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Using some harmonic extensions on the upper-half plane, and probabilistic representations, and curvature-dimension inequalities with some negative dimensions, we obtain some new optimal functional inequalities of the Beckner type for the Cauchy type distributions on the Euclidean space. These optimal inequalities appear to be equivalent to some non tight optimal Beckner inequalities on the sphere, and the family appears to be a new form of the Sobolev inequality.

Introduction

The so-called Γ 2 criterium is a way to prove functional inequalities such as Poincaré or logarithmic Sobolev inequalities. For instance, let Ψ : R d → R be a smooth function such that ∇ 2 ψ ρ I with ρ > 0, then the probability measure

dµ ψ = e -ψ Z dx,
where Z is the normalization constant which turns µ ψ into a probability, satisfies both the Poincaré inequality,

f 2 dµ ψ - f dµ ψ 2 ≤ 1 ρ |∇f | 2 dµ ψ ,
and the logarithmic Sobolev inequality

f 2 log f 2 dµ ψ -f 2 dµ ψ log f 2 dµ ψ ≤ 2 ρ |∇f | 2 dµ ψ ,
for any smooth function f . More generally, the same hypothesis leads to a family of interpolation inequalities between Poincaré and logarithmic Sobolev, namely, for any p ∈ (1, 2],

p p -1 f 2 dµ ψ - |f | 2/p dµ ψ p ≤ 2 ρ |∇f | 2 dµ ψ ,
where the case p = 2 corresponds to the Poincaré inequality and the limit p → 1 to the logarithmic Sobolev inequality. One of the technics used to prove such inequalities is based on the Γ 2 calculus (the CD(ρ, +∞) condition) introduced by the first author with M. Émery in [B É85] (see also [START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF]). This family is the so-called Beckner inequalities, proved for the usual Gaussian measure, that is when ψ = x 2 2 , by W. Beckner in [START_REF] Beckner | A generalized Poincaré inequality for Gaussian measures[END_REF] (in that case ρ = 1). Some improvements of such inequalities can be found in [AD05, [START_REF] Dolbeault | On the Bakry-Emery criterion for linear diffusions and weighted porous media equations[END_REF][START_REF] Bolley | Phi-entropy inequalities for diffusion semigroups[END_REF]. Let us note also that recent developments for the Beckner inequalities applied to the Gaussian distribution in an optimal way have been proved in [START_REF] Ivanisvili | Improving Beckner's bound via Hermite functions[END_REF], also for uniformly strictly log-concave measures. Let us finish to quote the recent article of Nguyen [START_REF] Nguyen | Phi-entropy inequalities and asymmetric covariance estimates for convex measures[END_REF] where the author generalizes some results of this paper with a completely different method, the method is extended later in [START_REF] Dupaigne | A family of Beckner inequalities under different curvature-dimension conditions[END_REF].

On the other hand, on the sphere S d ⊂ R d , with similar arguments, the following Beckner inequalities can be stated, p ∈ (1, 2],

p p -1 f 2 dµ S - |f | 2/p dµ S p ≤ 2 d |∇f | 2 dµ S , (1) 
see [START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF], where in this situation, ρ = d -1.

It is important to notice that all Beckner inequalities (for the spherical and the Gaussian models) are optimal in the sense that constants in front of the right hand side are optimal. However, only the constant functions saturate these inequalities when p = 2. The aim of this article is two-fold. First, we explain and improve in a general context the method introduced by the last author [START_REF] Scheffer | Local Poincaré inequalities in non-negative curvature and finite dimension[END_REF] to obtain some new optimal inequalities. This method is mainly probabilistic, and makes strong use of various processes associated with the underlying structure behind the inequalities. He used this method to obtain an optimal Poincaré inequality under a CD(ρ, n) condition, which is a stronger form of the condition ∇ 2 ψ ρId, and without integration by parts. More precisely, the method is enough robust to be applied to a nonsymmetric operator even if our example is the usual Laplacian which is symmetric. This method is rather technical and is based on the CD(ρ, n) condition with a negative dimension n, together with a construction of some sub-harmonic functional. Let us note that negative dimension in the curvature-dimension CD(ρ, n) condition has been introduced and used in [START_REF] Scheffer | Local Poincaré inequalities in non-negative curvature and finite dimension[END_REF][START_REF] Ohta | K, N )-convexity and the curvature-dimension condition for negative N[END_REF][START_REF] Milman | Beyond traditional curvature-dimension. I: New model spaces for isoperimetric and concentration inequalities in negative dimension[END_REF]. Stochastic calculus is also a main tool of our approach.

Secondly, improving unpublished results of the last author, we apply this method to obtain Beckner inequalities for the generalized Cauchy type distributions, that is the probability measure on R d with density

dν b (x) = 1 Z(1 + |x| 2 ) b dx
where b > d/2 and Z is the normalization constant. This measure does not satisfy any CD(ρ, +∞) condition with ρ 0 but some CD(0, n) condition with n < 0, as will be explained in detail in the paper. We prove the following new optimal family of inequalities,

p p -1 f 2 dν b - |f | 2/p dν b p ≤ 1 (b -1) Γ(f )(1 + |y| 2 )dν b . where b d + 1 and p ∈ [1 + 1/(b -d), 2].
Of course, when p = 2 we recover a weighted Poincaré inequality for the Cauchy type distributions proved in many papers, see [Sch01, BBD + 07, [START_REF] Bonforte | Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities[END_REF][START_REF] Nguyen | Dimensional variance inequalities of Brascamp-Lieb type and a local approach to dimensional Prékopa's theorem[END_REF].

But more surprisingly, this family is equivalent to the following one on the sphere S d ,

h 2 dµ S ≤ A |h| 2/p dµ S p + 16 (m + 2 -d)(3d -2 + m) Γ S (h)dµ S , (2) 
where

m d + 2, p = 1 + 2 m -d ∈ [1, 2]
and A 1 is some explicit constant to be described below, converging to 1 as p converges to 1, or equivalently when m converges to infinity. Inequality (1) is a tight inequality, that is constant functions are optimal, on the other hand inequality (2) is a non-tight inequality. And this inequality (2) is optimal with explicit extremal functions. Moreover this new family of inequalities, or more precisely its behavior when p converges to 1, appears as a new form of a Sobolev inequality on the sphere, as many other ones described for example in [START_REF] Bakry | Sobolev inequalities in disguise[END_REF].

The paper is organized as follows. In the next section, we describe the curvature-dimension condition CD(ρ, n), even for negative n, and derive a general form of associated sub-harmonic functionals. In Section 3, we define an operator related to the generalized Cauchy type distributions, and show that it satisfies the generalized curvature-dimension condition. In Section 4, we prove the new Beckner inequalities for these generalized Cauchy distributions. Finally, in Section 5, we prove the non-tight Becker inequalities on the d-dimensional sphere and show how they relate to the Sobolev inequality.

Notations: In all this paper, d will be the dimension of the main space, and satisfies d 1, and d 2 in sections 4.2 and 5. For every

X, Y ∈ R d , X • Y = d i=1 X i Y i is the usual scalar product and |X| 2 is the Euclidean norm in R d .

General properties on curvature-dimension condition

Let (M d , g) be a smooth connected d-dimensional Riemannian manifold and ∆ g its Laplace-Beltrami operator. The associated Ricci tensor is denoted Ric g . For any diffusion operator L on M (that is a second order semi-elliptic differential operator with no zero-order term, see [START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF]) we define the so-called carré du champ operator

Γ L (f, g) = 1 2 [L(f g) -f Lg -gLf ] with Γ L (f, f ) = Γ L (f ) and its iterated operator Γ L 2 (f, f ) = Γ L 2 (f ) = 1 2 L(Γ L (f )) -Γ L (f, Lf ),
for any smooth functions f and g. We write Γ (resp. Γ 2 ) instead Γ L (resp. Γ L 2 ) when there is no possible confusion.

Definitions

Definition 1 (CD(ρ, n) condition) An operator L = ∆ g + X with X a smooth vector field satisfies a CD(ρ, n) condition with ρ ∈ R and n

∈ R \ [0, d) if Γ 2 (f ) ρΓ(f ) + 1 n (Lf ) 2 , (3) 
for any smooth function f .

As we shall see in the proof in Lemma 2, this condition will never hold when n ∈ [0, d) but we will extend it for n = 0.

Lemma 2 ([Bak94]) For any ρ ∈ R and n / ∈ [0, d] the operator L = ∆ g + X satisfies a CD(ρ, n) if and only if n -d n (Ric(L) -ρg) X ⊗ X n , (4) 
and when n = d it reduces only to X = 0 and the condition becomes Ric g ρg. In the definition, Ric(L) = Ric g -∇ S X where ∇ S X is the symmetrized tensor of ∇X.

Proof. -For completeness, we give a sketch of proof of this result which can be helpful for the rest of the paper. For any smooth function f , the Bochner-Lichnerowicz-Weitzenbock formula states that (cf. [BGL14, Sec C.5]),

Γ 2 (f ) = ||∇ 2 f || 2 H.S. + Ric g (∇f, ∇f ) -∇X S (∇f, ∇f ) = ||∇ 2 f || 2 H.S. + Ric(L)(∇f, ∇f ), (5) 
where ||∇ 2 f || H.S. is the Hilbert-Schmidt norm of f . On a fixed point x ∈ M , we choose a local chart such that the metric g = (g i,j ) is the identity matrix at the point x. In that case,

∇ 2 f = (∇ i,j f ) is a d-dimensional symmetric matrix denoted Y , Γ(f ) = d i=1 (∂ i f ) 2 and let denote Z = ∇f . Since d i,j=1 Y 2 i,j = tr(Y 2 ), the CD(ρ, n) condition (3) becomes tr(Y 2 ) + Z • RZ ρZ • Z + 1 n (tr(Y ) + X • Z) 2 ,
where R is a matrix representing the coordinates of the tensor Ric(L) at x. 

Y 2 ii + Z • RZ ρZ • Z + 1 n ( d i=1 Y ii + X • Z) 2 . By taking Y ii all equals, from d i=1 Y 2 ii 1 d ( d i=1 Y ii ) 2 , the previous inequality is equivalent to 1 d ( d i=1 Y ii ) 2 + Z • RZ ρZ • Z + 1 n ( d i=1 Y ii + X • Z) 2 .
Let y = d i=1 Y ii , then the inequality becomes

y 2 d + Z • RZ ρZ • Z + 1 n (y + X • Z) 2 .
In other words, the CD(ρ, n) condition is satisfied if and only if, for every y ∈ R and,

Z ∈ R d y 2 1 d - 1 n -y 2 n X • Z + Z • (R -ρId)Z - 1 n (X • Z) 2 0.
Then, either n = d, then we need to assume that X = 0 and Z • (R -ρId)Z 0, either 1 d -1 n > 0 (with translates to n / ∈ [0, d]) and for any vector Z,

(X • Z) 2 n ≤ n -d n Z • (R -ρId)Z,
that is condition (4).

Next we define the tensor curvature-dimension condition, T CD(ρ, n).

Definition 3 (T CD(ρ, n) condition and quasi-models

QM (ρ, n)) Let ρ ∈ R, n ∈ R \ {d}
and an operator L = ∆ g + X with X a smooth vector field.

• L satisfies a T CD(ρ, n) condition if n -d n Ric(L) -ρg X ⊗ X n , (6) 
when n = 0, and

-d(Ric(L) -ρg) ≤ X ⊗ X, when n = 0. • The operator L is a quasi model QM (ρ, n) if (n -d)(Ric(L) -ρg) = X ⊗ X. (7) 
Indeed, this new definition allows us to extend (3) when n ∈ [0, d), and we shall see later crucial examples of such operators, which are even quasi-models.

Sub-harmonic functionals

In this section, we construct sub-harmonic functionals from harmonic functions under T CD(ρ, n).

We systematically explore the most general ones, in view of further use. The next result is rather technical, and we shall see in the next sections how it leads to Poincaré inequalities or Beckner inequalities.

Theorem 2.1 (Sub-harmonic functionals under T CD(ρ, n) or QM (ρ, n))

Let Φ : I × [0, ∞) → R be a smooth function (I open interval of R), and denote Φ i and Φ ij its first and second derivatives, i, j ∈ {1, 2}. Let L = ∆ g + X, where X is a smooth vector field.

Let ρ ∈ R and n ∈ R \ {d}. We assume that L satisfies the T CD(ρ, n) condition with n ∈ R \ (0, d] (or the QM (ρ, n) condition). Then, if F : M → I is smooth and satisfies L(F ) = 0, then L[Φ(F, Γ(F ))] 0 as soon as Φ satisfies at any point (y, z) ∈ I × [0, ∞), one of the three conditions below,

             Φ 2 (y, z) > 0; Φ 2 (y, z) n + 1 -d n -d + 2zΦ 22 (y, z) > 0;
(n -d) nΦ 2 (y, z) + 2(n -1)zΦ 22 (y, z) > 0;

2ρΦ 2 (y, z) + Φ 11 (y, z) -2(n -1)

zΦ 2 12 (y,z) nΦ 2 (y,z)+2(n-1)zΦ 22 (y,z) 0, (8) or            Φ 2 (y, z) = 0; zΦ 22 (y, z) = 0; zΦ 12 (y, z) = 0; zΦ 11 (y, z) 0, (9) or      Φ 2 (y, z) = 0; zΦ 22 (y, z) > 0; Φ 11 (y, z)Φ 22 (y, z) -Φ 2 12 (y, z) 0. ( 10 
)
Remark 4

• For simplicity, we omit the variables y and z inside the function

Φ. When n / ∈ [0, d], the condition Φ 2 n+1-d n-d + 2Φ 22 z > 0 is contained into Φ 2 + 2 n-1 n zΦ 22 > 0. Hence, provided that n / ∈ [0, d], then (8) boils down to            Φ 2 > 0; Φ 2 + 2 n -1 n zΦ 22 > 0; 2ρΦ 2 + Φ 11 -2(n -1) Φ 2 12 z nΦ 2 + 2(n -1)Φ 22 z 0. ( 11 
)
It is interesting to notice that when n / ∈ [0, d] the dimension d does not appear in the previous conditions (11).

• As pointed out by a referee, condition (8) has a nice formulation by using a new variable coming from [START_REF] Ivanisvili | Isoperimetric functional inequalities via the maximum principle: the exterior differential systems approach[END_REF]. The authors set

M (y, u) = Φ(x, √ u), then condition (8) is equivalent to, for any (u, y) ∈ R × (0, ∞), (n -d) M 11 (y, u) + ρ u M 12 (y, u) M 12 (y, u) M 12 (y, u) M 22 (y, u) + 1 (n-1)u M 2 (y, u) 0,
together with the conditions M 2 (y, u) > 0 and

M 22 (y, u) + 1 (n -1)u M 2 (y, u) > 0
where we use again the notation

M ij = ∂ 2 ij M .
At the moment, we are not aware of any implications of this new formulation of our condition (8).

Proof. -The proof is an improvement of the proof of Lemma 2.

If LF = 0, then from the diffusion property of L (cf. [BGL14, Sec 1.14]),

L(Φ(F, Γ(F ))) = Φ 2 LΓ(F ) + Φ 11 Γ(F ) + 2Φ 12 Γ(F, Γ(F )) + Φ 22 Γ(Γ(F ), Γ(F )) = 2Φ 2 Γ 2 (F ) + Φ 11 Γ(F ) + 2Φ 12 Γ(F, Γ(F )) + Φ 22 Γ(Γ(F ), Γ(F )), ( 12 
)
since LΓ(F ) = 2Γ 2 (F ) when LF = 0 and for simplicity we note Φ ij = Φ ij (F, Γ(F )). At some point x ∈ M , we write all the expressions appearing in L(Φ(F, Γ(F ))) in terms of local charts. In view of (5), the resulting expressions involve only ∇∇F and ∇F . We chose a system of coordinates such that at this point the metric g is identity and ∇∇F is diagonal, with eigenvalues (λ i ) 1≤i≤d . The components of ∇F are denoted Z i , and the components of X are denoted -X i . Since L(F ) = 0, the constraint can be written,

d i=1 λ i = d i=1 X i Z i . and Γ(F, Γ(F )) = 2 d i=1 λ i Z 2 i , Γ(Γ(F ), Γ(F )) = 4 d i=1 λ 2 i Z 2 i , Γ(F ) = d i=1 Z 2 i .
From the T CD(ρ, n) conditions and (5), the Γ 2 operator has a lower bound,

Γ 2 (F ) = d i=1 λ 2 i + Ric(L)(Z, Z) d i=1 λ 2 i + ρ d i=1 Z 2 i + 1 n -d d i=1 X i Z i 2 .
Under the T CD(ρ, n) this is an inequality and we need to assume at this stage that n / ∈ (0, d]. When the operator is a quasi-model QM (ρ, n) we only need to assume that n = d.

Since Φ 2 0, from (12), we just have to minimize the following expression,

L(Φ(F, Γ(F ))) 2 2Φ 2 d i=1 λ 2 i + ρ d i=1 Z 2 i + 1 n -d d i=1 X i Z i 2 + Φ 11 d i=1 Z 2 i + 4Φ 12 d i=1 λ i Z 2 i + 4Φ 22 d i=1 λ 2 i Z 2 i ,
for all (λ i ) and Z i , under the constraint

d i=1 λ i = d i=1 X i Z i . Let z = d i=1 Z 2 i = Γ(F )
and Z 2 i = z i , then the expression becomes by using the constraint (after dividing by 2)

Φ 2 d i=1 λ 2 i + ρz + 1 n -d d i=1 λ i 2 + Φ 11 2 z+2Φ 12 d i=1 λ i z i +2Φ 22 d i=1 λ 2 i z i .
We first minimize on the simplex {z i 0, d i=1 z i = z} where z > 0 is fixed. We forget the constraint { d i=1 ±X i √ z i = d i=1 λ i } since it is enough to minimize along a bigger set. We first observe that the expression is affine in z i . The vector (z i ) 1≤i≤d belongs to the simplex {z i 0, d i=1 z i = z}, so that the extremals of this expression ((λ i ) 1≤i≤d and z > 0 are fixed) is obtained at the one of the extreme points of the simplex. That is one of the z i is z and all the others are 0. Assuming that z 1 = z = 0, one is now led to minimize

λ 2 1 (Φ 2 + 2Φ 22 z) + 2Φ 12 λ 1 z + Φ 2 d i=2 λ 2 i + Φ 2 n -d d i=1 λ i 2 + z Φ 2 ρ + Φ 11 2 = λ 2 1 (Φ 2 n + 1 -d n -d + 2Φ 22 z) + λ 1 2Φ 12 z + 2 Φ 2 n -d d i=2 λ i + Φ 2 d i=2 λ 2 i + 1 n -d d i=2 λ i 2 + z Φ 2 ρ + Φ 11 2 
Then, we minimize in λ 1 . This imposes the second condition of (8), that is

Φ 2 n + 1 -d n -d + 2Φ 22 z > 0,
recall that z = Γ(F ). And the minimizer is given by

L(Φ(F, Γ(F ))) 2 Φ 2 d i=2 λ 2 i + 1 n -d d i=2 λ i 2 + z Φ 2 ρ + Φ 11 2 - (Φ 12 z + Φ 2 n-d d i=2 λ i ) 2 Φ 2 n+1-d n-d + 2Φ 22 z Let assume that Φ 2 > 0. Decompose the vector Λ = (λ i ) 2≤i≤d into a vector parallel to (1, • • • , 1) and a vector u = (u i ) 2≤i≤d orthogonal to it, that is Λ = λ(1, • • • , 1) + u with d i=2 u i = 0. From this decomposition, we have d i=2 λ i = (d -1)λ and d i=2 λ 2 i = d i=2 (λ + u i ) 2 (d -1)λ 2 .
We see that we need to find the minimum in λ of

Φ 2 (d -1)λ 2 + (d -1) 2 n -d λ 2 + z Φ 2 ρ + Φ 11 2 - (Φ 12 z + (d-1)Φ 2 n-d λ) 2 Φ 2 n+1-d n-d + 2Φ 22 z = λ 2 Φ 2 (d -1) nΦ 2 + 2(n -1)zΦ 22 (n -d)(Φ 2 n+1-d n-d + 2Φ 22 z) -λ 2(d -1)Φ 2 Φ 12 z (n -d)(Φ 2 n+1-d n-d + 2Φ 22 z) - Φ 2 12 z 2 Φ 2 n+1-d n-d + 2Φ 22 z + z Φ 2 ρ + Φ 11 2 .
Then, once again, to get a minimizer in λ, we also need

(n -d)(nΦ 2 + 2(n -1)Φ 22 z) > 0,
which is the third assumption in (8). Then, the minimizer is

L(Φ(F, Γ(F ))) 2 - (d -1)Φ 2 Φ 2 12 z 2 (n -d)(nΦ 2 + 2(n -1)zΦ 22 )(Φ 2 n+1-d n-d + 2Φ 22 z) - Φ 2 12 z 2 Φ 2 n+1-d n-d + 2Φ 22 z + z Φ 2 ρ + Φ 11 2 = -z 2 (n -1)Φ 2 12 nΦ 2 + 2z(n -1)Φ 22 + z Φ 2 ρ + Φ 11 2 0,
which is the fourth assumption in (8) since z 0. When Φ 2 = 0 at some point (y, z), we follow the inequality to check the assumptions needed.

Corollary 5 (Sub-harmonic functionals under T CD(0, n)) Let assume that L = ∆ g + X satisfies a T CD(0, n) with n < 0. Let θ be a positive and smooth function on an interval

I ⊂ R such that 2 n -1 n (θ ) 2 ≤ θθ . ( 13 
)
Then for any function F : M → I such that LF = 0,

L(θ(F )Γ(F )) 0. ( 14 
)
In particular, for any β ∈ [n/(2 -n), 0] and nonnegative harmonic function F ,

L(F β Γ(F )) 0.
When n goes to -∞, the condition (13) on θ degenerates into 2θ ≤ θθ . This means that the function Φ such that Φ = θ is admissible : Φ is convex and 1/Φ is concave.

Moreover, when n ∈ (-∞, 0), the extremal case is given by θ(x) = x n/(2-n) , where ( 13) is an equality.

Although we shall mainly use Corollary 5 instead of general Theorem 2.1, the proof in this last case is not really simpler than the general one.

The operators

Q (m) t Definition 6 (The operators Q (m) t ) For any t 0, m > 0, x ∈ R d , and any bounded func- tion f : R d → R, let Q (m) t (f )(x) = 1 c(m, d) f (yt + x) (1 + |y| 2 ) m+d 2 dy, (15) 
where

c(m, d) = 1 (1 + |y| 2 ) m+d 2 dy = Γ( m 2 ) Γ( m+d 2 ) π d/2 (16) is the normalization constant, such that Q (m)
t (1) = 1. In other words, for any t > 0,

Q (m) t (f )(x) = f (y)q t (x, dy),
where the kernel q t is given by

q t (x, dy) = 1 c(m, d) t m (t 2 + |x -y| 2 ) m+d 2 dy. (17) 
The probability measure 1 c(m,d)

(1 + |y| 2 ) -m+d 2 dy
in R d , with m > 0, is known in statistics as the multivariate t-distribution with m degrees of freedom. There is a huge literature on the subject, see for instance [START_REF] Kotz | Multivariate t distributions and their applications[END_REF]. Through an integration by parts (or from the computation of normalization constants) we may notice the useful formula,

c(m, d) c(m -2, d) = m -2 m -2 + d , (18) 
for any m > 2.

Proposition 7 (Harmonicity of

Q (m) t f ) Let m > 0.
For any smooth and compactly supported function f , the map (0, +∞)

× R d (t, x) → Q (m) t (f )(x) is solution of the elliptic equation ∆ (m) Q (m) t (f ) = 0 where ∆ (m) = ∆ R d + ∂ 2 tt + 1 -m t ∂ t . (19) 
Proof. -This can be proved directly using the expression of the kernel (17).

From Proposition 7 (or from a direct computation) the operators (Q

(m) t ) t 0 admit another formulation. Let (Z s ) s 0 = (X s , Y s ) s 0 ∈ R d × R be a diffusion process with generator ∆ (m) starting from (x, t) ∈ R d × (0, ∞). That is (X s ) s 0 is a Brownian motion up to a factor √ 2 and (Y s ) s 0 is independent of (X s ) s 0 with generator ∂ 2 t + 1-m t ∂ t .
The process (Y s ) s 0 is a Bessel process with parameter m starting from t > 0. When m > 0, the stopping time S = inf{s > 0, Y s = 0} is finite a.s., and since Q 

Q (m) t (f )(x) = E x,t (f (X S )), (20) 
for every smooth and bounded function f . In other words, since S and (X s ) s 0 are independent, if σ m (s, t)ds denotes the law of the hitting time S starting from t > 0,

Q (m) t (f )(x) = ∞ 0 P s f (x)σ m (s, t)ds, (21) 
where (P s ) s 0 is the heat semi-group in R d associated to the Euclidean Laplacian ∆. From the definition of the operators

Q (m) t
and the definition of the equation (P s ) s 0 ,

P s f (x) = f (y) exp - |x -y| 2 4s dy (4πs) d/2 ,
and this gives a way to compute the law σ m of the hitting time. One obtains, for any t > 0, the probability measure

σ m (s, t)ds = 1 2 m Γ(m/2) t m exp(-t 2 /4s) s m/2+1 ds. (22) 
This formula can also be found for instance in [START_REF] Borodin | Handbook of Brownian motion -facts and formulae[END_REF].

The map (t, s) → σ m (t, s) satisfies

∂ s = ∂ 2 tt + 1 -m t ∂ t ,
with Dirichlet boundary conditions, σ m (t, 0) = 0 for every t > 0, and σ m (0, s)ds = δ 0 (s). Moreover the RHS of the previous formula is the generator of the Bessel process.

Let us note that the links between the law of the stopping time and the generator explained above is quite general and has nothing to do in particular with Bessel processes, see for instance [Pav14, Sec 7.2].

From this observation and an integration by parts, one recovers that the map (t,

x) → Q (m) t f (x) satisfies the elliptic equation ∆ (m) Q (m) t (f ) = 0.
Lemma 8 Let m > 0 and p ∈ (0, m/2), then for any smooth and bounded function g,

E x,t (S p g(X S )) = t 2p Γ( m 2 -p) 4 p Γ( m 2 ) Q (m-2p) t (g)(x).
In particular, when p = 1 and m > 2,

E x,t (Sg(X S )) = t 2 2(m -2) Q (m-2) t (g)(x). ( 23 
)
Proof.

-The formula can be obtained from a direct computation since we have

E x,t (S p g(X S )) = 1 2 m Γ(m/2)(4π) d/2 g(y) ∞ 0 s p-m+d 2 -1 exp - |x -y| 2 4s - t 2 4s ds dy = t 2p Γ( m 2 -p) 2 m Γ(m/2)(4π) d/2 P s g(y)σ m-2p (s)ds.
Lemma 9 (QM condition for ∆ (m) ) For any m = 1, the operator

∆ (m) on R d × (0, ∞) is a quasi-model QM (0, d -m + 2).
Proof. -For that model,

∆ (m) = ∆ R d+1 + 1 -m t ∂ t , that is X = 1-m t ∂ t . Then Ric(L) = 1-m t 2 (∂ t ) 2 and X ⊗ X = (1-m) 2 t 2
(∂ t ) 2 and the result follows from Definition (7).

Beckner and Φ-entropy inequalities for Cauchy type distributions 4.1 Beckner inequalities for Cauchy type distributions

Let f : R → [0, ∞) be a smooth and compactly supported function, and let

F (t, x) = Q (m) t (f )(x) with m > 0.
Let β ∈ R. From proposition (7), F is ∆ (m) -harmonic, and

∆ (m) (F β+2 ) = (β + 2)(β + 1)F β Γ ∆ (m) (F ).
As in Section 3, we can write,

E x,t (F (Z S ) β+2 ) = E x,t (F (Z 0 ) β+2 ) + (β + 2)(β + 1) ∞ 0 E x,t (F β (Z s )Γ ∆ (m) (F )(Z s )1l s≤S )ds,
where (Z s ) s 0 is the Markov process in R d+1 with generator ∆ (m) . Since F (Z S ) = f (X S ), from (20) we have the general equation,

Q (m) t (f β+2 ) = Q (m) t (f ) β+2 + (β + 2)(β + 1) ∞ 0 E x,t (F β (Z s )Γ ∆ (m) (F )(Z s )1l s≤S )ds. (24)
Again, from Dynkin's formula applied to F β Γ ∆ (m) (F ), we have

E x,t (F β (Z s )Γ ∆ (m) (F )(Z s )1l s≤S ) = E x,t (F β (Z S )Γ ∆ (m) (F )(Z S )1l s≤S ) -E x,t S s ∆ (m) (F β Γ ∆ (m) (F ))(Z u )du1l s≤S .
In other words,

Q (m) t (f β+2 ) -Q (m) t (f ) β+2 = (β + 2)(β + 1)E x,t SF β (Z S )Γ ∆ (m) (F )(Z S ) -(β + 2)(β + 1) ∞ 0 E x,t S s ∆ (m) (F β Γ ∆ (m) (F ))(Z u )du1l s≤S ds. ( 25 
)
Let now assume that m d + 2, and denote

n = d -m + 2 (n ≤ 0). Let also assume that β ∈ [ n 2-n , 0] (that is β ∈ [-1 + 2 m-d , 0], 2 m-d > 0). Since n ≤ 0, ∆ (m) satisfies T CD(0, n) (Lemma 9) and from Corollary 5, ∆ (m) (F β Γ ∆ (m) (F )) 0. Equation (25) becomes Q (m) t (f β+2 ) -Q (m) t (f ) β+2 ≤ (β + 2)(β + 1) ∞ 0 E x,t (F β (Z S )Γ ∆ (m) (F )(Z S )1l s≤S )ds, which is Q (m) t (f β+2 ) -Q (m) t (f ) β+2 ≤ (β + 2)(β + 1)E x,t (SF β (Z S )Γ ∆ (m) (F )(Z S )). Starting form Z 0 = (x, t), F β (Z S )Γ ∆ (m) (F )(Z S ) = f β (X S )Γ ∆ (m) (F )(X S , 0) = f β (X S ) Γ(f )(X S ) + (∂ t F ) 2 (X S , 0) , since Γ ∆ (m) (F ) = Γ(F ) + (∂ t F ) 2 where Γ(f ) = |∇f | 2 , (f : R d → R) is the carré du champ operator associated to the Euclidean Laplacian in R d . From Proposition 7, since m > 1, ∂ t F (x, 0) = 0 then F β (Z S )Γ(F )(Z S ) = f β (X S )Γ(f )(X S ).
We can now apply Lemma 8, to get

Q (m) t (f β+2 ) -Q (m) t (f ) β+2 ≤ (β + 2)(β + 1) t 2 2(m -2) Q (m-2) t (f β Γ(f )). ( 26 
)
Replacing f β+2 by f 2 and setting p = β + 2 in (26) we have obtained, 

p p -1 Q (m) t (f 2 ) -Q (m) t (f 2/p ) p ≤ 2t 2 m -2 Q (m-2) t (Γ(f )). ( 27 
)
When p = 2 (m d + 2), we obtain the Poincaré inequality for every smooth function f ,

Q (m) t (f 2 ) -Q (m) t (f ) 2 ≤ t 2 (m -2) Q (m-2) t (Γ(f )). ( 28 
)
For t = 1 and x = 0 in the previous inequality (recall that the inequality depends also on the space variable x ∈ R d ), we have obtained the Beckner inequality for the Cauchy distribution

1 c(m, d) 1 (1 + |y 2 |) m+d 2
.

So, for any m d + 2 and p

∈ [1 + 2 m-d , 2] one has, p p -1 f 2 (1 + |y| 2 ) m+d 2 dy c(m, d) - f 2/p (1 + |y| 2 ) m+d 2 dy c(m, d) p ≤ 2 m -2 Γ(f ) (1 + |y| 2 ) m+d-2 2 dy c(m, d) . (29) 
The inequality can be written as a weighted Poincaré-type inequality for a generalized Cauchy 

∈ [1 + 1 b-d , 2], p p -1 f 2 dν b - f 2/p dν b p ≤ 1 (b -1) Γ(f )(1 + |y| 2 )dν b , (30) 
for any smooth and nonnegative function f . Moreover, the inequality is optimal, that is, fixing p ∈ [1 + 1 b-d , 2], the constant 1 (b-1) is the best possible in the inequality (30).

The case p = 2 can be extended to any smooth function f (that may not be nonnegative). Then we obtain the following inequality, proved in [Sch01, BBD + 07, BDGV10, Ngu14].

Corollary 10 (Poincaré inequality for Cauchy type distributions) For any b d + 1, the measure ν b satisfies a Poincaré type inequality,

f 2 dν b - f dν b 2 ≤ 1 2(b -1) Γ(f )(1 + |y| 2 )dν b , (31) 
for any smooth function f . Moreover, functions y → y i with 1 ≤ i ≤ d are extremal functions.

Proof. -We only have to prove optimality. Apply the Poincaré inequality (31) to the function y → y i for some 1

≤ i ≤ d, ν b (y 2 i ) ≤ 1 2(b -1) ν b (1 + |y| 2 ) = 1 2(b -1) (1 + ν b (|y| 2 )), or equivalently 1 d ν b (|y| 2 ) ≤ 1 2(b -1) (1 + ν b (|y| 2 )).
But the last inequality is an equality since, from (18),

ν b (|y| 2 ) = d 2b-2-d .
Remark 11

• Inequality (30) is equivalent to (27); indeed we only have to replace the map y → f (y) by y → f (ty + x).

• We cannot reach the logarithmic Sobolev inequality, since in our computation p 1 + 1/b and the logarithmic Sobolev inequality requires that p goes to 1.

• Setting f = 1 + εg in inequality (30) and using a Taylor expansion for small ε we get back the optimal Poincaré inequality (31), since

p p -1 f 2 dν b - f 2/p dν b p = 2ε 2 g 2 dν b - gdν b 2 + o(ε 2 ).
We do not know if there are extremal functions apart of constant functions.

• Corollary 10 has also been proved by Nguyen [Ngu14, Cor. 14], using the Brunn-Minkowski theory (see also the approach in [START_REF] Bobkov | Weighted Poincaré-type inequalities for Cauchy and other convex measures[END_REF][START_REF] Arnaudon | Intertwinings and generalized Brascamp-Lieb inequalities[END_REF]).

In the one dimensional case, the exact value has been computed by Bonnefont, Joulin and Ma in [BJM16, Thm 3.1]. Their result is more general, since they compute the optimal constant for every b > 1/2. The constant of (31) with d = 1 is

     1 2(b -1) if b 3/2; 4 (2b -1) 2 if 1/2 < b ≤ 3/2.
It is interesting to notice that there are two regimes, depending on the range of the parameter b. Actually, we are not able with our method to reach this range, even in dimension 1.

• By applying inequality (30) to the function x → f ( √ 2bx) and letting b → +∞, the inequality becomes the optimal Beckner inequality for the Gaussian measure

γ in R d , p p -1 f 2 dγ - f 2/p dγ p ≤ 2 Γ(f )dγ,
for any smooth and positive function f . This inequality is proved by W. Beckner [START_REF] Beckner | A generalized Poincaré inequality for Gaussian measures[END_REF].

In that case the inequality holds for any p ∈ (1, 2], and the limit case (when p → 1) leads to the optimal Logarithmic Sobolev inequality for the Gaussian measure.

• At the same time, Nguyen proves in [START_REF] Nguyen | Phi-entropy inequalities and asymmetric covariance estimates for convex measures[END_REF] the Beckner inequality (30) for a range of parameter p strictly contained in our interval

[1 + 1/(b -d), 2].
Even if, with his method, the parameter p can not reach the full interval, Nguyen is able to extend the result to a general class of probability measures with a convexity assumption. The method is actually improved in a more general context in [START_REF] Dupaigne | A family of Beckner inequalities under different curvature-dimension conditions[END_REF].

Tightness of the inequalities

We are interested in the tightness of inequality ( 27), in the sense of the curvature-dimension condition. In this whole of this section we assume that d 2.

Lemma 12 (Taylor expansion of (Q

(m)
t ) For any m > 4, we have

Q (m) t = Id + ∆ 2(m -2) t 2 + ∆ 2 8(m -2)(m -4) t 4 + o(t 4 ). ( 32 
)
The formula has to be understood as follows, for any smooth and compactly supported function f , the remainder term o(t 4 ) is uniformly bounded with respect to the variable x.

Proof. -The formula can be checked directly. On the other hand, one can deduce the formula with functional analysis, at least formally. Since Q

(m) t is ∆ (m) -harmonic from Proposition 7 then, Q (m) t
is a function G m (t, ∆), from the functional analysis point of view. By the definition (19) of ∆ (m) , the function G m satisfies for t 0, x < 0, the differential equation

xG m (t, x) + 1 -m t ∂ t G m (t, x) + ∂ 2 tt G m (t, x) = 0, with the boundary condition G m (0, x) = 1. Solution of such differential equation is given by, G m (t, x) = H m (-t 2 x)
where H m satisfies for any λ 0,

4λH m (λ) -2(m -2)H m (λ) -H m (λ) = 0.
An asymptotic development H m (λ) = p 0 c p λ p gives c 0 = 1 (since G m (0, x) = 1) and

c p+1 = 1 2(p + 1)(2p -m + 2) c p .
Considering the fourth order term in Taylor's expansion of Q

t , we get (32), that is

c 1 = 1 2(2-m) and c 2 = 1 8(m-4)(m-2) .
This Lemma is fundamental. The Taylor expansion in (27), or equivalently in (28), gives in return the CD(0, d) conditions. We say then that the inequalities are Γ 2 -tight and nothing has been lost in terms of curvature-dimension condition (3), in other words the Taylor expansion of the inequality implies the CD(0, d) condition.

To see that, it is enough to compute the Taylor expansion of the inequality (27), when t goes to 0. It is important to fix β = 2-m+d m-d = -1 + 2 m-d the extremal bound of the admissible interval of β.

It is clear that the zero order terms vanish, it is also not difficult to observe that the second order terms also vanish. Therefore we only have to compute the fourth order terms and we obtain the following expression,

1 8(m -4)(m -2) ∆ 2 (f β+2 ) - (β + 2) 8(m -4)(m -2) f β-1 ∆ 2 (f ) - (β + 2)(β + 1) 8(m -2) 2 f β-1 ∆(f ) 2 ≤ β(β + 1)(β + 2) 2(m -4)(m -2) Γ(f, Γ(f ))f β-1 + β(β + 1)(β + 2) 4(m -4)(m -2) f β-1 ∆(f )Γ(f ) + (β -1)β(β + 1)(β + 2) 4(m -4)(m -2) f β-2 Γ(f ) 2 + (β + 1)(β + 2) 4(m -4)(m -2) f β ∆Γ(f ).
Expanding the term ∆ 2 (f β+2 ) (recall that β = 2-m+d m-d ), after a bit of algebra, we finally get,

Γ 2 (f ) β + 1 d(β + 1) -2β (∆f ) 2 -β Γ(f, Γ(f )) f - β(β -1) 2 Γ(f ) 2 f 2 . (33) 
First, observe that if β = 0 that is m = d + 2 then the previous inequality becomes

Γ 2 (f ) 1 d (∆f ) 2 ,
in others words we recover the CD(0, d) condition on the Laplacian ∆.

It is more subtle to notice that, for any β ∈ (-1, 0) fixed, inequality (33) implies the same condition CD(0, d). It is more tricky since, setting f = 1 + εg with ε → 0, one infers that (33) already implies Γ 2 (g)

β+1 d(β+1)-2β (∆g) 2 which is the CD(0, d(β+1)-2β β+1
) condition, weaker than the CD(0, d) condition, since d(β+1)-2β β+1 d. The way to recover the CD(0, d) condition is to replace f by Φ(f ) in (33), where Φ is a smooth function.

By using the diffusion properties in (33) one has,

Φ 2 (Γ 2 (f ) -a(∆f ) 2 ) + Φ Γ(f ) 2 (1 -a) -c Φ 4 Φ 2 Γ(f ) 2 + Φ Φ (Γ(f, Γ(f )) -2a∆f Γ(f )) -2b Φ 2 Φ Φ Γ(f ) 2 -b Φ 3 Φ Γ(f, Γ(f )) 0,
where a = β+1 d(β+1)-2β , b = -2β and c = -β(β -1) and for simplicity we omit the variable f in the function Φ. It implies that the quadratic form with respect to the variables Φ , Φ 2 /Φ and Φ is positive, then the determinant of its matrix is positive. We get

Γ 2 (f ) 1 d (∆f ) 2 + -ac -a 2 c(a -1) -b 2 - 1 d (∆f ) 2 + -b 2 -c -b 2 a 4(c(a -1) -b 2 ) Γ(f, Γ(f )) Γ(f ) 2 + b 2 + ac c(a -1) -b 2 Γ(f, Γ(f )) Γ(f ) ∆f.
After an unpleasant computation, the inequality is independent of β, and may be written as follows

Γ 2 (f ) 1 d (∆f ) 2 + d d -1 Γ(f, Γ(f )) 2Γ(f ) - 1 d ∆f 2 ,
which is a reinforced CD(0, d) condition. Indeed, in all these computations, we could have replaced the Laplace operator ∆ in R d by any operator satisfying the CD(0, d) condition. Then we could have constructed the associated Q (m) t operator through (21), and could have obtained also a similar family of Beckner inequalities for this Q (m) t , still equivalent to the starting CD(0, d) condition. The main difference in the Euclidean case is that then the family of inequalities for Q (m) t (x) reduces to the same family for Q (m) 1 (0), through dilations and translations.

Φ-entropy inequalities for Cauchy type distributions

We can extend Beckner's inequalities to a general Φ-entropy inequality. For any convex function Φ on an interval I ⊂ R, let us define the Φ-entropy Ent Φ µ for a measure µ (or a kernel) and a function f on I,

Ent Φ µ (f ) = Φ(f )dµ -Φ f dµ .
Results of Section 4.1 can be put in the setting of the Φ-entropy easily.

Definition 13 (n-Admissible functions) Let Φ : I → R be a smooth function on an interval I ⊂ R and let n < 0. We say that Φ is n-admissible if Φ > 0 on I and (Φ )

2-n n is concave. In other words, Φ is n-admissible if and only if Φ > 0 and moreover

2 n -1 n (Φ (3) ) 2 ≤ Φ Φ (4) ,
that is θ = Φ satisfies condition (13).

When n goes to -∞, an (-∞)-admissible function is just a function Φ such that, Φ > 0 on I and (1/Φ ) is concave. Many Φ-entropy inequalities have been proved for such a function Φ under the curvature-dimension condition CD(ρ, ∞) (see [START_REF] Chafaï | Entropies, convexity, and functional inequalities: on Φ-entropies and Φ-Sobolev inequalities[END_REF][START_REF] Bolley | Phi-entropy inequalities for diffusion semigroups[END_REF]). In our computations, the case n = -∞ is then similar to the case n = +∞.

We can state the following result. 

Ent Φ Q (m) t (f ) ≤ t 2 2(m -2) Q (m-2) t (Φ (f )Γ(f )), (34) 
for any smooth function f on I.

The inequality is optimal in the sense that if inequality (34) holds for a some function Φ, the constant t 2 2(m-2) is the optimal one.

Corollary 14 (Φ-entropy inequality for Cauchy type distributions) Let b d + 1 and Φ an (2d -2b + 2)-admissible function on an interval I, then,

Ent Φ ν b (f ) ≤ 1 4(b -1) Φ (f )Γ(f )(1 + |x| 2 )dν b ,
for any smooth function f on I. The inequality is optimal.

The proof is the same as the one of Theorem 4.1, using the sub-harmonicity inequality (14), so we skip it, the optimality being proved in the same way.

A Beckner-type inequality on the sphere

In this section we are looking for the link between the family of Beckner inequalities (4.2) for ν b (or Q (m) t ) and a family of Beckner inequalities on the sphere. In the whole of this section we assume that d 2.

The unit sphere S d ⊂ R d+1 can be seen in R d through the stereographic projection, with the carré du champ operator on the sphere

Γ S (f ) = ρ 4 4 Γ(f ),
where ρ(x) = 1 + |x| 2 and the spherical measure

µ S (dx) = 1 c(d, d) 1 ρ 2d dx,
where the normalization constant c(d, d) has been defined in (16) (see [BGL14, Sec 2.2]). The Laplace-Beltrami operator takes the following representation after the stereographic projection

∆ S = (1 + |x| 2 ) 2 4 ∆ - d -2 2 (1 + |x| 2 ) d i=1 x i ∂ i ,
where ∆ is the classical Laplacian in R d . The operator is symmetric in L 2 (µ S ).

It is interesting to recall that the map S d x → x d+1 is an eigenvector associated to the eigenvalue -d. This function, from the stereographic projection, takes the form

u(x) = 1 -|x| 2 1 + |x| 2 , x ∈ R d . (35) 
Then, u satisfies ∆ S u = -du and

Γ S d (u) = 1 -u 2 since Γ S d (u) = (1 + |x| 2 ) 2 4 Γ 1 -|x| 2 1 + |x| 2 = 1 (1 + |x| 2 ) 2 Γ(|x| 2 ) = 4|x| 2 (1 + |x| 2 ) 2 = 1-u 2 .
Indeed this computation is much easier (and indeed completely elementary) using the standard representation on the sphere, see [BGL14, Sec 2.2].

We can now transform the Beckner inequality for Q (m) t into a new Beckner inequality on the sphere. With these new notations, inequality (26) for t = 1 and x = 0 becomes for a smooth and nonnegative function f ,

c(d, d) c(m, d) f β+2 ρ d-m dµ S - c(d, d) c(m, d) f ρ d-m dµ S β+2 ≤ 2(β + 1)(β + 2) m -2 c(d, d) c(m -2, d) f β Γ S (f )ρ d-m-2 dµ S . (36) 
Let us focus on the case β = d+2-m m-d , where β is on the limit of the admissible interval. Let f = ρ m-d g and let us compute the various terms in (36). First, by using again the diffusion properties of the carré du champ operator Γ S ,

f β Γ S (f )ρ d-m-2 = g β ρ 2(d-m) Γ S (ρ m-d g) = g β Γ S (g) + 2(m -d)g β+1 Γ S (log ρ, g) + (m -d) 2 g β+2 Γ S (log ρ),
and then

f β Γ S (f )ρ d-m-2 dµ S = g β Γ S (g)dµ S + (m -d) 2 β + 2 Γ S (log ρ, g β+2 )dµ S + (m -d) 2 g β+2 Γ S (log ρ)dµ S .
With an integration by parts, we get Γ S (log ρ, g β+2 )dµ S = -g β+2 ∆ S log ρdµ S , and then

f β Γ S (f )ρ d-m-2 dµ S = g β Γ S (g)dµ S + g β+2 Kdµ S ,
where

K = (m -d) 2 2 ∆ S log ρ d -m -2 + Γ S (log ρ) , since β + 2 = (d -m -2)/(d -m). Secondly we have f β+2 ρ d-m dµ S = g β+2 ρ 2 dµ S and f ρ d-m dµ S = gdµ S .
Then, inequality (36) can be written as

c(d, d) c(m, d) g β+2 ρ 2 dµ S - c(d, d) c(m, d) gdµ S β+2 ≤ 2(β + 1)(β + 2) m -2 c(d, d) c(m -2, d) g β Γ S (g)dµ S + g β+2 Kdµ S , or 
g β+2 Rdµ S - c(d, d) c(m, d) gdµ S β+2 ≤ 2(β + 1)(β + 2) m -2 c(d, d) c(m -2, d) g β Γ S (g)dµ S , with R = c(d, d) c(m, d) ρ 2 - 2(β + 1)(β + 2) m -2 c(d, d) c(m -2, d) K.
From (18), the definition of β and the fact that ρ 2 = 2/(1 + u) where u has been defined in (35), we can write

R = c(d, d) c(m, d) 2 1 + u -2 m -d + 2 (m -d) 2 K m -2 + d ,
and the inequality

g β+2 Rdµ S - c(d, d) c(m, d) gdµ S β+2 ≤ 4(m -d + 2) (m -d) 2 (m -2 + d) c(d, d) c(m, d) g β Γ S (g)dµ S .
We need now to compute ∆ S log ρ and Γ S (log ρ). We have

∆ S (log ρ) = 1 2 ∆ S log ρ 2 = - 1 2 ∆ S log(1 + u) = d 2(1 + u) u + 1 2(1 + u) 2 Γ S d (u) = d 2(1 + u) u + 1 2(1 + u) 2 (1 -u 2 ). Then, finally ∆ S (log ρ) = 1 + u(d -1) 2(1 + u) , and 
Γ S (log ρ) = 1 -u 4(1 + u) .
If we plug those values in the definition of K, then a miracle occurs. The function R is constant,

R = c(d, d) c(m, d) 3d + m -2 d + m -2 . Setting now f 2 = g β+2 = g d-m-2
d-m , we obtain Theorem 5.1 (Beckner-type inequalities on the sphere) For any smooth nonnegative function f on the sphere S d , and m d + 2, we have

f 2 dµ S ≤ A f 2/p dµ S p + 16 (m + 2 -d)(3d -2 + m) Γ S (f )dµ S , (37) 
where

p = 1 + 2 m -d ∈ (1, 2] and A = c(d, d) c(m, d) 2 m-d m + d -2 m + 3d -2 .
Remark 15

• Function R is constant only for the parameter p = 1 + 2 m-d . • When m > d + 2, A > 1.
In that case inequality (37) is not tight, in the sense that when g = 1, we do not have the equality. But the inequality is still optimal since it is saturated for f = ρ d-m-2 2 .

• When m = d + 2, then A = 1, p = 2 and inequality (37) is nothing else than the optimal Poincaré inequality on the sphere,

f 2 dµ S - f 2 dµ S 2 ≤ 1 d Γ S (f )dµ S .
• The classical Beckner inequalities hold for the spherical model (see e.g. [BGL14, Remark 6.8.4]): for any p ∈ (1, 2]

f 2 dµ S ≤ |f | 2/p dµ S p + p -1 pd Γ S (f )dµ S . (38) 
Inequality (38) is optimal in the sense that p-1 pd is the best constant. Only constant functions saturate inequality (38) for p ∈ (1, 2). And when p goes to 1, inequality (38) provides the Logarithmic Sobolev inequality on the sphere

f 2 log f 2 f 2 dµ S dµ S ≤ 2 d Γ S (f )dµ S ,
proved in [START_REF] Mueller | Hypercontractivity for the heat semigroup for ultraspherical polynomials and on the n-sphere[END_REF] (see also [START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF]Thm. 5.7.4]). On the other hand, this last logarithmic Sobolev inequality implies back the full family (38), p ∈ (1, 2].

Let us mention that inequality (38) has been generalized in [START_REF] Dolbeault | Improved interpolation inequalities on the sphere[END_REF] in the following way,

Ψ 1 -f 2/p dµ S p -1 ≤ Γ S (f )dµ S ,
for every nonnegative function f such that f 2 dµ S = 1 and for some explicit function Ψ.

• So (37) appears as a new and optimal inequality on the sphere. It is probably worth to compare it to the del Pino-Dolbeault family of optimal Gagliardo-Nirenberg inequalities,

f 2 a-1 a-2 ≤ C ∇f θ 2 f 1-θ 2a a-2 , a d,
where θ is fixed by scaling properties, see [START_REF] Pino | Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions[END_REF].

• The Taylor expansion (when m → ∞) of the constant A is given by

A = 1 + d log(m) m + C m + o(1/m),
where C is a constant depending on the dimension d. This will be used in the rest of the section.

Even if we are not able from Theorem 5.1 to reach directly the Logarithmic Sobolev inequality, inequality (37) contains enough information to obtain a Sobolev inequality for the spherical model, however with a non optimal constant.

For this, we are going to obtain from (37) a Nash inequality on the sphere. First, it is not difficult to see that there exits two constants α, β > 0 depending only on d, such that, for any m d + 2, A ≤ α Let us prove that for any m d + 2,

x m ≤ α m d/2 1 + βE 2αm 1+d/2 = a m .

To prove such an inequality, it is enough to prove that, for any m d + 2, ϕ m (a m ) ≤ a m . We have

ϕ m (a m ) = α m d/2 1 + βE 2αm 1+d/2 1-2 m-d + β m 2 E ≤ α m d/2 1 + βE 2αm 1+d/2 1-2 m + β m 2+ d 2 E ≤ α m d/2 1 + βE 2αm 1+d/2 = a m ,
where we used the inequality (1 + x) u ≤ 1 + ux, for x > 0 and u ∈ (0, 1). Modifying the numerical constants (depending only on d), we see that for any m d + 2,

f 2 dµ S ≤ Cm d/2 + C m d/2 Γ S (f )dµ S .
Optimizing with respect to the parameter m d + 2 and using Jensen inequality, we obtain, for some other constant C > 0, . This last inequality is a so-called Nash inequality, and is known to be equivalent to the Sobolev inequality (up to the optimal constant) for the spherical model, see [BGL14, Prop. 6. (39)

Conclusion:

The family of optimal inequalities (37) appears as a new form of optimal inequalities on the sphere, implying a Sobolev inequality.

t

  (f ) is a solution of the elliptic equation (15), from Itô's Lemma, or Dynkin's formula[START_REF]Stochastic differential equations. An introduction with applications[END_REF] Sec 7.3] 

Theorem 4. 1 (

 1 Beckner inequalities for Q (m) t ) For any m d + 2 and p ∈ [1 + 2 m-d , 2], and for any smooth function f 0,

  distribution. Let us define for b > d 2 , the probability measure dν b (y) = 1 c(2b -d, d) 1 (1 + |y| 2 ) b dy. Setting b = (m + d)/2 in inequality (29), we obtain, using (18), Theorem 4.2 (Beckner inequalities for Cauchy type distributions) For any b d + 1 and p

  Theorem 4.3 (Φ-entropy inequality for Q (m) t ) Let m d + 2 and Φ an (d -m + 2)admissible function on an interval I Then,

  which is just a precise form of the previous Taylor expansion, and16 (m + 2 -d)(3d -2 + m) ≤ β m 2 . From Hölder's inequality, if p ∈ [1, 2], |f | 2/p dµ S with p = 1 + 2/(m -d) ∈ [1, 2]. Inequality (37) becomes, for any nonnegative function f such that f dµ S = 1, and any m m + 2,f 2 dµ S ≤ α S (f )dµ S .Let us define for x 0, the mapϕ m (x) = αwhere E = Γ S (f )dµ S . The function ϕ m has a unique fixed point x m > 0, and the previous inequality implies that f 2 dµ S ≤ x m .

f 2 dµ S ≤ C |f |dµ S 2 +

 2 

≤≤

  C f 2 dµ S + C Γ S (f )dµ S .By means of Poincaré inequality (m = d + 2) and [BGL14, Prop. 6.2.2], this inequality implies a tight Sobolev inequality. We have obtained Theorem 5.2 (From Beckner inequalities to Sobolev inequality on the sphere) The family of Beckner inequalities (37) implies that there exists a constant C > 0 depending only on d such that, for any smooth functions f on the sphere S d , f 2 dµ S + C Γ S (f )dµ S .

  One can choose a new base in R d such that Y is diagonal. If we denote again Z in the new base in R d , we have to prove the following inequality, for every vectors (Y ii ) 1≤i≤d and (Z i ) 1≤i≤d ,

	d
	i=1
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