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An efficient and accurate formalism for the treatment of large amplitude
intramolecular motion.

G. Reinisch, K. Miki, G. L. Vignoles, B. M. Wong

We propose a general approach to describe Large Am-
plitude Motions (LAM) with multiple Degrees Of Free-
dom (DOF) in molecules or reaction intermediates, which
is useful for the computation of thermochemical or ki-
netic data. The kinetic part of the LAM Lagrangian is
derived using a Z-matrix internal coordinate representa-
tion within a new numerical procedure. This derivation is
exact for a classical system, and the uncertainties on the
prediction of observable quantities largely arise from un-
certainties on the LAM Potential Energy Surface (PES).
In order to rigorously account for these uncertainties, we
present an approach based on Bayesian theory to infer a
parametrized physical model of the PES using ab initio
calculations. This framework allows a quantification of
uncertainties associated with a PES model, as well as a
propagation scheme for the final quantity of interest. A
selection and generalization of some treatments account-
ing for the coupling of the LAM with other internal or
external degrees of freedom are also presented. Finally,
we discuss and validate the approach with two applica-
tions: the calculation of the partition function of the
1,3-butadiene, and the calculation of the high-pressure
reaction rate of the CH3 +H → CH4 recombination.

I. INTRODUCTION

Quantum chemical methods, as implemented in many
software packages1,2, nowadays allow for routine calcu-
lations of various properties of molecules. Among them,
thermodynamic and kinetic data are crucial for the un-
derstanding and prediction of chemical processes3.

A reliable prediction of such properties requires tack-
ling two main issues. First, it is necessary to calculate
accurate molecular energies at least for some specific ge-
ometries defining the energetic minima (stable states)
and saddle points (Transition States, TS) on the Po-
tential Energy Surface (PES). Modern ab-initio meth-
ods are well-adapted and efficient in addressing these
issues. A second issue arises when one wishes to com-
pute temperature-dependent properties (entropies, heat
capacities, reaction rates) for which Densities Of States
(DOS) and/or partition functions need to be computed.
This is usually achieved using the simple Rigid Rotor
Harmonic Oscillator (RRHO) approximation. Indeed,
most of the internal vibrations are of small amplitude and
are very well described under this approximation. How-
ever, it has been shown long ago that these approxima-
tions fail when large amplitude motions are involved4,5,
and a rigorous treatment is often required if an accu-
rate prediction of statistical properties is required6–8.
This is particularly the case when a torsional motion is

present7,9–11 or when a loose transition state is involved
in a dissociation/recombination reaction12–14. Numerous
studies have been dedicated to the development of sta-
tistical methods in the context of one or the other appli-
cation, while, to our knowledge, none has been presented
for the general case. In cases of torsional motions, the
proposed treatments are usually derived from the one-
dimensional hindered rotor (1DHR) model, originally
proposed by Pitzer et.al.4. Recent studies7,9,11 show the
importance of a rigorous treatment, where quantum ef-
fects, mutidimensionality, as well as coupling with other
internal or external motions, can have a non-negligible
influence. In the context of dissociation reactions involv-
ing a loose complex, 2- to 5-dimensional large amplitude
motions need to be described. Analytical expressions for
the kinetic energy of two rigid counterparts have already
been derived in previous work12,13,15, and it has been
shown that this formalism gives a very good approxi-
mation of the reaction rate, as long as the used PES is
determined with a high level of accuracy12,16,17.

Since the kinetic energy operator has an analytic form,
the main and most critical issue involved in studies
of large amplitude motion is the determination of the
PES18,19. Even though first principle calculations have
proven their ability to yield accurate electronic ener-
gies, their computational cost does not generally allow
for on-the-fly calculations20and, therefore, an appropri-
ate interpolation method has to be used20,21. Three ap-
proaches can be distinguished: (i) local (or weighted)
interpolation19,22–24, (ii) global (or non-weighted) in-
terpolation by a set of mathematical functions16,25,26,
and (iii) global interpolation by a parametrized phys-
ical model27–30. The first two solutions are general in
principle but tedious to set up in practice when the di-
mension of the problem increases. The practical issues
involved, along with the large amount of ab initio energy
computations required, are important limitations to their
utilization. The third solution is a global interpolation by
a parametrized physical model of the interaction energy,
and is widely referred to as a ’force field’. This particular
formalism is extensively used to study the dynamics of
large atomic systems31–33. Explicit introduction of the
physical contributions to the interaction energy allows
for a considerable decrease in the amount of informa-
tion required to set up the model. However, because this
simplification can introduce large model errors, it is of
primary importance to estimate the confidence expected
on a final Quantity of Interest (QoI). Only very recently
has this issue been addressed by Cailliez and Pernot34.
By using a Bayesian approach, they have calculated the
parameter uncertainties associated with a Van der Waals
type PES, and have evaluated their influence on the un-
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certainties for the thermodynamic data. A major conclu-
sion of their work is that the PES model error is indeed
a critical feature when one wants to predict thermody-
namic properties.

The purpose of this paper is twofold. First, we present
a general procedure based on a Bayesian framework to in-
fer a system-specific force field. This procedure allows the
computation of Probability Density Functions (PDFs) of
the model parameters using a set of ab initio data, and
also allows their propagatation to the desired QoI (here,
partition function or reaction rate). The other concern
of this paper is the presentation of a general approach
for characterizing the statistical properties of an LAM.
The restriction of previous methods to specific types of
motion, largely due to an ad hoc derivation of the ki-
netic energy of the system, is overcome by introducing a
new numerical method based on a functional Z-Matrix,
in which the Degrees Of Freedom (DOFs) are written as
functions of generalized coordinates. This approach pro-
vides several advantages: (i) the dynamical variables can
be of any kind (bond length, bending or dihedral angle,
reaction path-like coordinate, etc.), (ii) the geometry re-
laxation as well as the constraints are easily expressed in
the Z-Matrix formalism, and (iii) the numerical imple-
mentation is straightforward and robust. Other issues,
such as quantum effects and couplings between LAMs
with the overall rotation and the internal HO, are ap-
proximately taken into account using selected methods
from the literature7,11.

To illustrate the advantages and accuracies of the pro-
posed methodology, two calculation tests are presented:
(i) the partition function of 1,3-butadiene, and (ii) the
high-pressure limit of the CH3+H → CH4 reaction rate.
The presented methods are part of the currently devel-
oped C++ library openSOAMS35.

II. THEORY

The overall methodology proposed in this paper is il-
lustrated in figure 1. The particular steps which are
emphasized in this work are (i) the inference of a PES
model (parametrized by the vector θ) from a set of ab
initio energies (’PES’ box), (ii) the implementation of a
Z-matrix coordinate system for the computation of the
kinetic function (’Kinetic’ box) , and (iii) the Lagrangian
analysis of the LAM and PES uncertainty propagation to
the QoI (’Stat. & UQ’ box). In the canonical ensemble,
the partition function is the central quantity for comput-
ing thermodynamic data and rate constants. In order to
compute the partition function, we propose to split the
total Hamiltonian of a system containing an LAM into
the following 4 contributions: (i) a large amplitude mo-
tion contribution, from which overall rotation and trans-
lation are rigorously removed, (ii) the small amplitude
vibrations, eventually considered loosely coupled to the
LAM, (iii) the overall rotation, loosely coupled to the
LAM, and (iv) the overall translation, rigorously inde-
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FIG. 1. Flowchart of the thermal statistical computations
in our approach. Acronyms and abbreviations: PES: Poten-
tial Energy Surface; UQ: Uncertainty Quantification; PDF:
Probability Density Function; TD: ThermoDynamic; param.:
parameters; trans.: translation; rot.:rotation; stat.: statistic.

pendent of all the other modes. The total partition func-
tion of the system is then trivially obtained by simple
multiplication of all the contributions:

Qtot(T ) = QLM (T )Qcoupled
HO (T )Qcoupled

rot (T )Qtrans(T )
(1)

where T is the temperature and QLM , Qcoupled
HO , Qcoupled

rot
and Qtrans are the partition function of the contributions
(i) to (iv), respectively. In this section, we will address
the calculation of QLM , Qcoupled

HO , Qcoupled
rot in detail, and

the partition function of the overall translation can be
found elsewhere36.

A. The large amplitude motion

Let a LAM of a molecular system be described by the
positions �Rat of the atomic nuclei in a system of gener-
alized coordinates q. The Lagrangian of the system is
written:

L(q, q̇) = T (q, q̇) + V (q) (2)
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where V (q) is the electronic PES and T (q, q̇) the kinetic
energy, given by the relation:

T (q, q̇) =
1

2

�

at

mat

�
�

i

∂ �Rat

∂qi
q̇i

�2

=
1

2
q̇TA (q) q̇

(3)

The matrix A is called the kinetic matrix, its elements
are defined by:

Aij =
1

2

�

at

mat
∂ �Rat

∂qi
.
∂ �Rat

∂qj
(4)

The theorem of Aston and Eidinoff37 allows a compu-
tation of the LAM partition function through a configu-
rational integral involving the determinant of the kinetic
matrix and the PES:

Q(T ) =
1

δ
(2πkBT )

n/2
�

|A(q)|1/2 exp (−V (q)/kBT ) dq

(5)
where kB is the Boltzmann constant, T the temperature,
n the dimension of q, and δ the symmetry number of the
motion (see the work of Fernández-Ramos et al.38 for a
thorough discussion). The term K(q) = |A(q)|, called
the kinetic function here, completely describes the ki-
netic part of the LAM in a statistical point of view. This
integral is restricted within configurational space and al-
lows a simple numerical procedure for its evaluation for
routine applications. The partition function defines the
statistical properties of the LAM in the canonical ensem-
ble; specifically, the probability density that the system
occupies a particular position q in the classical formula-
tion is given by:

P (q, T ) =
1

δ
(2πkBT )

n/2 |A(q)|1/2 exp (−V (q)/RT )

Q(T )
(6)

In the case of one-dimensional motion, the computa-
tion of the partition function is improved by using quan-
tum statistics. The method is similar to the one pre-
sented by Reinisch et al.39. An effective temperature-
dependent kinetic constant is introduced by the following
relation:

Keff (T ) =

�
K(q)P (q, T )dq (7)

The Fourier Grid Hamiltonian algorithm40 is then em-
ployed to compute the eingenvalues ε

eff

i (T ) of the effec-
tive Hamiltonian defined by:

Ĥ
1D
eff

= − �2
2Keff

∂
2

∂q2
+ V̂ (q) (8)

The partition function is finally obtained by a direct
count of the eigenvalues εeffi (T ):

Q
1D
eff

(T ) =
1

δ

�

i

exp
�
−ε

eff

i (T )/kBT
�

(9)

1. Calibration of the Potential Energy Surface

The calibration of a model can be viewed in the narrow
sense of adapting some of the model parameters in order
to get a better resemblance between observations and ma-
jor end-predictions in specific situations. When calibrat-
ing a physico-mathematical model of the potential en-
ergy surface with respect to ab initio data, uncertainties
are associated with the “physical model uncertainties”,
arising from inadequacies of the physical model (due to
underlying assumptions and simplifications). As a re-
sult, there are “model parameter uncertainties,” arising
from uncertain values of the model parameters. These
uncertainties are simultaneously quantified here through
the solution of statistical inverse problems based on a
Bayesian approach, as illustrated by the block ’PES’ on
figure 1.
a. Check model (in)adequacy . Let M designate a

stochastic model class41,42. A stochastic model M is
specified by a set of uncertain parameters a , to which
an additional uncertain parameter, variance (σ2

total), is
included as a measure of the total model error. Each
stochastic model is then specified by the set θ = a ∪
σ
2

total
∈ Ω ⊂ Rd. One can use the data D to compute

the posterior PDF p (θ|D,M) as defined by the Bayes
theorem:

p (θ|D,M) =
1

c
p (D|θ,M) p (θ|M) (10)

where c is a normalization constant that makes the
probability volume under the posterior PDF equal to
unity, p (D|θ,M) is the likelihood function, and p (θ|M)
is the prior PDF for θ (always chosen to be uniform in
this paper). The likelihood function expresses the prob-
ability of observing D based on the predictive PDF for
the system output given by the set of parameters θ in
the model M . To compute the likelihood function, the
assumption of statistically independent error is used. We
denote by Dj the j

th data point and by Yj the model
output computed for the same scenario as Dj . We also
consider an additive error based on the assumption that
the error is independent from the value Dj :

rtotal = Yj −Dj (11)

In this study we assume that there is no data error, e.g.
that the ab initio values Dj calculated at a particular
level of theory are perfectly converged with respect to all
the numerical parameters of the quantum method used.
The error is modeled in this paper as a Gaussian deviate
with zero mean and variance σ

2

total
. Based on all these

assumptions, the likelihood function reads

p(D|M,θ) =
1�

(2πσ2

total
)Nd

exp



−1

2

Nd�

j=1

�
Dj − Yj

�2

σ
2

total




(12)
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where Nd is the number of data point. The variance
σ
2

total
is treated as an unknown and thus needs to be cal-

ibrated as well. Because no data error is assumed, the
calibrated variance is a measure of the model adequacy
and we call σ2

total
as σ

2

M
hereafter. The criterion for ac-

cepting a model as “not-invalidated” (hereafter, we sim-
ply say “validated”) is subjective ; it requires a metric to
compare the predicted quantities produced by the cali-
bration and the data used for the calibration. If the data
agree within the acceptable tolerance limit, the model
(denoted as Mval) is then directly used for the forward
problem: the PDF model parameters are propagated to
the quantity of interest. This is illustrated in the right
part of the block ’Stat. & UQ’ in figure 1 and discussed
in what follows.

b. Uncertainty propagation . One of the most im-
portant objectives of performing the above analysis is to
make robust predictions about the QoI from a data set of
the system of interest. Based on a candidate M , all the
probabilistic information for the prediction of a vector
of quantities of interest Q is contained in the posterior
predictive PDF for M given by the Theorem of Total
Probability:

p(Q|D,M) =

�
p(Q|θ,D,M)p(θ|D,M)dθ (13)

The above equation obtains the prediction p(Q|D,M)
of a vector of quantities of interest Q ∈ Rq by sum-
ming up the prediction p(Q|θ,D,M) of each model
specified by θ∈ Ω weighted by its posterior probability
p(θ|D,M)dθ. The evaluation of the multi-dimensional
integrals of Eq. (13) cannot usually be done analyti-
cally. A common numerical approach often used is based
on simulating samples θ(k), k=1,2,...,K, (called posterior
samples) from the posterior PDF p(θ|D,M). The poste-
rior PDF p(θ|D,M) can be approximated by using these
samples:

p(θ|D,M) ≈ 1

K

K�

k=1

δ(θ − θ(k)) (14)

We use in this paper the Adaptive Multilevel Stochastic
Simulation Algorithm presented by Cheung and Beck43

to generate the posterior samples. The integral in Eq.
(13) is then approximated by:

p(Q|D,M) ≈ 1

K

K�

k=1

δ(Q−Q(k)) (15)

where Q(k) is a sample simulated from p(Q|θ(k)
,D,M).

The Monte Carlo simulation method44 can be used to
simulate this sample. If Q is a deterministic function
of θ (i.e., Q = Q(θ)), then Q(k) = Q(θ(k)). Estimates
for important statistical moments of Q conditioned on
M and D can be obtained using the samples Q(k)

, k =
1, ...,K,. For instance, the posterior mean is calculated

as follows:

E(Q|D,M) ≈ 1

K

K�

k=1

Q(k)
. (16)

The 95% confidence interval, usually taken to represent
the confidence expected on a predicted outcome, is the
interval I defined by :

Prob(Q ∈ I) = 95% (17)

In this paper, the mean and the 95% confidence inter-
val on the predicted posterior of Q are noted by < Q >

and [Q] respectively. The detailed explanation on how to
calculate other higher moments can be found elsewhere45.
The library QUESO46 is used to solve the inverse prob-

lem and to compute the posteriors p(θ|D,M). The cur-
rent numerical methodology is very efficient and feasible
for various engineering applications (e.g.47–51 ).

2. The kinetic function

The computation of the kinetic function |A(q)| defined
by Eq. (4) is achieved using the internal Z-Matrix coordi-
nates. As illustrated in the ’Kinetic’ box on figure 1, the
objective is to compute the absolute displacement of the
atoms with respect to variations in the generalized coor-
dinates from the atomic relative positions. The contribu-
tion of the overall rotation and translation is separable
through Eq. (1), and the kinetic function is calculated
so that the total angular ( �J) and linear (�P ) momenta
associated to any variation dq are null.
Let the internal coordinates of the Z-Matrix be noted

by the vector z of dimension NZ , where NZ = 3N −5 for
a linear molecule or 3N −6 otherwise (N being the num-
ber of atoms). The configurations of an n-dimensional
motion parameterized by the generalized coordinates q
will then be described by NZ functions zi (q). The con-
nectivity scheme of the Z-Matrix along with the functions
zi (q) is referred to as a functional Z-Matrix. It is the def-
inition of the kinetic energy of the system. The (relative)
positions of the atoms obtained using the Z-Matrix defi-
nition are denoted by �Zat (q), and their construction rule
is straightforward: the first three atoms are defining the
orientation of the structure, and the origin of the Carte-
sian coordinates coincides with the center of gravity of
the system. Given an initial structure �Rat(q0) directly
constructed from the Z-Matrix (e.g. �Rat(q0) = �Zat(q0)),
the ∂ �Rat/∂qi terms in Eq. (4) are calculated by deter-
mining the structure �Rat(q0 + dq) generated by any dis-
placement dq and associated to �J = �P = �0. While the
condition �P = �0 is satisfied by construction in the Z-
Matrix (because the center of mass of the system is fixed
at the origin), this is not the case for the condition �J = �0.
By consequence, the structure �Rat(q0 + dq) is related to
�Zat(q0 + dq) by an overall rotation around its center of
gravity:
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�Rat(q
0 + dq) = Mrot

�Zat(q
0 + dq) (18)

where Mrot is a rotational matrix defined by the condi-
tion:

�J =
�

at

mat

�
Mrot

�Zat (q0 + dqα)− �Zat (q0)
�

× �Zat(q0) = �0

(19)

The matrix Mrot is optimized by an iterative pro-
cedure, generalizing the one presented in our previous
paper39 which was restricted to a fixed axis of rotation.
The iterative method is initiated by setting Mi=0

rot = Id.
At each step i, the angular momentum �J

i is calculated
using the current Mi

rot according to:

�J
i =

�

at

mat

�
Mi

rot
�Zat (q0 + dqα)− �Zat (q0)

�

× �Zat(q0)

(20)

The matrixMi
rot is then corrected at the next iteration

by:

Mi+1

rot = Mi
rot ×M

�Ji,dθ
rot (21)

where MJ̃i,dθ
rot is the matrix of rotation around the axis

�J
i (current overall angular momentum) with the counter

rotational angle dθ defined by:

dθ = −dα

�J
i

�Jext(dα)
sign( �J i

. �J
ext) (22)

where dα is an elementary angle (taken in this paper
as 10−4 radian), �J

ext is the angular momentum associ-
ated with a rotation of dα around �J

i of the structure
Mi

rot
�Zat (q0 + dqα).

This procedure leads to a progressive annihilation of �Ji
associated with a decrease of the kinetic function. The
procedure is stopped in this paper when the kinetic func-
tion is converged within a relative factor of 10−5.

B. Coupled motions

1. Flexible Rotor (FR) partition function

The presence of the large amplitude motion leads to
some coupling with the overall rotation, and the usual
rigid rotor approximation needs to be overcome. The
partition function is computed by considering a loose cou-
pling between the LAM and the overall rotation, as pro-
posed by Vansteenkiste et al.11. The partition function of
the ’Flexible’ Rotor QFR(T ) is based on the Rigid Rotor

expression (RR)52, calculated at each configuration point
of the LAM, and averaged using the probability density
defined in relation (6) :

Q(T ) =

�
QRR(T,q)P (q, T )dq (23)

where QRR(T,q) is the partition function of a rigid
rotor52 of the structure �Zat(q).

2. Flexible Oscillator (FO) partition function

As for the overall rotation, the presence of the LAM
may lead to some coupling with small internal vibrations.
Wong et al.9 and Vansteenkiste et al.11 proposed to per-
form an integration similar to Eq. (23) by using a Har-
monic Oscillator approximation of the small amplitude
vibration at each configuration point. This procedure
leads to an excellent approximation of the partition func-
tion, however it requires the costly evaluation of the Hes-
sian over all the configurational space. Here, we propose
to restrict the integration to the stable configurations in-
volved in the LAM. The partition function of the coupled
small amplitude vibration under this assumption given
by:

Q(T ) =
�

i

QHO(T, qi)P (qi, T ) (24)

where the sum is carried out on all the stable configu-
rations of the LAM, qi is the associated configurational
point, QHO(T, qi) is the partition function of the small
amplitude vibration in the HO approximation36 of the
structure �Zat(qi), and P (qi, T ) is the weighting factor
defined by:

P (qi, T ) =
|A(qi)|1/2 exp (−V (qi)/RT )�
j |A(qj)|1/2 exp (−V (qj)/RT )

(25)

III. APPLICATIONS

A. 1,3-butadiene partition function

The first application concerns the computation of the
partition function of 1,3-butadiene. The geometry of the
molecule at the minimum of the PES is illustrated on
figure 2 along with the atom numbering used hereafter.
The molecule contains a torsional motion defined by the
relative rotation of the two H2CH parts around the cen-
tral C5-C2 bond. Previous studies9,11 have shown that
it involves a highly asymmetric internal rotor associated
with a non-negligible geometry relaxation effect as well
as a non-negligible coupling between the torsion and the
other degrees of freedom.
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FIG. 2. Illustration of the geometry of 1,3-butadiene at the
global minimum of the PES. The large circles represent the
carbon atoms, and the small circles represent the hydrogen
atoms. Bond lengths are in Angstroms and angles in degrees.
The atom numbering used in the paper are indicated in the
circles.

1. Electronic structure calculation

Ground state electronic energies are calculated us-
ing the ab initio methods UB3LYP53/6-31G(d)54 (here-
after referred to as DFT) for qualitative calculations,
and RHF-CCSD(T)/aug-ccdvpz55,56 (hereafter refered as
CC) for accurate quantitative calculations. Geometry
optimizations and a normal mode analysis are performed
at the UB3LYP/6-31G(d) level of theory. The torsional
potential energy surface is obtained by computing the re-
laxed geometries with respect to the dihedral C1C2C5C7

using a 10◦ step. We use a local quadratic interpolation
to obtain ab initio values of the energy at other torsional
angles. All the electronic calculations have been per-
formed using the GAMESS code2.

2. Kinetic function

Table I presents the functional Z-Matrix used to com-
pute the kinetic function. The functions fi(θ) (i =
1, ..., 8) define the relaxation of the degrees of free-
dom with respect to the generalized coordinate θ. The
DoFs contributing to less than 1% to the kinetic func-
tion have been considered constant. The functions fi are
obtained by Fourier series development of the optimized
internal coordinates, and are presented in Supplemen-
tary Information 1. The kinetic function calculated us-
ing our numerical approach is presented on figure 3 (solid
line), and compared to those reported by Vansteenkiste
et al.11 and Wong et al.9. A very good agreement is
observed between the 3 studies, the difference from the
Eckart method at θ ≈ 180 ◦ being most likely attributed
to the different level of theory used in the study of Wong
et al. for geometry optimization (MP2). We also present
in figure 3 the kinetic function computed when the relax-
ation of the geometry with respect to θ is not taken into
account (fi(θ) = 0 ∀i, dashed line). As it can be seen,
the kinetic function is strongly affected and gives values
in close agreement with those presented by Wong et al.9

C1

C2 1 1.34

H3 1 1.09 2 121.8

H4 1 1.09 3 116.6 2 180+ f1(θ)

C5 2 1.46+ f2(θ) 1 124.3+ f3(θ) 3 180+ f4(θ)

H6 2 1.09 1 119.4 3 f5(θ)

C7 5 1.34 2 124.3+ f3(θ) 1 −180+ θ

H8 5 1.09 2 116.2 1 θ + f7(θ)

H9 7 1.09 5 121.5 2 f8(θ)

H10 7 1.09 5 121.8 2 180+ f9(θ)

TABLE I. Functional Z-Matrix definition of the torsional
motion of the 1,3-Butadiene. The definition of the relax-
ation functions fi(θ) are given as supplementary informations.
Lengths are in Angstrom and angles in degrees.
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FIG. 3. Comparison between the kinetic function calculated
in this work (lines) and the kinetic function obtained using
the Extended Hindered Rotor model11 (EHR), the Eckart
method9 and the Pitzer method57(presented by Wong et al.9).
Solid line: flexible torsion (fi(θ) �= 0); dashed line: rigid ro-
tation (fi(θ) = 0).

calculated using the Pitzer method57. Because the Pitzer
values are also based on relaxed geometries, this demon-
strates that the Pitzer method actually fails to take into
account the dynamic influence of the relaxation on the
kinetic energy.

3. Calibration of the potential energy surface

The model used to describe the PES of the torsional
motion accounts for two physical contributions: (i) the
contribution of the intrinsic torsional energy of the C5-C2
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line) and n = 20 (solid line). Filled circles represent the data
set DDFT
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sp2 chemical bond, and (ii) the contribution of a repulsive
part, representing the steric repulsion between the atoms
H9 and H4 during the torsion. Using the definition of the
repulsive part of a Lennard-Jones type potential, and a
modified cosine function to account for the sp2 torsion
energy, the PES is defined using the 3 parameters a0, a1,
and a2 by:

V (θ) =
a1

2
(1− cos (2θga0(θ)))

+ a2

�
dVDW

|�R9(θ)− �R4(θ)|

9

− dVDW

|�R9(0)− �R4(0)|

9
�

(26)

where dVDW is taken equal to 2.4 Å(sum of the van
der Waals radii of the hydrogen atoms), and ga0(θ) =
1 − a0(1 − cos(2θ)). The function ga0 adds degrees of
freedom to model the bonding contribution of the sp2 tor-
sional energy, and one can verify that ga0(θ) = ga0(−θ)
as well as ga0(−180) = ga0(180) = ga0(0) = 0. The
term −dVDW/|�R9(0) − �R4(0)|9 in the equation ensures
the condition V (0) = 0. The stochastic PES model M
contains four parameters to calibrate: the three involved
in Eq.(26) (a0, a1, a2), and the variance (σ2

M
).

In order to study how the ab initio data inform the
PES parameters, different datasets are used for the
inference process. They are noted DX

n where X ∈
{DFT,CC} stands for the level used for the electronic
energy calculations, and n is the number of values in-
cluded (in uniform repartition in [0; 180 ◦]). The prior
PDFs, the 95 % confidence intervals (CIs) based on the
posterior PDFs, and the posterior means are presented
in table II.

We first comment on the results obtained using the
DFT datasets. It is shown in rows 3 to 8 that the 95% CI
is considerably narrowed around the mean value for each
parameter each time the dataset size increases. Also,
the posterior mean value < ai > is already accurately
predicted when only 5 points are used. However, the
parameter uncertainties remain large at this level. The
mean of the variance shows a different behavior: its value
keeps decreasing when the amount of data increases. It
reaches 1.25×10−3 kcal2/mol2 (e.g. < σM >= 3.5×10−2

kcal/mol) when 20 points are used. The 95% CIs [V ]DFT
n

(n = 5, 10, 20) are presented in figure 4 and compared
to the DDFT

19
data set. The figure confirms the quality

of the proposed model and is able to reproduce almost
perfectly the ab initio results when a sufficient amount
of data points is used. It is worth mentioning that the
uncertainty on the posterior PES (maximum here at ≈ 90
◦ and ≈ 180 ◦) highlights the most relevant volume of
the configurational space in which data are needed to
improve the calibration process.
We now look at the posterior PDFs of model param-

eters obtained using the data set DCC
n (n = 2, 3, 5) pre-

sented on the four last rows of table II. In this case, we
calibrate model parameters except for σ

2

M
, which is set

to be 1.25×10−3 kcal2/mol2. In other words, we assume
that the model error obtained by the DFT level of the-
ory is close to the realistic estimation of the true model
error. As can be seen on table II, this assumption is rea-
sonable since [V ]CC

5
is already very narrow (and actually

converged) for all the parameters even when 5 points are
used. It is also shown that using 2 points (at 0 ◦ and
180 ◦) is not enough to infer a0 and a2 (posterior PDFs
approximately equal to the prior PDFs), while a third
point at 90 ◦ allows a considerable reduction of the un-
certainty on a2. These results are illustrated on figure 5,
which presents the uncertainty domain of the posterior
PES for these three datasets. Comparing [V ]CC

5
a poste-

riori with the DCC
19

dataset demonstrates that the DFT
level of theory is fully able to estimate the absolute model
error for this case as the data points are almost perfectly
encapsulated in [V ]CC

5
(assuming that the CCSDT/aug-

cc-dvpz level of theory gives the exact PES).

4. Forward Problem: Partition function

The 95% CI of the posterior partition function
[QLAM ]DFT using the DDFT

n=5, 10, 20 datasets are presented
in figure 6. The results are normalized to the par-
tition function obtained using an HO approximation.
The mean value of the posterior partition function us-
ing DDFT

5
is also presented. As for the PES results, the

95% CI becomes very narrow as soon as 10 points are
used, and the mean value < Q >

DFT
5

is already almost
converged. The fact that the [Q]Xn are centered around
1 at low temperature (T < 400 K) is important because
it demonstrates that the method presented here to treat
the 1D LAM has a sufficient capability to perfectly re-
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a0 × 102 a1 a2 σ
2
M × 103

Prior [1;10] [1;10] [1;10] [0;2000]

[.]DFT
5 [2.22;9.15] [2.32;3.87] [6.65;8.34] [25.8;1332.2]

[.]DFT
10 [4.82;6.84] [2.92;3.35] [7.28;7.72] [0.34;154.8]

[.]DFT
20 [5.54;5.99] [3.05;3.14] [7.46;7.53] [0.18;3.9]

< . >
DFT
5 5.95 3.15 7.45 196.02

< . >
DFT
10 5.92 3.17 7.5 16.30

< . >
DFT
20 5.79 3.10 7.49 1.25

σ
2
M = cst

[.]CC
2 [1.36;9.52] [2.73;2.84] [1.53;9.59] 1.25

[.]CC
3 [1.42;9.6] [2.74;2.84] [5.72;6.28] 1.25

[.]CC
5 [6.89;7.78] [2.75;2.85] [6.02;6.14] 1.25

< . >
CC
5 7.33 2.80 6.08 1.25

TABLE II. Definition of the parameter’s priors, and descrip-
tion of the parameter’s posterior for each dataset used in the
paper. Units: a0: no unit, a1: kcal/mol, a2: kcal/mol, σM:
kcal/mol.

produce the harmonic approximation results in the low
temperature limit.

The total partition function of 1,3-butadiene is ob-
tained by multiplication of the LAM partition function by
the FR and FO partition functions. To compute the FHO
partition function, we consider the system constituted by
two stable complexes, characterized by the normal mode
frequencies at θ = 0 ◦ and θ = 145 ◦ (the normal mode
frequencies are presented as supplementary information).

0 500 1,000 1,500

1

1.2

1.4

1.6

1.8

T (K)

Q
L
A
M

(T
)
/Q

H
O
(T

)

[QLAM ]DFT
5

[QLAM ]DFT
10

[QLAM ]DFT
20

< QLAM >DFT
5

FIG. 6. 95% CI of the posterior torsional partition function
using the data set DDFT

n with n = 5 (dotted line), n = 10
(dashed line) and n = 20 (solid line). Filled circles: mean of
the posterior torsional partition function using DDFT

5 . Re-
sults are normalized by the HO partition function.
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FIG. 7. Comparison between the 95% confidence interval of
the posterior partition function of the butadiene using DDFT

20

(dashed line) and DCC
5 (solid line, σ2

M = 1.25 10−3). Crosses:
Pert method58, circles: EHR method11. Results normalized
to the RRHO partition function.

It should be noted that the PES uncertainty also affects
the FR and FO partition functions through Eq. (6) and
Eq. (25). The 95% CI of the posterior partition function
of 1,3-butadiene using the DCC

5
(with σ

2

M
keeped fixed at

1.25 10−3 kcal2/mol2) and DDFT
20

datasets are presented
on figure 7 and compared to the results presented by
Wong and Raman58 (Pert model) and those presented by
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Vansteenkiste et al.11 (EHR model). The results are nor-
malized by the partition function obtained using a Rigid
Rotor Harmonic Oscillator approximation (RRHO). We
first compare our prediction usingDCC

5
with the low tem-

perature results presented by Wong and Raman58 using
their Pert method. The comparison is meaningful be-
cause the same level of theory has been used to compute
the PES, and also because the Pert method used rep-
resents most likely the best model available in the lit-
erature. However, this fully coupled quantum method
is computationally expensive, which explains why no re-
sults for temperatures higher than 500 K have been pre-
sented. Although our predictions slightly overestimate
the partition function, the behavior of the curves is very
similar, and the results stay very close to each other. The
small overestimation comes from either the simplification
introduced by our treatment and/or from differences in
the RRHO reference partition function. We now com-
pare the results obtained by Vansteenkiste et al.11 (EHR
method) and our results using the DDFT

20
data set. The

same DFT method used to compute the PES is shared by
the two studies; however, Vansteenkiste et al. consider
a larger basis set in their work (6-311G(d,p)). The two
PESs are nevertheless similar, as reflected by the small
difference of the torsional barrier height (0.1kcal/mol).
As can be seen in the figure, the behavior of the parti-
tion function curves are very similar, essentially differing
by a small translation factor. This factor seems to be
an artifact involved in the EHR method as the partition
function does not converge to 1 at the limit of low tem-
peratures.

The model 1D LAM method proposed in this paper
is able to account for 1D torsional motion with an ac-
curacy comparable to the best methods presented until
now. It is worth recalling that only 2 normal mode anal-
yses have been realized here, while they have been con-
ducted all over the configurational space in the studies
of Vansteenkiste et al.11 and Wong and Raman58. Also,
this efficient formalism, in terms of computational time,
further allows it to be used in conjunction with an un-
certainty quantification algorithm.

B. Kinetic rate of CH3 +H → CH4 in the high pressure
limit

The reaction rate of the CH3+H recombination is com-
puted at the high pressure limit using Variational Tran-
sition State Theory (VTST) with Variational Reaction
Coordinate (VRC) and spherical Dividing Surfaces (DS)
in the canonical ensemble. In the present case, the DS
is parameterized using one pivot point �p attached to the
CH3 part, around which the approaching H∗ atom is al-
lowed to rotate. The optimal DS (noted DS∗), defin-
ing the transition state, is optimized for every tempera-
ture in a way that it is associated to a minimal partition

function59,60:

QDS∗(T ) = min
�p,s

[Q�p,s
DS

(T )] (27)

where s is the reaction coordinate (separation �p−H∗),

and Q
�p,s
DS

(T ) is the partition function of the DS defined
by s and �p. The high pressure reaction rate is calculated
using the standard TST assumptions and is given by52:

k(T ) =
kBT

h

Q
�p,x
DS∗

QCH3(T )QH(T )
exp (V ∗

/kBT ) (28)

where h is Plancks constant, QCH3 and QH the partition
functions of the methyl and hydrogen radicals respec-
tively, and V

∗ is the electronic barrier height associated
with the CH3+H DS∗. Over the small amplitude motion
involved in the system, the CH3 umbrella motion changes
quite substantially and may need to be included in a FO
partition function. However, Klippenstein et al.16 have
shown that its influence is negligible with at most a 2
% increase of the reaction rate for temperatures below
2400 K. In this work, the small amplitude motions are
then supposed uncoupled to the reactional motion, and
the reaction rate expression is simplified into:

k(T ) =
kBT

h

Q
2D

DS∗(T )QFR

DS∗

Q
trans&rot

CH3
(T )QH(T )

exp (V ∗
/kBT ) (29)

where Q
2D

DS∗ is the partition function of the H∗ motion
on the DS∗, QFR

DS∗ the effective overall rotation partition
function of the DS, and Q

trans&rot

CH3
the partition function

of the overall translational and rotational motion of CH3.

1. Electronic structure calculation

Ground state electronic energies are calculated us-
ing the CR-CC(2,3)61,62/aug-cc-pvdz55,56 level of theory.
The CR-CC(2,3) method is an improvement over the
CCSD(T) approach to overcome its deficiencies in de-
scribing systems involving biradical character63. Geom-
etry optimizations are carried out at the UB3LYP53/6-
31G(d)54 level of theory. All the electronic calculations
have been performed using the GAMESS code2.

2. Kinetic function

The kinetic energy of the DS is obtained by defining
the functional Z-Matrix associated with the H∗ 2D mo-
tion. Because of the C3 symmetry of CH3, the DS is
parameterized by 2 parameters. The first parameter is
the distance x between the pivot point �p, lying in the C3

axis of symmetry of CH3, and the carbon atom, taken
as the origin. We denote from now on �p = x. The sec-
ond parameter is the distance s between the approaching
H∗ atom and the pivot point. The functional Z-Matrix
which describes the DS is presented in table III. The C3
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FIG. 8. Illustration of a typical bi-faceted dividing surface of
the CH3+H→ CH4 reaction.

symmetry is imposed to the system, and the relaxation
of the CH3 part is taken into account to some extent by

using the functions a(|
→

CH∗ |) (interpolation between the
optimized values on the MEP).

It has been shown that a limitation of the spherical
dividing surfaces is that they can account for artificial
contributions to the reaction rate when multiple reac-
tion paths are present12,13. To avoid this overestimation,
a multifaceted dividing surface are used, composed by
the envelope of spherical DSs centered around a reactive
channel specific pivot point. Considering the equivalence
of the two association channels for the H∗ addition on
CH3, a typical dividing surface for the reaction is illus-
trated on figure 8. To compute the DS partition function,
the integration domain defined in Eq. (5) has to be re-
stricted to:

q0 ∈ [qmin

0
,π]

q1 ∈ [0,π/3]
(30)

where qmin

0
= arcsin(x/s) is the solid angle from X defin-

ing the intersection of the two spherical DS. The overall
symmetry number of the irreducible integration domain
is then 12. Since this number takes into account the two
reaction paths, no symmetry number has to be consid-
ered in the overall rotational partition function of both
CH3 and the DS.

C

X 1 x

H0 1 1.09 2 a(|
→

CH∗ |)
H1 1 1.09 2 a(|

→
CH∗ |) 3 120

H2 1 1.09 2 a(|
→

CH∗ |) 4 120

H
∗ 2 s 1 q0 3 q1

TABLE III. Z-Matrix definition of the Dividing Surface pa-
rameterized by the reaction coordinate s and the pivot point
x. Lengths in Angstrom, angles in degrees.

3. Calibration of the PES

The PES of the CH3/H∗ interaction accounts for three
contributions: (i) the stretching energy of the C-H∗ bond
(noted Vstr), (ii) the bending energy of the HiCH∗degree
of freedom (noted Vbend), and (iii) the steric repulsion
energy between the Hi and H

∗. The stretching energy

Vstr is written as a Morse-like function of |
→

CH∗ | with
an origin of energy taken at the products state:

V
a0,a1
str

= De

�
1− exp(−a0(|

→
CH∗ |− req)

a1)

�2
−De

(31)
where De = 107.7 kcal/mol is the dissociation energy,
req = 1.09 Å is the equilibrium bond length, a0 and a1

are the first two parameters of the PES model. Note

that the function is defined only for |
→

CH∗ | > req. The
bending energy is modeled by a simple cosine function,
with a barrier height equal to the dissociation energy at
the angle αXCH∗ = ±π/2:

Vbend =
De − Vstr(q0, q1)

2
(1− cos(αXCH∗)) (32)

Finally the PES also accounts for the spherical repulsion
between the passive hydrogen atoms Hi and H∗:

V
a2,a3
rep

= a2

�

i=0,1,2







 σHH

|
→

HiH
∗ |




a3

−



 σHH

|
→

HiH
∗
0
|




a3




(33)
where σHH = 2.4 Å with a2 and a3 being the last two
parameters, and H∗

0
is the corresponding position of H∗

on the MEP (at the same C−H∗ separation). The term�
σHH

|
→

HiH
∗
0 |

�a3

allows a cancellation of the steric interaction

energy on the MEP. The PES is the sum of these three
contributions, and are defined through the four parame-
ters ai, i = 0, ..., 3:

V
ai(q) = V

a0,a1
str

(q) + Vbend(q) + V
a2,a3
rep

(q) (34)

The geometries used to compute the electronic energies
are defined by the Z-Matrix presented in table III with
x = � = 10−5 (in order to preserve a non-ambiguous
definition of the C3 axis). The 50 data points collected
are divided in two groups: one is used to infer the PES
model (noted D∗), and the second is used to validate it
for extrapolation (noted D). The dataset D∗ contains
25 points in the relevant space of the PES for reaction
rate calculation and is constituted by:

(a) 10 points on the MEP (q0 = q1 = 0) from s = 2.0
to s = 3.8 Å

(b) 15 points out of the MEP defined by the
combination s ∈ {2.0, 2.4, 2.8Å} ⊗ q0 ∈
{20, 40, 60, 80, 100◦}⊗ q1 = 0
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,M), (a), (b), (c), (d) for

respectively i=0, 1, 2, 3.

The D data set collects the energies of the corresponding
geometries of (b) at q1 = 30◦ as well as 10 other points
at s = 1.6 Å. The prior intervals, the posteriors means,
and 95 % confidence intervals are presented in table IV,
and the 4 posteriors p(a|D∗

,M ) are presented in figure
9. We confirm here that the Morse potential (defined
for a1 = 1) is not the most appropriate to describe the
MEP, and a value of a1 = 1.25 is the most probable value.
The mean value of a3 is surprisingly low for a repulsion
term: in a Van Der Waals force field, the exponent of the
repulsive part is usually taken between 9 and 12.

a0 a1 a2 a3 σ
2
M

Prior [0;10] [0;10] [0;10] [0;10] [0;10]

[.] [1.75;1.87] [1.22;1.43] [2.13;6.04] [2.12;2.87] [1.6;2.8]

< . > 1.82 1.27 4.12 2.53 2.59

TABLE IV. The prior PDFs of the parameters, and 95% CIs
([.]) based on the posterior PDFs, and the posterior mean
values (< . >). Units: a0: Å

−a1 , a1: no unit, a2: kcal/mol,
a3: kcal/mol, σM: kcal/mol.

We compare on figure 11 the 95 % CI of the pos-
terior MEP ([V ]) with the data points of D∗ (black
symbols) and D (white symbols) included in the MEP.
We also report on this figure the ab initio results
at the CASPT2/aug-cc-pVQZ17, full-CI/6-31G(d)64 and
CCSD(T)/6-31G(d)17 level of theories presented in the
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V
(s
;0
;0
)
(k
ca
l/
m
ol
)

[V ]

CASPT2

full CI

CCSD(T)

D

D∗

2 2.5 3 3.5 4
−80

−60

−40

−20

0

2 kcal/mol

s (Å)
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FIG. 10. Comparison between the predicted 95% confi-
dence interval of the MEP ([V ]), the datasets D and D∗

and the ab initio results presented in literature. Lines: [V ];
black circles: D∗, empty circles: D. Grey symbols: lit-
terature results; asterisks: CCSD(T)/6-31G(d)17, crosses:
CASPT2/aug-ccVQZ17, times: full CI/6-31G(d)64. Origin
of energy: V (4 Å, 0, 0).

literature. The uncertainty of the PES model is under
2 kcal/mol for separations higher than 2.0 Å, and coin-
cidently encapsulates the results obtained at the full CI
and CASPT2 level of theory. As already reported17, the
CCSD(T) level of theory is not able to properly estimate
the energy of the system for intermediate separation. The
comparison between the PES model and the direct ab ini-
tio data is pursued in figure 11 for out-of-MEP situations.
The black and white symbols still represent the D∗ and
D data sets respectively. The approximation of the PES
model is very satisfying. Even for extrapolated values
at low separation (s = 1.6 Å) the model still performs
well with the hindering domain being correctly predicted
within 10%.

4. Forward propagation to the high-pressure
recombination rate

The 95 % CI ([k]) and the mean (< k >) of the poste-
rior high pressure reaction are presented in figure 12 with
the available experimental measurements65–67 and the
VTST-VRC theoretical predictions presented by Klip-
penstein et al.16 and Harding et al.17. The experimental
measures have been converted from the k0 values of the
original experimental works in the same way presented
by Klippenstein et al.16. The confidence intervals pre-
dicted by our approach are in very good agreement with
the experimental values as well as with the theoretical
calculations. Our calculations are mainly limited by two
methodological factors. First, the representation of the
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dividing surface does not constitute a perfect DS and it
is associated with an overestimation of the reaction rate.
The works of Klippenstein et.al.16 have shown that by us-
ing both VTST-VRC and a direct dynamic method, the
spherical DS for the CH3+H→ CH4 reaction is associated
with a 9 % overestimation, approximately independent of
the temperature. The doubly faceted DS used here leads
to an even lower recrossing factor. The second limitation
is the restriction of the statistical study to the canoni-
cal ensemble. In other works12, the associated error is
evaluated at approximately 20 %. The overestimation of
the reaction rate coming from the canonical analysis is
probably compensated to some extent by the PES model
which predicts a slightly higher hindrance effect at high
separation (the ab initio data are close to the bottom
boundary of the confidence interval at the s = 2.8 Å case
on figure 11).

To finish this study, we comment on the difference in
the PES representation used here and in the works pre-
sented by Harding et al.17 and Klippenstein et al.16. In
the works of Klippenstein et al.16, a combined Fourier se-
ries/3D spline fitting procedure is used to obtain a four
dimensional PES representation (the umbrella motion is
also explicitly considered). If the fit is almost exact, it
has been achieved using 798 ab initio calculations in the
three dimensional space analyzed here. Klippenstein et
al. have also used the analytical PES presented by Hirst-
Hase to compute the reaction rate. This model, in ad-
dition to having required the manual optimization of al-
most 20 parameters, does not provide any indication of
the associated model error. In the study of Harding et
al.17, an on-the-fly method is used to compute the PES.
The number of quantum calculations has not been pre-
sented, but, assuming that ten points are used to inte-
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FIG. 12. Comparison of the high pressure CH3+H recombi-
nation rate predicted by this work (black lines: [k], squares:
< k >) with other theoretical calculations (gray lines) and
the experimental values (crosses66, asterisks67, times65). Gray
lines: calculations using different representation of the PES;
full line: on the fly calculation17, dashed line: 4D mathemat-
ical fit16, dotted line Hirst-Hase PES.

grate the partition function along q0 and q1 and 10 points
to optimize ds and dx, this already results in 10,000 ab
initio calculations. We recall that our model, even if
associated with a 1.5 uncertainty factor on the reaction
rate, is based on 4 parameters and has been set using 25
ab initio calculations for the calibration step (and 25 to
examine the extrapolation capabilities). The restriction
to the canonical ensemble is another issue which does not
need more PES calculations to be overcome.

IV. CONCLUSIONS

We have presented in this work an original approach
for the computation of statistical properties of molecular
systems involving a large amplitude motion. The objec-
tives were to propose: (i) a simple and general procedure
to compute the kinetic energy of a LAM, (ii) a general
procedure to calibrate an analytical PES using ab initio
data, and (iii) a rigorous quantification of the uncertainty
of the PES model, and their propagation to the QoI(s).
Two typical and different test cases have been consid-
ered for assessing the methodology: (i) the study of 1-3
butadiene, involving non trivial features like coupling of
modes or a highly variable kinetic function, and (ii) the
study of the CH3+H recombination, for which a VTST-
VRC approach is needed to compute an accurate reaction
rate.
We proposed to compute the kinetic energy of a LAM

based on a functional Z-Matrix formalism, e.g. a Z-
Matrix, in which the internal DOF are defined with re-
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spect to some generalized coordinates. The results ob-
tained are exact within numerical precision and are in
total agreement with previous exact methods. The par-
ticular advantage that our approach offers is its practi-
cal convenience. Indeed, for a typical LAM, the internal
Z-Matrix coordinates naturally describes the configura-
tional space of the motion and are much more suited
than Cartesian coordinates. Also, the possibility to in-
clude ghost atoms in the Z-Matrix to represent a virtual
pivot point is an additional important advantage when
one wishes to study dissociation reactions involving loose
complexes. Finally, the method applies equally regard-
less of the number of generalized coordinates or their type
(length, angle, reaction path-like coordinate).

Furthermore, the calibration of parameters for the ana-
lytical PES from ab initio calculations has been achieved
using Bayesian theory. The two examples treated have
allowed us to point out different and interesting features
of this approach. The most important one, which is crit-
ical to the derivation of analytical models, is that the
PES model uncertainty is properly evaluated, and can
be propagated to the QoI. We have also shown that, pro-
viding an adequate PES model is used, narrowing the QoI
confidence interval needs significantly fewer data points
than other methods, which does not exploit any particu-
lar physical contribution of the interaction energy. This
is particularly true when the dimension of the problem
increases. For instance, in the study of the CH3+H re-
combination rate, we were able to use only 25 data points
to calibrate the 3D PES in order to compute a reaction
rate within an uncertainty factor of 1.5 (coming from the
PES model). This corresponds to a typical reduction of
one or two orders of magnitude in the amount of data
points needed with respect to previous study. However,
it is clear that this approach is relevant when the condi-
tion that a satisfactory model of the interaction energy is
provided. Even for complex force fields, we have shown
here that for the two studied applications, accurate mod-
els can be based on simple contributions: Morse-like type
potentials for bond stretching, cosine-like functions for
bending and torsional motion, and steric repulsion for
non bonded atoms. We believe that these types of poten-
tials should hold for the majority of torsional and bond
breaking context studies. Finally, for the 1,3 butadiene
application, we have discussed the possibility of perform-
ing a dual level inference process. While it is not possible
to generalize the results, it was shown that the B3LYP/6-
31G(d) level of theory was almost perfectly able to com-
pute the true (or absolute) model error, even if the PES
is not accurately rendered at this level. As knowing the
model error is a useful information, which considerably
reduces the required amount of data needed to obtain a
given accuracy on the QoI, this property would be of a
particular interest for the calibration of high level PESs
at a minimum computational cost.

Appendix A: Supplementary Information

1. SI 1. Fourier series development of the functions fi(θ)
for Butadiene (see table I)

f1 = −8.15 cos(q)10−2 + 2.05 sin(q)10−1 + 3.55 sin(2q)10−1

+ 7.38 sin(3q)10−1 − 3.42 sin(4q)10−1

f2 = −3.42 cos(q)10−3 + 1.05 sin(q)10−5 − 1.08 cos(2q)10−2 − 4.21 cos(3q)10−3

f3 = −1.06 cos(q) − 8.48 sin(q)10−4 + 4.93 cos(2q)10−1 − 3.10 cos(3q)10−1

+ 3.43 cos(4q)10−1

f4 = −5.95 cos(q)10−2 − 1.05sin(q) − 2.28 sin(2q) − 2.49 sin(3q)

+ 3.92 sin(4q)10−1 + 3.93 sin(5q)10−1 + 2.12 sin(6q)10−1

f5 = −7.91 cos(q)10−2 − sin(q) + 9.31 cos(2q)10−3 + 3.57 sin(2q)

− 8.77 cos(3q)10−3 + 7.90 sin(3q)10−1 + 5.39 cos(4q)10−2 − 5.46 sin(4q)10−1

+ 2.47 cos(5q)10−2 − 3.27 sin(5q)10−1 − 9.89 cos(6q)10−3 + 6.02 sin(6q)10−3

− 1.41 cos(7q)10−2 + 1.1 sin(7q)10−1 + 5.32 cos(8q)10−3 + 8.94 sin(8q)10−2

+ 6.05 cos(9q)10−2

f6 = −1.056 cos(q) − 2.61 sin(q)10−3 + 4.87 cos(2q)10−1 − 3.08 cos(3q)10−1

+ 3.47 cos(4q)10−1

f7 = 8.36 cos(q)10−2 − 5.69 sin(q)10−2 − 7.99 cos(2q)10−2 − 5.7 sin(2q)

+ 4.04 cos(3q)10−2 − 3.28 sin(3q) − 1.14 cos(4q)10−3 + 1.03 sin(4q)

− 1.33 cos(5q)10−2 + 6.22 sin(5q)10−1

f8 = 5.9 cos(q)10−3 − 1.2170 sin(q) − 1.78 cos(2q)10−2 − 2.68 sin(2q)

+ 1.2 cos(3q)10−3 − 3.27 sin(3q) + 1.03 cos(4q)10−2 + 7.85 sin(4q)10−1

+ 5.8 cos(5q)10−3 + 4.46 sin(5q)10−1 + 2.42 sin(6q)10−1 − 4.9 cos(7q)10−3

− 1.9 sin(7q)10−1 + 6.83 cos(8q)10−4 − 1.52 sin(8q)10−1 − 1.10 cos(9q)10−2

f9 = 2.5 cos(q)10−3 − 1.11 sin(q) − 2.26 sin(2q) − 2.49 sin(3q) + 3.66 sin(4q)10−1

+ 3.81 sin(5q)10−1 + 1.81 sin(6q)10−1

(A1)

2. SI 2. Normal mode frequencies of the 1,3 Butadiene at
θ = 0 and θ = 145 ◦

List of the normal mode frequencies of the 1,3 Butadi-
ene for θ = 0 ◦:

f (cm−1) ={176.97 (torsion), 297.8, 515.78, 539.96, 781.87, 907.07, 927.71,

931.51, 1002.42, 1010.99, 1063.85, 1240.02, 1328.87, 1331.52,

1434.8, 1496.2, 1676.49, 1729.1, 3127.6, 3143.88, 3168.83,

3176.04, 3233.98, 3255.78}
(A2)

List of the normal mode frequencies of the 1,3 Butadiene
for θ = 145 ◦:

f (cm−1) ={186.12 (torsion), 273.93, 476.51, 625.72, 761.55, 890.42, 934.59,

936.96, 1024.91, 1041.86, 1078.38, 1112.56, 1323.89, 1356.82,

1455.35, 1483.65, 1689.57, 1715.05, 3109.54, 3142.19, 3150.97,

3160.79, 3232.96, 3239.67}
(A3)
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