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Abstract In the present paper, we aim at providing plug-in-type empirical estimators that
enable us to quantify the contribution of each operational or/and non-functioning state to
the failures of a system described by a semi-Markov model. In the discrete time and finite
state space semi-Markov framework, we study different conditional versions of an important
reliability measure for random repairable systems, the failure occurrence rate based on counting
processes. The aforementioned estimators are characterised by appealing asymptotic properties
such as strong consistency and asymptotic normality. We further obtain detailed analytical
expressions for the covariance matrices of the random vectors describing the conditional failure
occurrence rates. As particular cases we present the failure occurrence rates for hidden (semi-)
Markov models. We illustrate our results by means of an academic example based on simulated
data. An application to real data is further presented that models sustainable vibration levels
in a semi-Markov framework.
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1 Introduction

Semi-Markov models (SMMs) are state-of-the-art models that are widely used in many scien-
tific fields such as reliability and DNA analysis ([3]), seismology ([22]) etc. One of the main
distinguising features of SMMs is that contrary to Markov models, they enable us to describe
systems that evolve based not only on their last visited state (Markov property) but also on
the time elapsed since this state. Due to this feature, popular “memory-full” distributions,
such as the Weibull distribution, could be employed to describe sojourn (or interevent) times
between successive events. We refer the interested reader to [8] or [12] for an introduction to
homogeneous SMMs and to [18,17] for non-homogeneous SMMs, respectively.

In the semi-Markov context, many reliability indicators have been introduced, including
mean times to failure, hazard rates, availability functions etc. For recent advances in the topic
concerning discrete time SMMs, see [1], [3], [5] and [6]. For continuous time SMMs, we address
the interested reader to [10] and [11]. For advances in estimation methods of nonparametric
semi-Markov models, see [15] and the references therein.

Here we focus on the rate of occurrence of failures (ROCOF), which is a fundamental
reliability indicator for repairable, random systems subject to multiple failures. Yeh ([23]) was
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the first to investigate ROCOF for first-order Markov processes defined in a finite state space.
Concerning semi-Markov processes in a finite or a general state space, ROCOF was studied
by [13] and [9], respectively. The discrete time counterpart of ROCOF, was evaluated by [21]
for SMMs and by [20] for hidden Markov renewal models.

ROCOF is rather a “global” reliability indicator in the sense that it does not distinguish
neither on the starting functioning state nor on the ending inoperative state. It takes into
account all the starting operational and all the ending defective states. Here we introduce the
conditional counterparts of the failure occurrence rate, which allow quantifying the impact
of any starting functioning state or/and any ending unworkable state. The study of these
elementary rates could shed light on the functioning states that mostly influence the ROCOF
and give insight into the dynamics of failures. Our objective is to provide indicators that enable
us to identify opportunities for improving reliability performance, which is of special interest for
real-life applications. The employment of reliability indicators with a more refined structure
could guide industry action to improve operating practices and eventually provide decision
support tools. Detailed analytical expressions for the covariance matrices of the random vectors
describing the conditional failure occurrence rates are obtained. Consistent and asymptotically
normal empirical estimators are presented and numerical examples based on real vibration data
are provided.

The organization of the paper is as follows. In Section 2 the notation and preliminaries of
SMMs are presented. Section 3 describes the definition, evaluation and statistical estimation
of the conditional failure occurrence rates. Section 4 discusses numerical examples based on
simulated and real data. Finally, in Section 5, we give some concluding remarks.

2 Notation and Preliminaries in Semi-Markov Models

We briefly recall the main definitions from the theory of discrete time SMMs (see, e.g., [3]).
We consider a random system with finite state space E = {1, 2, . . . , s} described by an SMM.
The stochastic evolution of the system is described by the following random sequences defined
on a complete probability space (Fig.1):

1. The sequence J = (Jn)n∈N with state space E, where Jn is the state visited by the system
at the n−th jump time;

2. The N-valued sequence S = (Sn)n∈N, where Sn is the n−th jump time. We suppose that
S0 = 0 and 0 < S1 < S2 < . . . < Sn < Sn+1 < . . . almost surely (a.s.);

3. The N-valued sequence X = (Xn)n∈N defined by X0 = 0 a.s. and Xn = Sn − Sn−1 for all
n ∈ N. Thus for all n ∈ N, Xn is the sojourn time in state Jn−1, before the n−th jump.

We consider that the stochastic process (J,S) = (Jn, Sn)n∈N is a Markov renewal chain
(MRC), that is for all n ∈ N, for all i, j ∈ E, and for all k ∈ N it satisfies a.s.

P (Jn+1 = j,Xn+1 = k|J0, S0, . . . , Jn, Sn) = P (Jn+1 = j,Xn+1 = k|Jn). (1)

If equation (1) is independent of n, then (J,S) is called homogeneous and its associated
semi-Markov kernel (SMK) q = (qij(k); i, j ∈ E, k ∈ N) is defined by

qij(k) = P (Jn+1 = j,Xn+1 = k|Jn = i),

where i, j ∈ E and k, n ∈ N. It is worth mentioning that (J,S) is also a Markov chain with
state space E × N and therefore J is a Markov chain with state space E. Thereafter, we refer
to J as the embedded Markov chain (EMC).

The semi-Markov chain (SMC) Z = (Zk)k∈N associated with the MRC (J,S) describes the
system’s state at each time k ∈ N and is defined by Zk = JN(k), where N(k) = max{n ≥
0 : Sn ≤ k}. The transition kernel of the EMC is defined by P = (pij ; i, j ∈ E), where
pij = P (Jn+1 = j|Jn = i), i, j ∈ E, n ∈ N, and its initial distribution by α = (α(i); i ∈ E),
where α(i) = P (J0 = i). At the initial time, t = 0, the state of the SMC coincides with the
state of the EMC, i.e. Z0 = J0. We assume that there are neither instantaneous transitions
(qij(0) = 0, i, j ∈ E) nor self-transitions for the EMC (pii = 0, i ∈ E).
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The conditional distribution of the sojourn time in state i ∈ E given that the next visited
state is j ∈ E is given by fij(k) = P (Xn+1 = k|Jn = i, Jn+1 = j), k ∈ N. Moreover we define
the survival function of the sojourn time distribution in state i ∈ E by Hi(k) = P (Xn+1 >

k|Jn = i), k ∈ N, and by mi = E(S1|Z0 = i) the mean sojourn time of the SMC in state i ∈ E.
The next assumptions have to be fulfilled in the following:

A1 The SMC is irreducible and aperiodic [3];
A2 The mean sojourn times are finite, i.e., mi <∞, for any i ∈ E.

Time

States

�

�

�

{J0 = i}

{J1 = j}

{J0 = i}

{Jn = k}

S0 S1 S2 · · · Sn · · ·

· · ·

Sn+1

· · ·

(Jn) : state of the system

(Sn) : jump time

(Xn) : sojourn time

X1

X2

Xn+1

Fig. 1: A typical trajectory of a Markov renewal chain.

3 Conditional Failure Occurrence Rates

3.1 General definitions

The failure occurrence rate is one of the most significant indicators in reliability theory, in
particular in the study of repairable systems. In a semi-Markov framework, we first consider
two non-empty, disjoint subsets of E, U and D (U,D ⊂ E; U,D 6= E, U ∪ D = E), where
U = {1, . . . , r} consists of the up (or functioning) states, and D = {r + 1, . . . , s} contains the
down (or unworkable) states.

Second we denote by U = (Uk)k∈N the sequence of the backward recurrence times of
Z, that is, Uk = k − SN(k). Following [4], the stochastic process (Z,U) = (Zk, Uk)k∈N is a
(time) homogeneous Markov chain governed by its initial distribution, α̃ = (α̃(i, 0); i ∈ E),
and its transition matrix P̃ = (P̃

(
(i, t1), (j, t2)

)
; (i, t1), (j, t2) ∈ E ×N). We further denote

TM = {0, 1, . . . ,M}, where M ∈ N. In what follows, the matrix Ξ, of dimension
(
s(M + 1)

)2 ×(
s(M + 1)

)2
, is defined by

Ξ =



Ξ(1, 0) 0 . . . . . . 0
...

. . .
...

...
...

...
... Ξ(i, t1)

...
...

...
...

...
. . .

...
0 . . . . . . . . . Ξ(s,M)


,

where the block Ξ(i, t1) is the square matrix

Ξ(i, t1) =
(
δ(j,t2)(r,t3)P̃

(
(i, t1), (j, t2)

)
− P̃

(
(i, t1), (j, t2)

)
P̃
(
(i, t1), (r, t3)

))
,
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and

δ(j,t2)(r,t3) =

{
1, if (j, t2) = (r, t3),
0, elsewhere,

for every (i, t1), (j, t2), (r, t3) ∈ E × TM . Moreover, we define by ∆ the matrix:

∆ =



1
π̃(1,0)Ξ(1, 0) 0 . . . . . . 0

...
. . .

...
...

...
...

... 1
π̃(i,t1)

Ξ(i, t1)
...

...

...
...

...
. . .

...
0 . . . . . . . . . 1

π̃(s,M)Ξ(s,M)


,

where π̃ = (π̃(i, t1); (i, t1) ∈ E × TM ), is the stationary distribution of (Z,U). Consider now a
trajectory H(M) of an MRC with a fixed length M . For all i, j ∈ E and 1 ≤ k ≤M , we further
define the counting processes:

1. Ni(M) =
∑N(M)−1
n=1 1{Jn=i} is the number of visits to state i of the EMC, before time M ;

2. Nij(k,M) =
∑N(M)
n=1 1{Jn−1=i,Jn=j,Xn=k} is the number of transitions from i to j, up to

time M , with sojourn time in state i equal to k.

Then, following [3], the empirical estimators of the semi-Markov kernel, qij(k), and the survival

function, Hi(k), are defined by q̂ij(k,M) =
Nij(k,M)
Ni(M) , and Ĥi(k,M) = 1−

∑
j∈E

∑k
`=0 q̂ij(`,M),

respectively. Additionally, following [4], we obtain directly the plug-in type empirical estimators
of the transition probabilities of the Markov chain (Z,U):

̂̃
PM

(
(i, t1), (j, t2)

)
=


q̂ij(t1 + 1,M)/Ĥi(t1,M), if t2 = 0,

Ĥi(t1 + 1,M)/Ĥi(t1,M), if i = j, t2 − t1 = 1,
0, elsewhere.

3.2 Full conditional ROCOF

In the sequel we are interested in studying the impact of both the starting up and the ending
down states on the ROCOF, simultaneously. In order to do that, we define the full conditional
ROCOF as the expected number of transitions of the SMC to the set D at time k, given that
it starts in state i ∈ U and ends in state j ∈ D, i.e.,

r]ij(k) = E[N ]
ij(k)−N ]

ij(k − 1)],

where

N ]
ij(k) =

∑k
`=1 1{Z`−1=i,Z`=j}.

Theorem 1 The full conditional ROCOF at time k ∈ N∗ is given by

r]ij(k) =
k−1∑
m=0

[(α̃P̃ k−1)(i,m)]P̃
(
(i,m), (j, 0)

)
,

for any fixed arbitrary states i ∈ U , j ∈ D.

Proof For fixed i ∈ U , j ∈ D and k ∈ N∗,

r]ij(k) = E[N ]
ij(k)−N ]

ij(k − 1)]

= E1{Zk−1=i,Zk=j}

= P (Zk−1 = i, Zk = j). (2)

Moreover, following [21], we have that

P (Zk−1 = i, Zk = j) =
k−1∑
m=0

[(α̃P̃ k−1)(i,m)]P̃
(
(i,m), (j, 0)

)
, (3)

for i 6= j. Therefore, from equations (2) and (3), we get the desired result.
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For given i ∈ U , j ∈ D, we estimate the full conditional ROCOF by means of the plug-in type
estimator

r̂]ij(k,M) =
k−1∑
m=0

[(̂̃α ̂̃P k−1

M )(i,m)]
̂̃
PM

(
(i,m), (j, 0)

)
,

where (̂̃α ̂̃P k−1

M )(i,m) is the (i,m)−th element of the vector ̂̃α ̂̃P k−1

M .

Remark 1 The symbol ̂̃α(i,m) represents an estimator of the initial law of the stochastic process

(Zk, Uk)k∈N, that is an estimator of α̃(i,m) = P (Z0 = i, U0 = m). If we consider that (Zk, Uk)k∈N
is irreducible, then its initial law could be replaced by its stationary law that is given by the formula [4]

π̃(i,m) = 1−Hi(m)
µii

, where µii is the mean recurrence time of state i of the SMC.

Proposition 1 The empirical estimator of the stationary distribution of the process (Zk, Uk)k∈N
is strongly consistent in the sense that

̂̃πM (i,m)
a.s.−−−−−→

M→∞
π(i,m).

Proof From the definition of ̂̃πM (i,m) we have that

̂̃πM (i,m) =
1−

∑m
`=1

∑
j∈E q̂ij(`,M)

µ̂ii(M)
.

First we notice that [3]

q̂ij(`,M)
a.s.−−−−−→

M→∞
qij(`).

Second by the definition of the estimator of the mean recurrence time of the state i of the
SMC we can obtain the empirical estimator

µ̂ii(M) =

∑
j∈E ν̂j(M)m̂j(M)

ν̂i(M)
,

where

ν̂j(M) =
Nj(M)

N(M)

and

m̂j(M) =
∑
k≥0

Ĥj(k,M).

Then since we deal with finite sums and [2]

ν̂j(M)
a.s.−−−−−→

M→∞
νj and m̂j(M)

a.s.−−−−−→
M→∞

mj ,

we obtain the strong consistency of the estimator of the mean recurrence time. The previous
results lead directly to the strong consistency of the estimator of the stationary distribution
of the process (Zk, Uk)k∈N.

Proposition 2 For any states i ∈ U , j ∈ D and any fixed arbitrary positive integer k ∈ N, the

estimator of the full conditional ROCOF at time k is strongly consistent in the sense that

r̂]ij(k,M)
a.s.−−−−−→

M→∞
r]ij(k).
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Proof Following [14] for the Markov chain (Z,U) we have
̂̃
PM

a.s.−−−−−→
M→∞

P̃ and since we deal

with finite sums, we can write directly:

r̂]ij(k,M) =
k−1∑
m=0

[(̂̃α ̂̃P k−1

M )(i,m)]
̂̃
PM

(
(i,m), (j, 0)

)
a.s.−−−−−→

M→∞

k−1∑
m=0

[(α̃P̃ k−1)(i,m)]P̃
(
(i,m), (j, 0)

)
= r]ij(k).

Proposition 3 For any fixed i ∈ U , j ∈ D, k ≥ 1, the random variable
√
M
(
r̂]ij(k,M) − r]ij(k)

)
converges in distribution, as M tends to infinity, to a zero mean normal random variable with

variance Φ′ij∆Φ
′
ij
>

. Moreover Φij : [0, 1]d → R+ (d = (s(M + 1))2) is the function

Φij

(
P̃
(
(i′,m′), (j′, t′)

)
; (i′,m′), (j′, t′) ∈ E × TM

)
=

k−1∑
m=0

(
(α̃P̃ k−1)(i,m)

)
P̃
(
(i,m), (j, 0)

)
=

k−1∑
m=0

(∑
s∈E

α̃(s, 0)P̃ k−1((s, 0), (i,m)
))
P̃
(
(i,m), (j, 0)

)
and

Φ′ij =
( ∂Φij

∂P̃
(
(i′,m′), (j′, t′)

) ; (i′,m′), (j′, t′) ∈ E × TM
)
,

is the d−dimensional row vector of first derivatives of r]ij(k) with respect to P̃
(
(i′,m′), (j′, t′)

)
.

Proof Following the definition of the full conditional ROCOF, we have

√
M(r̂]ij(k,M)− r]ij(k))

=
√
M

k−1∑
m=0

(
[(̂̃α ̂̃P k−1

M )(i,m)]
̂̃
PM

(
(i,m), (j, 0)

)
− [(α̃P̃ k−1)(i,m)]P̃

(
(i,m), (j, 0)

))
=
√
M
(
Φij
(̂̃
PM

(
(i′,m′), (j′, t′)

))
− Φij

(
P̃
(
(i′,m′), (j′, t′)

)))
,

where Φij is a polynomial function and consequently differentiable. The vector

√
M
((̂̃
PM

(
(i′,m′), (j′, t′)

))
−
(
P̃
(
(i′,m′), (j′, t′)

)))
converges, as M tends to infinity, to the normal distribution centered at the origin with co-
variance matrix ∆. Then by means of the delta method (see, e.g., [16]), we obtain that

√
M
(
Φij
(̂̃
PM

(
(i′,m′), (j′, t′)

))
− Φij

(
P̃
(
(i′,m′), (j′, t′)

))) L−−−−−→
M→∞

N (0, Φ′ij∆Φ
′
ij
>

).

At a next step we prove the asymptotic normality of the random vector R(k) = (Rij(k))i,j∈E

where Rij(k) =
√
M
(
r̂]ij(k,M) − r]ij(k)

)
, for any fixed k ≥ 3, and obtain an explicit formula

for the corresponding covariance matrix.
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Lemma 1 For n ≥ 2, the random vector Fn =
(
fn(i′,m′),(j′,t′)

)
(i′,m′),(j′,t′)∈E×TM

where

fn(i′,m′),(j′,t′) =
√
M
(̂̃
P
n(

(i′,m′), (j′, t′)
)
− P̃n

(
(i′,m′), (j′, t′)

))
has the same limit in distribution as the random vector

Gn =
(
gn(i′,m′),(j′,t′)

)
(i′,m′),(j′,t′)∈E×TM

,

where

gn(i′,m′),(j′,t′) =
∑

(j,t)∈E×TM

(
P̃n−1((i′,m′), (j, t))f(j,t),(j′,t′) + P̃n−1((j, t), (j′, t′))f(i′,m′),(j,t))

+ 1{n≥3}

n−1∑
k=2

∑
(i1,t1)∈E×TM

∑
(i2,t2)∈E×TM

P̃n−k
(
(i′,m′), (i1, t1)

)
P̃ k−1((i2, t2), (j′, t′)

)
f(i1,t1),(i2,t2).

Moreover, Fn converges, as M tends to infinity, to a centered normal random vector with covariance

matrix Σ = Σf ∆ΣTf . The matrix

Σf = Σf ((i′,m′), (j′, t′), (u′, v′), (s′, w′))(i′,m′),(j′,t′),(u′,v′),(s′,w′)∈E×TM

of dimension d× d (d = s2(M + 1)2) is given by

Σf ((i′,m′), (j′, t′), (u′, v′), (s′, w′)) = δ(j′,t′),(s′,w′) P̃
n−1((i′,m′), (u′, v′))

+ δ(i′,m′),(u′,v′) P̃
n−1((s′, w′), (j′, t′))

+
n−1∑
k=2

P̃n−k
(
(i′,m′), (u′, v′)

)
P̃ k−1((s′, w′), (j′, t′)).

Proof Since (Z,U) is a Markov chain, we follow [14] and obtain the desired result.

Theorem 2 For any fixed k ≥ 3, the random vector R(k) = (Rij(k))i,j∈E where Rij(k) =
√
M
(
r̂]ij(k,M) − r]ij(k)

)
converges in distribution, as M tends to infinity, to a centered normal

random vector with covariance matrix Σ∆Σ>.

Proof First, we notice that

Rij(k) =
√
M

k−1∑
m=0

∑
s∈E

α̃(s, 0)
(̂̃
P
k−1(

(s, 0), (i,m)
)̂̃
P
(
(i,m), (j, 0)

)
− P̃ k−1((s, 0), (i,m)

)
P̃
(
(i,m), (j, 0)

))
=

k−1∑
m=0

∑
s∈E

α̃(s, 0)
(
fk−1
(s,0),(i,m)

(̂̃
P
(
(i,m), (j, 0)

)
− P̃

(
(i,m), (j, 0)

))
+ P̃ k−1((s, 0), (i,m)

)
f(i,m),(j,0) + fk−1

(s,0),(i,m)P̃
(
(i,m), (j, 0)

))
.

Second, using Lemma 1 and following [14], we obtain that

fk−1
(s,0),(i,m)

L−−−−−→
M→∞

Z,

where Z is a centered normal random variable, and

̂̃
P
(
(i,m), (j, 0)

)
− P̃

(
(i,m), (j, 0)

) P−−−−−→
M→∞

0.
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Then from Slutsky’s theorem, we deduce that Rij(k) has the same limit in distribution as

k−1∑
m=0

∑
s∈E

α̃(s, 0)
(
P̃ k−1((s, 0), (i,m)

)
f(i,m),(j,0) + fk−1

(s,0),(i,m)P̃
(
(i,m), (j, 0)

))
,

which in turn has the same limit in distribution as

k−1∑
m=0

∑
s∈E

α̃(s, 0)
(
P̃ k−1((s, 0), (i,m)

)
f(i,m),(j,0) + gk−1

(s,0),(i,m)P̃
(
(i,m), (j, 0)

))
.

Since the last function is continuous and linear w.r.t. the vector f(i′,m′),(j′,t′), we use the
continuous mapping theorem and deduce that Rij converges in distribution to a centered

normal random vector with covariance matrix Σ∆Σ>. The rectangular matrix

Σ = Σ((i, j), (u′, v′), (s′, w′))i,j∈E,(u′,v′),(s′,w′)∈E×TM

of dimension d (d = s2 × (s(M + 1))2) is given by

Σ((i, j), (u′, v′), (s′, w′)) = δ(u′,i)1(v′≤k−1) δ(s′,w′),(j,0)
∑
s∈E

α̃(s, 0)P̃ k−1((s, 0), (u′, v′)
)

+ δ(s′,i)1(w′≤k−1) P̃
(
(i, w′), (j, 0)

)∑
s∈E

α̃(s, 0)P̃ k−2((s, 0), (u′, v′)
)

+ δ(u′,v′),(s,0) α̃(u′, 0)
k−1∑
m=0

P̃
(
(i,m), (j, 0)

)
P̃ k−2((s′, w′), (i,m)

)
+
k−1∑
m=0

∑
s∈E

k−2∑
r=2

α̃(s, 0)P̃
(
(i,m), (j, 0)

)
P̃ k−1−r((s, 0), (u′, v′)

)
P̃ r−1((s′, w′), (i,m)

)
.

3.3 Left conditional ROCOF

We first define the left conditional ROCOF as the expected number of transitions of the SMC
to the set D at time k, given that it starts from the fixed state i ∈ U , i.e.,

r̃i(k) = E[Ñi(k)− Ñi(k − 1)],

where

Ñi(k) =
∑k
l=1 1{Zl−1=i,Zl∈D}.

Theorem 3 The left conditional ROCOF at time k ∈ N∗ is given by

r̃i(k) =
∑
j∈D

k−1∑
m=0

[(α̃P̃ k−1)(i,m)]P̃
(
(i,m), (j, 0)

)
,

for any fixed, arbitrary state i ∈ U .

Proof For fixed i ∈ U and k ∈ N∗,

r̃i(k) = E[Ñi(k)− Ñi(k − 1)]

= E1{Zk−1=i,Zk∈D} = P (Zk−1 = i, Zk ∈ D)

=
∑
j∈D

P (Zk−1 = i, Zk = j). (4)

Therefore, from equations (3) and (4), we get the desired result.
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We further estimate the left conditional ROCOF by means of the plug-in type estimator:

̂̃ri(k,M) =
∑
j∈D

k−1∑
m=0

[(̂̃α ̂̃P k−1

M )(i,m)]
̂̃
PM

(
(i,m), (j, 0)

)
.

Proposition 4 For any fixed, arbitrary state i ∈ U and any fixed, arbitrary positive integer k ∈ N,
the estimator of the left conditional ROCOF at time k is strongly consistent in the sense that̂̃ri(k,M)

a.s.−−−−−→
M→∞

r̃i(k).

Proof To prove the consistency, we work as in Proposition 2.

Proposition 5 For any fixed i ∈ U , k ≥ 1,
√
M
(̂̃ri(k,M) − r̃i(k)

)
converges in distribution,

as M tends to infinity, to a zero mean normal random variable with variance Φ′i∆Φ
′
i
>

. Moreover

Φi : [0, 1]d → R+ (d = (s(M + 1))2) is the function

Φi

(
P̃
(
(i′,m′), (j′, t′)

)
; (i′,m′), (j′, t′) ∈ E × TM

)
=
∑
j∈D

k−1∑
m=0

[(α̃P̃ k−1)(i,m)]P̃
(
(i,m), (j, 0)

)
=
∑
j∈D

k−1∑
m=0

(∑
s∈E

α̃(s, 0)P̃ k−1((s, 0), (i,m)
))
P̃
(
(i,m), (j, 0)

)
and

Φ′i =
(

∂Φi

∂P̃
(
(i′,m′), (j′, t′)

) ; (i′,m′), (j′, t′) ∈ E × TM
)
,

is the d−dimensional row vector of first derivatives of r̃i(k) with respect to P̃
(
(i′,m′), (j′, t′)

)
.

Proof First, we have that

√
M(̂̃ri(k,M)− r̃i(k)) =

√
M
(
Φi
(̂̃
PM

(
(i′,m′), (j′, t′)

))
− Φi

(
P̃
(
(i′,m′), (j′, t′)

)))
.

The function Φi is a polynomial function, therefore it is differentiable. Moreover, following [14]
for the Markov chain (Z,U), the vector

√
M
((̂̃
PM

(
(i′,m′), (j′, t′)

))
−
(
P̃
(
(i′,m′), (j′, t′)

)))
converges, as M tends to infinity, to the normal distribution centered at the origin with co-
variance matrix ∆. Then by means of the delta method, we obtain the desired result.

Theorem 4 For any fixed k ≥ 3, the random vector
√
M
(
r̃i(k,M) − ri(k)

)
i∈U converges in

distribution, as M tends to infinity, to a centered normal random vector with covariance matrix

ΣU∆ΣU
>, where the d−dimensional (d = r×(s(M+1))2) matrix ΣU = ΣU (i, (u′, v′), (s′, w′))i∈U,(u′,v′),(s′,w′)∈E×TM

is given by

ΣU (i, (u′, v′), (s′, w′)) = δ(u′,i)1(v′≤k−1) 1(s′∈D)δ(w′,0)
∑
s∈E

α̃(s, 0)P̃ k−1((s, 0), (u′, v′)
)

+ δ(s′,i)1(w′≤k−1)

∑
j∈D

P̃
(
(i, w′), (j, 0)

)∑
s∈E

α̃(s, 0)P̃ k−2((s, 0), (u′, v′)
)

+ δ(u′,v′),(s,0) α̃(u′, 0)
∑
j∈D

k−1∑
m=0

P̃
(
(i,m), (j, 0)

)
P̃ k−2((s′, w′), (i,m)

)
+
∑
j∈D

k−1∑
m=0

∑
s∈E

k−2∑
r=2

α̃(s, 0)P̃
(
(i,m), (j, 0)

)
P̃ k−1−r((s, 0), (u′, v′)

)
P̃ r−1((s′, w′), (i,m)

)
.

Proof Working as in Theorem 2, we get the desired result.
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3.4 Right conditional ROCOF

We go one step further and aim at studying the impact of the ending down state on the
ROCOF. In order to do that, we define the right conditional ROCOF as the expected number
of transitions of the SMC to the set D at time k, given that it ends in state j ∈ D, i.e.,

rj(k) = E[Nj(k)−Nj(k − 1)],

where

Nj(k) =
∑k
l=1 1{Zl−1∈U,Zl=j}.

Theorem 5 The right conditional ROCOF at time k ∈ N∗ is given by

rj(k) =
∑
i∈U

k−1∑
m=0

[(α̃P̃ k−1)(i,m)]P̃
(
(i,m), (j, 0)

)
,

for any fixed, arbitrary state j ∈ D.

Proof For fixed j ∈ D and k ∈ N∗,

rj(k) = E[Nj(k)−Nj(k − 1)]

= E1{Zk−1∈U,Zk=j} = P (Zk−1 ∈ U,Zk = j)

=
∑
i∈U

P (Zk−1 = i, Zk = j). (5)

Equations (3) and (5) lead directly to the result.

For a fixed state j ∈ D, we estimate the right conditional ROCOF by means of the plug-in
type estimator :

r̂j(k,M) =
∑
i∈U

k−1∑
m=0

[(̂̃α ̂̃P k−1

M )(i,m)]
̂̃
PM

(
(i,m), (j, 0)

)
.

Proposition 6 For any fixed arbitrary state j ∈ D and any fixed arbitrary positive integer k ∈ N,
the estimator of the conditional ROCOF at time k is strongly consistent in the sense that

r̂j(k,M)
a.s.−−−−−→

M→∞
rj(k).

Proof Working as in Proposition 2, we obtain the desired result.

Proposition 7 For any fixed j ∈ D, k ≥ 1, the random variable
√
M
(
r̂j(k,M) − rj(k)

)
con-

verges in distribution, as M tends to infinity, to a zero mean normal random variable with variance

Φ′j∆Φ
′
j
>
Φj : [0, 1]d → R+ (d = (s(M + 1))2) is the function

Φj

(
P̃
(
(i′,m′), (j′, t′)

)
; (i′,m′), (j′, t′) ∈ E × TM

)
=
∑
i∈U

k−1∑
m=0

[(α̃P̃ k−1)(i,m)]P̃
(
(i,m), (j, 0)

)
=
∑
i∈U

k−1∑
m=0

(∑
s∈E

α̃(s, 0)P̃ k−1((s, 0), (i,m)
))
P̃
(
(i,m), (j, 0)

)
and

Φ′j =
( ∂Φj

∂P̃
(
(i′,m′), (j′, t′)

) ; (i′,m′), (j′, t′) ∈ E × TM
)
,

is the d−dimensional row vector of first derivatives of rj(k) with respect to P̃
(
(i′,m′), (j′, t′)

)
.
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Proof The proof derives in the same way as in Proposition 3.

Theorem 6 For any fixed k ≥ 3, the random vector
√
M
(
r̃j(k,M) − rj(k)

)
j∈D converges in

distribution, as M tends to infinity, to a centered normal random vector with covariance matrix

ΣD∆ΣD
>, where

ΣD = ΣD(j, (u′, v′), (s′, w′))j∈D,(u′,v′),(s′,w′)∈E×TM

is the d−dimensional matrix (d = (s− r)× (s(M + 1))2) given by

ΣD(j, (u′, v′), (s′, w′)) = δ((s′,w′),(j,0))1(u′∈U)1(v′≤k−1)

∑
s∈E

α̃(s, 0)P̃ k−1((s, 0), (u′, v′)
)

+ 1(s′∈U)1(w′≤k−1) P̃
(
(i, w′), (j, 0)

)∑
s∈E

α̃(s, 0)P̃ k−2((s, 0), (u′, v′)
)

+ δ(u′,v′),(s,0) α̃(u′, 0)
∑
i∈U

k−1∑
m=0

P̃
(
(i,m), (j, 0)

)
P̃ k−2((s′, w′), (i,m)

)
+
∑
i∈U

k−1∑
m=0

∑
s∈E

k−2∑
r=2

α̃(s, 0)P̃
(
(i,m), (j, 0)

)
P̃ k−1−r((s, 0), (u′, v′)

)
P̃ r−1((s′, w′), (i,m)

)
.

Proof To prove this theorem one can follow the same lines as in Theorem 2.

3.5 Particular cases

In the sequel we present two particular cases of the full conditional ROCOF in the context
of hidden semi-Markov models and hidden Markov models. The evaluation and estimation of
the ROCOF have been studied for hidden Markov renewal models (HMRMs) in [19] and [20].
However HMRMs present a specific limitation: they consider that observations occur only at
the jump times n ∈ N and not at the calendar times k ∈ N, which is the case for the “classical”
hidden semi-Markov models. Here this assumption is relaxed by allowing observations to be
recorded at the calendar times and an explicit formula is obtained for hidden semi-Markov
models and hidden Markov models.

In a hidden (semi-) Markov context, we consider that the states visited by the (semi-)
Markov chain are “hidden”, i.e. inaccessible to direct observation. On the other side, what
is available to observation is another stochastic process, Y = (Yk)k∈N which is defined in a
finite state space A. We assume that the observations are conditionally independent given the
underlying states of the (semi-) Markov chain, that is

P (Yk = a|Y0, . . . , Yk−1, Z0, . . . , Zk = i) = P (Yk = a|Zk = i),

for any a ∈ A, i ∈ E, k ∈ N. We further define by R = (Ri;a; i ∈ E, a ∈ A) the emission kernel,
where Ri;a = P (Yk = a|Zk = i).

Then the ROCOF is defined by

r(k) = E[N(k)−N(k − 1)],

where

N(k) =
∑k
l=1 1{Yl−1∈U,Yl∈D}.

3.5.1 Hidden semi-Markov models

Theorem 7 The ROCOF at time k ∈ N∗ is given by

r(k) =
∑
a1∈U

∑
a2∈D

∑
i∈E

∑
j∈E

∑
u1∈Tk−1

∑
u2∈Tk

Rj;a2
P ((i, u1), (j, u2))Ri;a1

(aP )k−1(i, u1).
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Proof For fixed k ∈ N∗

r(k) = E[N(k)−N(k − 1)]

= P (Yk−1 ∈ U, Yk ∈ D)

=
∑
a1∈U

∑
a2∈D

P (Yk−1 = a1, Yk = a2)

=
∑
a1∈U

∑
a2∈D

∑
i∈E

∑
j∈E

P (Yk−1 = a1, Yk = a2, Zk−1 = i, Zk = j). (6)

On the other hand

P (Yk−1 = a1, Yk = a2, Zk−1 = i, Zk = j)

=
∑

u1∈Tk−1

∑
u2∈Tk

P (Yk−1 = a1, Yk = a2, Zk−1 = i, Zk = j, Uk−1 = u1, Uk = u2)

=
∑

u1∈Tk−1

∑
u2∈Tk

P (Yk = a2|Yk−1 = a1, Zk−1 = i, Zk = j, Uk−1 = u1, Uk = u2)

× P (Yk−1 = a1, Zk−1 = i, Zk = j, Uk−1 = u1, Uk = u2)

=
∑

u1∈Tk−1

∑
u2∈Tk

P (Yk = a2|Zk = j)P (Zk−1 = i, Uk−1 = u1, Yk−1 = a1)

× P (Zk = j, Uk = u2|Zk−1 = i, Uk−1 = u1, Yk−1 = a1)

=
∑

u1∈Tk−1

∑
u2∈Tk

P (Yk = a2|Zk = j)P ((i, u1), (j, u2))

× P (Yk−1 = a1|Zk−1 = i)P (Zk−1 = i, Uk−1 = u1)

=
∑

u1∈Tk−1

∑
u2∈Tk

Rj;a2
P ((i, u1), (j, u2))Ri;a1

(aP )k−1(i, u1). (7)

Therefore, from equations (6) and (7), we obtain the desired result.

3.5.2 Hidden Markov models

In the case of hidden Markov models, Z = (Zk)k∈N is a Markov chain and denote by P =
(pij ; i, j ∈ E), where pij = P (Zk+1 = j|Zk = i), the corresponding transition kernel.

Theorem 8 The ROCOF at time k ∈ N∗ is given by

r(k) =
∑
a1∈U

∑
a2∈D

∑
i∈E

∑
j∈E

α(i1)p
(k−1)
i1i

pijRi;a1
Rj;a2

.

Proof For fixed k ∈ N∗

r(k) = E[N(k)−N(k − 1)]

= E1{Yk−1∈U,Zk∈D}

= P (Yk−1 ∈ U, Yk ∈ D)

=
∑
a1∈U

∑
a2∈D

P (Yk−1 = a1, Yk = a2).

(8)
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On the other hand

P (Yk−1 = a1, Yk = a2) =
∑
i∈E

∑
j∈E

P (Yk−1 = a1, Yk = a2, Zk−1 = i, Zk = j)

=
∑
i∈E

∑
j∈E

P (Yk = a2|Yk−1 = a1, Zk−1 = i, Zk = j)

×P (Yk−1 = a1, Zk−1 = i, Zk = j)

=
∑
i∈E

∑
j∈E

α(i1)p
(k−1)
i1i

pijRi;a1
Rj;a2

. (9)

Therefore, from equations (8) and (9), we get the desired result.

The estimation of the ROCOF for hidden (semi-) Markov models could be made by means
of plug-in type estimators. These estimators could be expressed in terms of the maximum
likelihood estimators of the emission, transition and semi-Markov kernels that have appealing
asymptotic properties (see [3],[14]).

4 Numerical Examples

4.1 Academic example

To validate our results and see how we can employ the conditional ROCOF to quantify the
effects of the starting functioning state, we adopt simulation methods. In particular, we use
the algorithm presented by [3], which generates trajectories of an MRC in a fixed time interval
[0,M ] (Algorithm 1).

Initialization;
Set k = 0, S0 = 0 and sample J0 from the initial distribution α;
Iteration;
while Sk ≤M do

Sample the random variable J ∼ P(Jk, ·) and set Jk+1 = J(ω);
Sample the random variable X ∼ fJkJk+1

(·);
Set Sk+1 = Sk + X;
Set k = k + 1;

end

Algorithm 1: Monte-Carlo algorithm for the generation of a trajectory of an MRC,
H(M).

We generate a trajectory of the MRC with length equal to M = 100000. The initial law α

and the transition kernel P are given by

α =
(
0.5 0.5 0

)
and P =

 0 0.6 0.4
0.7 0 0.3
0.5 0.5 0

 ,

respectively. The sojourn times follow the discrete time Weibull distribution

fij(k) =

{
q(k−1)b − qk

b
, if k ≥ 1,

0, if k = 0,

with parameters (q, b) = (0.1, 0.9) for the transitions 1 −→ 2 and 2 −→ 1, (q, b) = (0.1, 2.0) for
the transition 2 −→ 3 and (q, b) = (0.6, 0.9) for the remaining transitions. We further denote
by U = {1, 2} the subset of up states and by D = {3} the subset of down states. Our objective
here is to estimate the ROCOF, quantify the impact of the starting functioning states on the
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Fig. 2: (Conditional) ROCOF versus time based on simulated data.

estimator and show the strong consistency of the estimators. We first notice that the ROCOF
tends to increase for k smaller than 8, which means that the system is deteriorating, and then
it becomes constant due to the stationarity of the semi-Markov chain. The estimators tend
to the corresponding true values as M increases. Moreover, we observe that the ROCOF is
mostly affected by the up state i = 1, since the contribution of this state represents 83 % of
its total value. The right conditional ROCOF in this example is equal to the ROCOF as there
is only one down state. This example shows us concretely that the failure occurrence rate is
mostly determined by the transition from state 1 to state 3. This information could be used
to improve the performances of the system by adapting the maintenance policy.

4.2 Real data example

The conditional ROCOF is further evaluated on real data representing ground accelerations
measured in g (1g stands for an acceleration of 9.81 m/s−2) and retrieved from the online
source http://realvibrations.nipslab.org/. It is well known that certain levels of vibration
could degrade the good functioning of some small vibration sensitive equipements, such as
microelectronics devices, and therefore could have a significant impact on their performance. In
the present work, we suppose that an acceleration whose magnitude (absolute value) is superior
to 0.4g could lead to degradation. Fig. 3 represents the selected signal which is classified in
four states (Table 1), where the subset of up states is U = {2, 3} and the subset of down states
is D = {1, 4}.

State Ground acceleration (in g)

1 [−4.0,−0.4)
2 [−0.4,+0.0)
3 [+0.0,+0.4)
4 [+0.4,+0.8)

Table 1: States classification.

We first notice that the system is deteriorating for k smaller than 27 since the ROCOF
tends to increase. Then its performance tends to stabilize since the ROCOF becomes constant.
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Fig. 3: Ground acceleration (in g) versus time.

Fig. 4: (Conditional) ROCOF versus time based on real data.

Furthermore, we observe that the ROCOF is affected by both up states and mostly by the
second up state. This information could be helpful in determining alert criteria associated with
the deterioration of the system under study and passive vibration damping devices could be
used to attenuate the vibration levels [7].

5 Concluding Remarks

In the present paper we study the sensitivity of the ROCOF in the current up and ending down
states in a semi-Markov context. This is the first attempt to arise sensitivity issues of reliability
indicators for SMMs. The results highlight that defining more precise reliability indicators
could lead to more exact results for practitioners and researchers. Due to the flexibility and
universality of the framework provided by SMMs, there exists a variety of extensions that
could be adapted. Further research includes the extension of the results to higher order or non-
homogeneous SMMs. ROCOF could further be investigated when independent and identical
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copies of the process are observed, each over a fixed duration, instead of one single copy over a
fixed time interval. Modelling the reliability of mechanical systems subjected to earthquake-like
loads is a subject of major concern and SMMs can be used to achieve this goal. An application
to non-linear oscillators under seismic forces is a topic of further work.
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10. Limnios, N., Oprişan, G. (2001), Convergence of probability measures, Wiley, New York, 2nd edition.
11. Limnios, N., Ouhbi, B. (2006), “Nonparametric estimation of some important indicators in reliability

for semi-Markov processes”, Stat Methodol, 3, 341–350.
12. Mode, C.J., Sleeman, C.K. (2000), Stochastic Processes in Epidemiology: HIV/AIDS, Other Infectious

Diseases, and Computers, Singapore, World Scientific.
13. Ouhbi, B., Limnios, N. (2002), “The rate of occurrence of failures for semi-Markov processes and esti-

mation”, Stat Probab Lett, 59(3), 245–255.
14. Sadek, A., Limnios, N. (2002), “Asymptotic properties for maximum likelihood estimators for reliability

and failure rates of Markov chains”, Commun Stat Theory Method, 31(10), 1837–1861.
15. Trevezas, S., Limnios, N. (2011), “Exact MLE and asymptotic properties for nonparametric semi-Markov

models”, J Nonparametr Stat, 23(3), 719–739.
16. van der Vaart, A.W. (1998), Asymptotic Statistics, Cambridge University Press, New York.
17. Vassiliou, P.-C.G., Papadopoulou, A.A. (1992), “Asymptotic behavior of nonhomogeneous semi-Markov

systems”, Linear Algebra Appl, 210, 153–198.
18. Vassiliou, P.-C.G., Papadopoulou, A.A. (1992), “Non-homogeneous semi-Markov systems and maintain-

ability of the state sizes”, J Appl Probab, 29, 519–534.
19. Votsi, I., “Reliability indicators for hidden Markov renewal models”, Reliability Engineering: Theory

and Applications, edited by Vonta, I. and Ram, M., Boca Raton: CRC Press.
20. Votsi, I., Limnios, N. (2015), “Estimation of the intensity of the hitting time for semi-Markov chains

and hidden Markov renewal chains”, J Nonparametr Stat, 27 (2), 149–166.
21. Votsi, I., Limnios, N., Tsaklidis, G., Papadimitriou, E. (2014), “Hidden semi-Markov modeling for the

estimation of earthquake occurrence rates”, Commun Stat Theory Methods, 43, 1484–1502.
22. Votsi, I., Limnios, N., Tsaklidis, G., Papadimitriou, E. (2012), “Estimation of the expected number of

earthquake occurrences based on semi-Markov models”, Methodol Comput Appl Probab, 14(3), 685–703.
23. Yeh, L. (1997), “The rate of occurrence of failures”, J Appl Probab, 34, 234–247.


