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INTRODUCTION AND MAIN RESULTS

The second part of Hilbert's 16th problem, asking for the maximum of the numbers of limit cycles and their relative positions for all planar polynomial differential systems of degree n. A weak version of this problem, proposed by Arnold, asking for the maximum of the numbers of isolated zeros of abelian integrals of all polynomial one-forms ω of degree n over algebraic ovals γ(t) ∈ H 1 (P -1 (t)), where P ∈ C[x, y] of degree m. In [START_REF] Varchenko | Estimation of the number of zeros of an abelian integral depending on a parameter, and limit cycles[END_REF][START_REF] Khovanskii | Real analytic manifolds with property of finitness, and complex abelian integrals[END_REF], Varchenko and Khovanskii prove the following result Theorem 1.1. There exist a uniform bound, depending only n and m, for the number of real zeros of abelian integrals.

Varchenko and Khovanskii showed the existence of a uniform local bound on the number of zeros of abelian integrals when deforming the polynomial P and the polynomial form ω in their respective spaces. Next, the result is obtained using the fact that the space of parameters can be considered as being compact.

General explicit double exponential upper bound was achieved only in [START_REF] Binyamini | On the number of zeros of Abelian integrals A constructive solution of the infinitesimal Hilbert sixteenth problem[END_REF] by completely different methods. Exact upper bounds are still absent.

Arnold posed with insistence the analogous problem form more general polynomial deformations of integrable systems. In particular for deformations of system having a Darboux first integral. Then, instead of abelian integrals, one encouters pseudo-abelian integrals.

Pseudo-abelian integrals are integrals I(t) = γ(t) η M of rational one-forms along cycles γ(t) ⊂ {H = t}, where

H = k i=1 P a i i , M = k i=1 P i , a i ∈ R * + , P i ∈ R[x, y],
where M is an integrating factor. These integrals appear as principal part of the Poincaré displacement function of the deformation θ + εη along γ(t), where

θ = M dH H , η = Rdx + Sdy, R, S ∈ R[x, y].
In [START_REF] Bobieński | Pavao Pseudo-Abelian integrals along Darboux cycles[END_REF][START_REF] Novikov | On limit cycles appearing by polynomial perturbation of Darbouxian integrable systems[END_REF], Bobieński, Mardešić and Novikov prove the following result Theorem 1.2. Let H, M, η be as above. Under some genericity hypothesis, there exists a uniform bound for number of zeros of pseudo-abelian integrals associated to Darboux integrable systems close to θ.

Here we prove an analogous result in one of non-generic cases. Another non-generic cases was studied in [START_REF] Bobieński | Marcin Pseudo-Abelian integrals along Darboux cycles a codimension one case[END_REF], [START_REF] Bobieński | Dmitry Pseudo-Abelian integrals: unfolding generic exponential[END_REF] and [START_REF] Bobieński | Dmitry Pseudo-Abelian integrals on slow-fast Darboux systems[END_REF].

Consider Darboux integrable system ω 0 = M dH H , M is an integrating factor, where

H = P a 0 k i=1 P a i i , M = P 0 k i=1 P i , P i ∈ R[x, y], a, a i > 0. (1) 
Let

ω ε = M ε dHε
Hε be an unfolding of the form ω 0 , where ω ε are one-forms with the Darboux first integral

H ε = P a ε k i=1 P a i i , M ε = P ε k i=1 P i , P ε (x, y) = y 2 -x 3 -εx 2 , P i (0, 0) = 0, i = 1, . . . , k.
(2) Assume that the system

ω ε = M ε dHε Hε has a family γ ε (h) ⊂ H -1 ε (h) of cycles.
Consider the polynomial deformation of the system ω ε .

θ ε,ε 1 = ω ε + ε 1 η, ε 1 > 0, η = Rdx + Sdy, R, S ∈ R[x, y]. (3) 
The linear part in deformation parameter ε 1 of Poincaré first return map is given by the pseudoabelian integrals

I ε (h) = γε(h) η M ε . (4) 
Assume that the levels curves P ε = 0 and P i = 0 intersect transversally and all level curves P i = 0, i = 1, . . . , k are smooth and together with the line at infinity intersect two by two transversally and no three of them intersect in the same point.

The Darboux first integral H ε has two critical points p ε = ( -2ε 3 , 0), which is a center and a saddle point p = (0, 0) for ε = 0, coincide with the cusp point p 0 = (0, 0) for ε = 0. Then, for ε = 0, two singular points p ε and p bifurcate from p 0 .

For ε = 0, we choose a compact region D which is bounded by P ε = 0 and some separatrices

P i = 0, i = 1 • • • , k such that the center p ε is outside of D. Assume that the cycles γ ε (h) ⊂ H -1 ε (h) filling D, see Figure 1.
The main result of this paper is the following theorem Theorem 1.3. Let I ε (h) be the family of pseudo-abelian integrals as defined above. Then there exists a bound for the number of isolated zeros of the pseudo-abelian integrals I ε (h). The bound is locally uniform with respect to all parameters, i.e. the parameters of η, the coefficients of the polynomials P i , the exponents a, a i and the parameter ε.

The Darboux systems ω ε = M ε dHε Hε have a family of cycles in the basin of the center p ε bifurcating from p 0 = (0, 0). To give a ε-uniform estimate for the number of zeros of the pseudo-abelian integrals we make the blowing-up of the cusp point of the family in the product space (x, y, ε) of phase and parameter spaces. The family blowing-ups were introduced by Denkowska and Roussarie in [START_REF] Denkowska | A method of desingularization for analytic two-dimensional vector field families[END_REF].
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The real phase portrait of H ε for ε = 0.

BLOWING-UP THE CUSP POINT

Let C 3 be equipped with system of coordinates (x, y, ε). Denote F the one-dimensional foliation on C 3 which is given by the 2-form ω ε ∧ dε, ω ε ∈ Ω 1 (C 3 ). This foliation has a cuspidal singularity at the origin. We want our blow-up to simplify this singularity. This requirements leads to the quasi-homogeneous blow-up with weights (2, 3, 2).

Recall the construction of the quasi-homogeneous blow-up. We define the weighted projective space CP 2 2:3:2 as factor space of C 3 by the C * action (x, y, ε) → (r 2 X, r 3 Y, r 2 E). The quasihomogeneous blow-up of C 3 at the origin is defined as the incidence three dimensional manifold

W . Let q = (x, y, ε) ∈ C 3 , [(X, Y, E)] ∈ CP 2 2:3:2 . Then W = {(p, q) ∈ CP 2 2:3:2 × C 3 : ∃r ∈ C : (x, y, ε) = (r 2 X, r 3 Y, r 2 E)}
what means that the point q belongs to the closure of the equivalence class defined by p ∈ CP 2 2:3:2 .

The blow-down σ : W → C 3 is just the restriction to W of the projection CP 2 2:3:2 × C 3 → C 3 . For future applications we will need explicit formula for the blow-up in the standard affine charts of W . The projective space CP 2 2:3:2 is covred by three affine charts:

W 1 = {x = 0} with coordinates (Y 1 , E 1 ), W 2 = {y = 0} with coordinates (X 2 , E 2 ) and W 3 = {ε = 0} with coordinates (X 3 , Y 3 ).
The transition formula follow from the requirement that the points (1, Y 1 , E 1 ), (X 2 , 1, E 2 ) and (X 3 , Y 3 , 1) lie on the same orbit of the action:

Ψ 12 : (Y 1 , E 1 ) → X 2 = 1 Y 1 √ Y 1 , E 2 = E 1 Y 1 √ Y 1 Ψ 13 : (Y 1 , E 1 ) → X 3 = 1 E 1 , Y 3 = Y 1 E 1 √ E 1 .
These affine charts define affine charts on W , with coordinates (Y 1 , E 1 , r 1 ), (X 2 , E 2 , r 2 ) and (X 3 , Y 3 , r 3 ). The projection σ is written as

σ 1 : x = r 2 1 , y = r 3 1 Y 1 , ε = r 2 1 E 1 (5) 
σ 2 : x = r 2 2 X 2 , y = r 3 2 , ε = r 2 2 E 2 (6) 
σ 3 : x = r 2 3 X 3 , y = r 3 3 Y 3 , ε = r 2 3 . (7) 
We apply this blow-up σ to the one-dimensional foliation F on C 3 given by the intersection of dε = 0 and ω ε = 0. This foliation has a cuspidal singularity at the origin. Denote by σ -1 F the lifting of the foliation F to the complement of the exceptional divisor σ -1 (0). This foliation is regular outside of the preimage of {P ε = 0, ε = 0}.

Proposition 2.1. The foliation σ -1 F can be extended analytically to the exceptional divisor σ -1 (0). The resulting foliation σ * F is regular outside of the strict transform of {P ε = 0, ε = 0}.

Proposition 2.2. The singularities of the resulting foliation σ * F on σ -1 (0) are located at the points p 1 = (0, 1, 0), p 2 = (0, -1, 0), p 3 = (0, 0, 0) and p c = ( -2 3 , 0, 0). The points p 1 , p 2 and p 3 are linearisable saddles and the point p c is a center.

Proof. The quasi-homogeneous blow-up σ : W → C 3 is a biholomorphism outside the exceptional divisor σ -1 (0), all singularties of the foliation σ * F outside σ -1 (0) correspond to singularities of F. Let σ * i F, i = 1, 2, 3 be the restriction of σ * F to the chart W i . (1) In the chart W 1 , on the exceptional divisor {r 1 = 0} and in a suitable local coordinates (r, Y, E), the foliation σ * 1 F is given by the first integral

F 1 = E -3 (Y 2 -1) = t. We have ∂F 1 ∂r | (0,±1,0) = ∂F 1 ∂Y | (0,±1,0) = ∂F 1 ∂E | (0,±1,0) = 0,
then the singularities of the foliation σ * 1 F on the exceptional divisor are located at p 1 = (0, 1, 0) and p 2 = (0, -1, 0). By a local change of coordinates (r, Y , E), the point p 1 = (0, 1, 0) becomes (0, 0, 0) and the foliation σ * 1 F is given by two first integrals t = Y E -3 and ε = r2

E. Let X = β 1 r ∂ ∂ r +β 2 Y ∂ ∂ Y +β 3 E ∂ ∂ E
be the vector field generating the foliation σ * 1 F. To compute β 1 , β 2 and β 3 we use that X ( Y E -3 ) = 0 and X (r 2 E) = 0. Then β 1 , β 2 and β 3 satisfy the following equations (β 1 , β 2 , β 3 ), (0, 1, -3) = 0 and (β 1 , β 2 , β 3 ), (2, 0, 1) = 0, where , is the usual scalar product on C 3 . By short calculus we obtain

X(r, Y , E) = - 1 2 r ∂ ∂r + 3 Y ∂ ∂ Y + E ∂ ∂ E .
The same calculus holds for the point p 2 = (0, -1, 0). (2) In the chart W 3 , on the exceptional divisor {r 3 = 0} and in a suitable local coordinates (X, Y, r), the foliation σ * 3 F is given by the first integral

F 3 = Y 2 -X 3 -X 2 = t. We have ∂F 3 ∂X | (0,0,0) = ∂F 3 ∂Y | (0,0,0) = ∂F 3 ∂r | (0,0,0) = 0, ∂F 3 ∂X | ( -2 3 ,0,0) = ∂F 3 ∂Y | ( -2 3 ,0,0) = ∂F 3 ∂r | ( - 2 
3 ,0,0) = 0, then the singularities of the foliation σ * 3 F on the exceptional divisor are located at the saddle point p 3 = (0, 0, 0) and the center p c = ( -2 3 , 0, 0).
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Singularities of σ * F on the exceptional divisor.

PROOF OF THEOREM 1.3

In this section we first take benefit from the blowing-up in the family performed in the previous section to prove Theorem 1.3.

Let F be the one-dimensional foliation on C 3 introduced in the previous section and saddleF = {p 4 , . . . , p k } be the set of its saddles.

3.1. Hyperbolicity of polycycles. Let T ⊂ σ -1 (0) be the manifold of dimension two with vertices saddles p 1 , p 2 and p 3 . Let t = ε 3 h and

G = (σ * ε) 3 σ * H(ε, x, y) = t. (8) 
After the making of the blowing-up we obtain a family of hyperbolic polycycles (i.e. each intersection of consecutive edges we have a saddle point), denote by

δ = (σ -1 (γ 0 (0) \ (0, 0, 0)) ∪ (T ∩ {G = t})) R , (9) 
where (...) R denotes the real part of a complex analytic set. Let saddle(σ * F) = {p 1 , . . . , p k } be the set of saddles of the resulting foliation σ * F.

Let us fix a polycycle δ of family ( 9) and denote δ(ε, t) its corresponding cycle. We define 

J(ε, t) = δ(ε,t) σ * η M ε . (10) 
Var (t,β) F (t) = F (te iβπ ) -F (te -iβπ ).
The integral J admitting analytic continuation to the universal covering of C * t × C * ε .

Proposition 3.1. The integral J(ε, t) satisfies the following rescaled iterated variations equation

Var (t,α 1 ) • • • • • Var (t,α k ) J(ε, t) = 0, α i ∈ R[a, a 1 , . . . , a k ]. (11) 
Proof. Let us fix ε and some hyperbolic polycycle δ = i δ i of family [START_REF] Lion | Jean Phillipe Théorème de préparation pour les fonctions logarithmico-exponentielles[END_REF]. As in [START_REF] Bobieński | Pavao Pseudo-Abelian integrals along Darboux cycles[END_REF], using a partition of unity multiplying the form σ * η Mε we can consider semilocal problem with a relative cycle close to one edge of the polycycle. Precisely, let δ i be a some edge (connecting saddles p j and p k ) of the polycycle δ with exponent α i and two saddles points p j = δ i ∩δ j , p k = δ i ∩δ k , where δ j , δ k two separatrices of δ with exponents α j and α k , respectively. Let δ i (ε, t) be its corresponding relative cycle. The respective iterated variations of the relative cycle δ i (ε, t) is a closed loop which is either the commuatator loop γ jk if α j = α k or the figure-eight loop γ k if α j = α k . Finally, the variations commute so

Var (t,α 1 ) • • • • • Var (t,α k ) J(ε, t) = 0.
Remark. The above calculus of variations holds for any hyperbolic polycycle δ of family [START_REF] Lion | Jean Phillipe Théorème de préparation pour les fonctions logarithmico-exponentielles[END_REF].

Proposition 3.2. The rescaled variation of the integral J(ε, t) = δ(ε,t) σ * η Mε with respect to ε is an integral of the blown-up form σ * η Mε along the figure eight cycle. Proof. Let us fix t. Denote δ 0 the edge connecting two saddles p 1 and p 2 . Let (r, Y, E) be a suitable coordinate system near the edge δ 0 such that the foliation σ * F is given by two first integrals ε = r 2 E and t = E 3 (Y 2 -1) . Let γ + and γ -are two paths in Y -complex plane turning counterclokwise, respectively around p 1 = (0, 1, 0) and p 2 = (0, -1, 0) which are parametrized by τ

± : [0, 2π] φ → r(φ, ε, t), Y (φ) = ±1 + e iφ , E(φ, ε, t) . Then, we have F ± (ε, t) = γ ± σ * η Mε = 2π 0 τ * ± σ * η Mε dφ. Let L i (ε, t) = i σ * η Mε , i = 1, 2, where 1 = [1 -, -1 + ] and 2 = [-1 + , 1 -].
Then, we obtain

Var (ε,1) J(ε, t) = F + (ε, t) + L 2 (ε, t) + F -(ε, t) + L 1 (ε, t) = γ + 2 γ -1 σ * η M ε ,
where the lifting γ + 2 γ -1 is a closed path homotopic to a figure eight loop.

Corollary 3.3. The integral J possess, near ε = 0, the following expansion

J(ε, t) = J 1 (ε, t) + J 2 (ε, t) log ε, (12) 
where J i (ε, t) = +∞ k=-N i ψ ik (t)ε k , N i > 0. Let P be the following finite-dimensional functional space

P(m, M ; α 1 , . . . , α k ; ε) := φ jln (ε)t α j n log n t, φ jln ∈ C, m ≤ α j n ≤ M, 0 ≤ l ≤ k .
Lemma 3.4. We have (1) The functions J i , i = 1, 2 satisfy the following iterated variations equation

Var (t,α 1 ) • . . . • Var (t,α k ) J i (ε, t) = 0. (13) 
(2) There exists a meromorphic family of functions

P i (ε, .), i = 1, 2 in P(• • • ) such that |J i (ε, t) -P i (ε, t)||t| -M → 0 as t → 0 uniformly in ε Proof.
(1) The first item is a consequence of linearity of the variation operator Var.

(2) Applying Lemma 4.8 from [START_REF] Bobieński | Pavao Pseudo-Abelian integrals along Darboux cycles[END_REF] to the function J i , 1, 2, we have the second item.

3.3.

Proof of Theorem 1.3. The integral J(ε, t) can be viewed as the pull-back of the pseudoabelian integrals I ε (h) = I(ε, h) by the blowing-up map σ. The proof of Theorem 1.3 is now reduced to the proof of Theorem 3.5. The number #{t ∈ [0, +∞], J(ε, t) = 0} is uniformly bounded in ε.

Proof. Let > 0 be sufficiently small and α i ∈ {α 1 , . . . , α k }. We choose a slit annulus Γ i with boundary

∂Γ i = C α i R ∪ C α i ∪ C α i ± where C α i R = {|t| = R, | arg(t)| ≤ απ}, C α i = {|t| = , | arg(t)| ≤ α i π} and C α i ± = { < |t| < R, | arg(t)| = ±α i π}.
We use the argument principle on ∂Γ i :

#{t ∈ Γ i : J(ε, t) = 0} ≤ 1 2π ∆ arg ∂Γ i J = 1 2π (∆ arg C α i R J + ∆ arg C α i ± J + ∆ arg C α i J). (1)
The estimation of the increment of argument ∆ arg C α i R J of J along the big circular arc C α i R is again due to Gabrielov's theorem [START_REF] Gabrièlov | M Projections of semianalytic sets[END_REF]. [START_REF] Binyamini | On the number of zeros of Abelian integrals A constructive solution of the infinitesimal Hilbert sixteenth problem[END_REF] The estimation of the increment of argument ∆ arg C α i ± J of J along C α i + and C α i -reduces to estimating zeros of Var (t,α i ) J(ε, t). Moreover, we have

Var (t,α i ) J(ε, t) = K(e α 1 α i t , . . . , e α i-1 α i t , e α i+1 α i t , . . . , e α k α i t , ε, log ε),
where K is a meromorphic function. Hence, the function Var (t,α i ) J(ε, t) is a logarithmicoanalytic function of type 1 in variable ε (for definition see [START_REF] Lion | Jean Phillipe Théorème de préparation pour les fonctions logarithmico-exponentielles[END_REF]). Then, using Lion-Rolin preparation theorem [START_REF] Lion | Jean Phillipe Théorème de préparation pour les fonctions logarithmico-exponentielles[END_REF], the function Var (t,α i ) J(ε, t) has the following representation

Var (t,α i ) J(ε, t) = ε ν 0 0 ε ν 1 1 K(t)∆(t, ε 0 , ε 1 ), ∆(0) = 0, where ε 0 = ε -k 0 (t), ε 1 = log ε 0 -k 1 (t)
and k 0 , k 1 , K, ∆ are a logarithmico-exponential functions (for definition see [START_REF] Lion | Jean Phillipe Théorème de préparation pour les fonctions logarithmico-exponentielles[END_REF]). As the number of zeros of a logarithmico-exponential function is bounded, so the number of zeros of t → Var (t,α i ) J(ε, t) is uniformly bounded in ε.

(3) To obtain an upper bound for increment of argument ∆ arg C α i J of J along the small circular arc C α i we investigate the leading term of J at t = 0.

The function J, at t = 0, admits the following expansion

J(ε, t) = k i=1 k-1 j=0 +∞ n=-M c ijn φijn (ε)t nα i log j t, M > 0, c ijn ∈ C. (14) 
Corollary 3.3 gives us that a some coefficients φijn (ε) of the form log ε ε µ ijn , µ ijn > 0 which are not analytic (a priori are not meromorphic) and hence, we have a situation similar to that of remark 4.7 from [START_REF] Bobieński | Pavao Pseudo-Abelian integrals along Darboux cycles[END_REF]. We can no use an argument similar to those from [START_REF] Bobieński | Marcin Pseudo-Abelian integrals along Darboux cycles a codimension one case[END_REF][START_REF] Bobieński | Pavao Pseudo-Abelian integrals along Darboux cycles[END_REF][START_REF] Bobieński | Dmitry Pseudo-Abelian integrals: unfolding generic exponential[END_REF][START_REF] Novikov | On limit cycles appearing by polynomial perturbation of Darbouxian integrable systems[END_REF]. A second application of a blowing-up resolve the problem.

Blowing-up. Let C 3 be equipped with system of coordinates (J 1 , J 2 , log ε). Denote A the algebraic variety J 1 + J 2 log ε = 0 in C 3 . A can be desingularized by a composite of a locally-finite sequence of blowings-up. (a) First step. We make a quasi-homogeneous blow-up with weights (2, 1, 1). We replace the origin of C 3 by the projective space CP 2 2:1:1 which is covred by three affine charts: U 1 = {J 1 = 0} with coordinates (K 11 , K 12 ), U 2 = {J 2 = 0} with coordinates (K 21 , K 22 ) and U 3 = {log ε = 0} with coordinates (K 31 , K 32 ). The blow-up π is written as 

π 1 : J 1 = t 2 1 , J 2 = t 1 K 11 , log ε = t 1 K 12 , π 2 : J 1 = t 2 2 K 21 , J 2 = t 2 , log ε = t 2 K 22 , π 3 : J 1 = t 2 3 K 31 , J 2 = t 3 K 32 , log ε = t 3 . The total transform π * (J 1 + J 2 log ε) is given, respectively in charts U 1 , U 2 and U 3 by π * 1 (J 1 + J 2 log ε) = t 2 1 (1 + K 11 K 12 ), π * 2 (J 1 + J 2 log ε) = t 2 2 (K 21 + K 22 ), π * 3 (J 1 + J 2 log ε) = t
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 23 FIGURE 3. Real phase portrait of the foliation σ * F.
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 2 Variation relations. Define the variation operator Var as the difference between counterclockwise and clockwise continuation of F
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 3 K 31 + K 32 ), where {t 1 = 0}, {t 2 = 0} and {t 3 = 0} are local equations of the exceptional divisor and {1 + K 11 K 12 = 0}, {K 21 + K 22 = 0} and {K 31 + K 32 = 0} are local equations of strict transform of A. But we have not yet achieved a embedded resolution of singularities because the strict transform and the exceptional divisor do not have normal crossings at the origin except the chart U 1 . Further blowing-up is needed for resolution of singularities. (b) Second step. We make a directional blow-up with center C such that C| U 2 = {K 21 = K 22 = 0} and C| U 3 = {K 31 = K 32 = 0}. Then (i) the exceptional divisor -1

  (C| U 2 ) is covred by two coordinates charts U K 21 and U K 22 with coordinates ( K 21 , K 22 , t2 ) such that the explicit formula of the blowup is given, respectively in U K 21 and U K 22 byt 2 = t2 , K 21 = K 21 , K 22 = K 21 K 22 , t 2 = t2 , K 21 = K 21 K 22 , K 22 = K 22 ,(ii) in the chart U 1 the blow-up is a biholomorphism, (iii) the exceptional divisor -1 (C| U 3 ) is covred by two coordinates charts U K 31 and U K 32 with coordinates ( K 31 , K 32 , t3 ) such that the explicit formula of is given, respectively in U K 31 and U K 32 byt 3 = t3 , K 31 = K 31 , K 32 = K 31 K 32 , t 3 = t3 , K 31 = K 31 K 32 , K 32 = K 32 .The total transform * (π * (J 1 + J 2 log ε)) of π * (J 1 + J 2 log ε) is given, respectively in U K 21 , U K 22 , U K 31 and U K 32 by

Estimation. Now we take benefit from the desingularization of A to estimate the increment of argument ∆ arg C α i J of the function J along the small circular arc C α i . (a) In the chart U K 21 i.e. for

By Lemma 3.4, there exist a meromorphic function P 1 (ε, .) ∈ P(...) such that |t| -M |J 1 (ε, t)-P 1 (ε, t)| → 0 as t → 0 uniformly in ε. For each ε, we choose the leading term of P 1 (ε, .). By Gabrielov's theorem, the increment of argument of this leading term is uniformly bounded in ε.

For each ε, we choose the leading term of P 2 (ε, .). By Gabrielov's theorem, the increment of argument of this leading term is uniformly bounded in ε.

By Lemma 3.4, there exist a meromorphic function P 1 (ε, .) ∈ P(...) such that |t| -M |J 1 (ε, t)-P 1 (ε, t)| → 0 as t → uniformly in ε. For each ε, we choose the leading term of P 1 (ε, .). By Gabrielov's theorem, the increment of argument of this leading term is uniformly bounded in ε.

As log ε ∈ R, we have arg(J 2 log ε) = arg J 2 . By Lemma 3.4, there exist a meromorphic function P 2 (ε, .) ∈ P(...) such that |t| -M |J 2 (ε, t) -P 2 (ε, t)| → 0 as t → 0 uniformly in ε. For each ε, we choose the leading term of P 2 (ε, .). By Gabrielov's theorem, the increment of argument of this leading term is uniformly bounded in ε. (e) In the chart U 1 , the function J is meromorphic, by Gabrielov's theorem the increment of argument of J along small arc C α i is uniformly bounded in ε. All the above constructions depend analytically on parameters like coefficients of the polynomials P i , exponents a, a i and coefficients of the form η.