the x - t graph. We did ten experiments per each data points.

B. Experimental Results

FIG. 11: X time graph of the observed motion. The observation is analogous with the

simulation results of Fig. 9. The frequency is approximately constant before the transition

between rolling with and without slipping, and the distance from the turntable diverges

after the transition.

Although a perfect match of the experimental results and theoretic predictions is impos-

sible due to the inevitably limited precision of initial conditions, the comparison between

Fig. 9 and Fig. 11 shows that the characteristics of the motion in both experiments and

computer simulations were very similar to each other. The time intervals between the local

maxima and the frequency of the motion before the transition between rolling with and
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(a) (b)

FIG. 12: Experimental data for Rmax of the motion of a steel ball with different type of

turntable surfaces. The theoretic predictions for Rmax of the motion on the vinyl coated

turntable is a solid curve, aluminum foil surface is a dashed curve, and the acrylic plate

turntable is a dotted curve. The experimental results match the theoretic results from Eq.

(16): diamond for the vinyl coated turntable, square for the aluminium foil turntable, and

circle for the acrylic plate turntable. In (b), the experimental data are shown as

experimental results divided by theoretic predictions.

without slipping are equivalent and follow Eq. (14).

After the transition into a slipping motion, there is a drastic increase in both time intervals

between the local maxima and the rate of change in the radius of the motion is observed. Fig.

12 and Fig. 14 show that the experimental data fit very well into the theoretical projections

of Rmax of the motion from Eq. (16), with the R squared value over 0.97. Fig. 13 shows

that the experimental data fits well into the theoretical predictions of the motion based on

Eq. (14), with the R squared value over 0.98. Fig. 12 (b) and Fig 14 (b) show that when

experimental results are divided by theoretical predictions, the values are evenly distributed

near 1. The standard deviation is consistent; the model is equally precise over the range.

The tables below show that the actual value is included in the 95% confidence interval,

which proves that the actual values of constants are significantly equivalent to the fitted

value. From the experiments, it was proven that analyzing the divergent motion assuming

that the contact point between the turntable and the rolling object is quasistatic is viable.

18



FIG. 13: Experimental data for frequency of the motion on the turntable with acrylic plate

surface with various rolling objects. The theoretic predictions for frequency of the motion

of the ball is a solid line, disc is a dash-dot line, ring 1 is a dotted line, and ring 2 is a

dashed line. The experimental results match the theoretic results from Eq. (14): diamond

for ball, square for disc, circle for ring1, and x for ring2.

V. SUMMARY

The rolling object executes interesting motions when it is placed on a rotating turntable.

When the object is initially rolling without slipping, the object executes spiral motion with

its radius increasing and the center of the circular motion drifting towards the center of the

turntable. After certain period, the motion undergoes transition between rolling with and

without slipping. Using kinetic friction model for contact point and line, the motion of the

rolling object can be found numerically. Assuming the objects contact point is quasistatic,

we approximate the complex motion to circular motion through analyzing maximum radius

of the orbit and frequency of the motion.

Kinetic friction model for contact line is the only model that explains the complex dy-

namics of the disc, ring, and cylinder on the turntable. However, because the model is a

complex integro differential equation, the numerical solution is inaccurate and sometimes er-
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(a) (b)

FIG. 14: Experimental data for the Rmax of the motion on the turntable with an acrylic

plate surface with various rolling objects. The theoretic predictions for the Rmax of the

motion of the ball is a solid curve, disc is a dashed curve, ring 1 is a dotted curve, and ring

2 is a dash-dot curve. The experimental results match the theoretic results from Eq. (16):

circle for ball, x for disc, square for ring1, and diamond for ring2. In (b), the experimental

data are shown as experimental results divided by theoretic predictions.

roneous. Through approximation assuming that the rolling object is thin, better theoretical

approach is possible.

The novelty of this work is in studying the motion of disc in the dynamics of rolling on

the turntable, including its contact line and z axis rotation. An extension to this work would

be to execute thorough computer simulation for contact line model and theoretically project

the precession of the disc during the motion.
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Surface of the Turntable Actual Value Fitted Value 95% Confidence Interval

Vinyl Coated 0.7194 0.7252 (0.7098, 0.7406)

Aluminium Foil 0.7016 0.7074 (0.6950, 0.7199)

Acrylic Plate 0.6750 0.6772 (0.6607, 0.6936)

(a) Kinetic friction coefficient. Fitted value calculated through curve fitting experimental results

of Rmax in Fig. 12 (a) with Eq. (16).

Geometry of Rolling Object Actual Value Fitted Value 95% Confidence Interval

Ball 0.4013 0.4020 (0.3979, 0.4061)

Disc 0.4412 0.4379 (0.4336, 0.4423)

Ring 1 0.5812 0.5788 (0.5739, 0.5837)

Ring 2 0.6679 0.6715 (0.6641, 0.6789)

(b) Normalized moment of inertia. Fitted value calculated through curve fitting experimental

results of frequency of the motion in Fig. 13 with Eq. (14).

Geometry of Rolling Object Actual Value Fitted Value 95% Confidence Interval

Ball 0.4013 0.3996 (0.3915, 0.4078)

Disc 0.4412 0.4377 (0.4305, 0.4448)

Ring 1 0.5812 0.5709 (0.5551, 0.5867)

Ring 2 0.6679 0.6709 (0.6580, 0.6838)

(c) Normalized moment of inertia. Fitted value calculated through curve fitting experimental

results of Rmax in Fig. 14 (a) with Eq. (16).

TABLE II: The comparison between the actual value and the fitted value obtained from

curve fitting the experimental results. In (a), we compared the actual value and the fitted

value of the kinetic friction coefficient between the steel ball and the turntable. In (b) and

(c), we compare the actual value and the fitted value of the normalized moment of inertia

of the rolling objects.
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