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Conditional failure occurrence rates for
semi-Markov chains

Irene Votsi and Mohamed Hamdaoui

April 7, 2018

Abstract

In the present paper, we aim at providing plug-in-type empirical
estimators based on empirical processes to quantify the contribution
of each operational or/and non-functioning state to the failures of a
system described semi-Markov model. In particular we focus on an
important reliability measure for random repairable systems, the rate
of occurrence of failures and study different conditional versions in a
discrete time and finite state space context. The aforementioned esti-
mators of the conditional failure occurrence rates are caracterised by
appealing asymptotic properties such as consistency and asymptotic
normality. We further provide detailed analytical expressions for the
covariance matrices of the random vectors describing the conditional
failure occurrence rates. These results are illustrated on an academ-
ical numerical example based on simulated data. We further present
an application to a real dataset that models earthquake occurrences
in a semi-Markov framework.

1 Introduction

Semi-Markov models (SMMs) are state-of-the-art models that are widely
used in many scientific fields such as reliability and DNA analysis (Barbu
and Limnios (2008)), seismology (Votsi et al. (2012)) etc. One of the main
distinguising features of SMMs is that contrary to Markov models, they en-
able us to describe systems that evolve based not only on their last visited
state (Markov property) but also on the time elapsed since this state. Due
to this feature, popular “memory-full” distributions, such as the Weibull
distribution, could be employed to describe sojourn (or interevent) times be-
tween successive events. We refer the interested reader to Howard (1971) and
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Mode and Sleeman (2000) for an introduction to homogeneous SMMs and
to Vassiliou and Papadopoulou (1992, 1994) for non-homogeneous SMMs,
respectively.

In the semi-Markov context, many reliability indicators have been in-
troduced, including mean times to failure, hazard rates, availability func-
tions etc. For recent advances in the topic concerning discrete time SMMs,
see Barbu and Limnios (2008), Barbu et al. (2017) and Georgiadis et al.
(2013); Georgiadis (2017). For continuous-time SMMs, we address the inter-
ested reader to Limnios and Oprişan (2001) and Limnios and Ouhbi (2006).
For advances in estimation methods of nonparametric semi-Markov models,
see Trevezas and Limnios (2011) and the references therein.

Here we focus on a fundamental reliability indicator, the rate of occur-
rence of failures (ROCOF). ROCOF represents the rate of failure occurrences
for repairable, random systems subject to multiple failures. In the continu-
ous time context, it represents a rate, whereas in the discrete time context
it is rather a probability. Yeh (1997) was the first to investigate ROCOF for
continuous-time Markov models defined in a finite state space. More recently,
D’Amico (2015) investigated ROCOF for higher-order Markov processes with
an application to financial credit ratings. Concerning continuous time SMMs
in a finite or general state space, ROCOF was studied by Ouhbi and Limnios
(2002) and Limnios (2012), respectively. The discrete time counterpart of
ROCOF, was evaluated by Votsi et al. (2014) for SMMs and by Votsi and
Limnios (2015) for hidden Markov renewal models, under the term “discrete
time intensity hitting time” (DTIHT).

However, ROCOF is a “global” reliability indicator in the sense that it
does not distinguish neither on the current up state nor on the ending down
state. Here we introduce conditional versions of the ROCOF allowing us to
quantify the impact of the current up state, the ending down state or both
on the ROCOF. We further present empirical estimators of the conditional
ROCOFs and study their asymptotic properties.

The organization of the paper is as follows. In Section 2 the notation
and preliminaries of SMMs are presented. Section 3 describes the definition,
evaluation and statistical estimation of the conditional rate of failure occur-
rences. Section 4 discusses numerical examples based on simulated and real
data and finally, in Section 5, we give some concluding remarks.
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2 Notation and Preliminaries in Semi-Markov

Models

We briefly recall the main definitions from the theory of discrete-time SMMs
(see, e.g., Barbu and Limnios (2008)). We consider a random system with
finite state space E = {1, 2, ..., s} described by an SMM. The stochastic evo-
lution of the system is described by the following random sequences defined
on a complete probability space:

1. The sequence J = (Jn)n∈N with state space E, where Jn is the state
visited by the system at the n−th jump time, which forms a (time)
homogeneous Markov chain, the embedded Markov chain (EMC);

2. The N-valued sequence S = (Sn)n∈N, where Sn is the n−th jump time.
We suppose that S0 = 0 and 0 < S1 < S2 < . . . < Sn < Sn+1 < . . .
almost surely (a.s.);

3. The N-valued sequence X = (Xn)n∈N defined by X0 = 0 a.s. and
Xn = Sn − Sn−1 for all n ∈ N. Thus for all n ∈ N, Xn is the sojourn
time in state Jn−1, before the n−th jump.

The stochastic process (J,S), called Markov renewal chain (MRC), is con-
sidered to be (time) homogeneous and is characterized by the semi-Markov
kernel (SMK) q = (qij(k); i, j ∈ E, k ∈ N) defined by

qij(k) = P (Jn+1 = j,Xn+1 = k|Jn = i),

where i, j ∈ E and k, n ∈ N. The semi-Markov chain (SMC) Z = (Zk)k∈N
associated with the MRC (J,S) describes the system’s state at each time
k ∈ N and is defined by Zk = JN(k), where N(k) = max{n ≥ 0 : Sn ≤ k}.
The transition kernel of the EMC is defined by P = (pij; i, j ∈ E), where
pij = P (Jn+1 = j|Jn = i), i, j ∈ E, n ∈ N, and its initial distribution by α =
(α(i); i ∈ E), where α(i) = P (J0 = i). At the initial time, t = 0, the state
of the SMC coincides with the state of the EMC, i.e. Z0 = J0. We assume
that there are neither instantaneous transitions (qij(0) = 0, i, j ∈ E) nor
self-transitions for the EMC (pii = 0, i ∈ E). The conditional distribution
of the sojourn time in state i ∈ E given that the next visited state is j ∈ E
is given by fij(k) := P (Xn+1 = k|Jn = i, Jn+1 = j), k ∈ N. Moreover we
define the survival function of the sojourn time distribution in state i ∈ E
by H i(`) = P (Xn+1 > `|Jn = i), ` ∈ N, and by mi = E(S1|Z0 = i) the mean
sojourn time of the SMC in state i ∈ E. The next assumptions have to be
fulfilled in the following:
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A1 The SMC is irreducible and aperiodic;

A2 The mean sojourn times are finite, i.e., mi <∞, for any i ∈ E.

Time

States

•

•

•
{J0 = i}

{J1 = j}

{J0 = i}

{Jn = k}

S0 S1 S2 · · · Sn · · ·

· · ·

Sn+1

· · ·

(Jn) : state of the system

(Sn) : jump time

(Xn) : sojourn time

X1

X2

Xn+1

Figure 1: A typical trajectory of a Markov renewal chain.

3 Conditional Hitting Time Intensities

3.1 General definitions

The rate of occurrence of failures is one of the most significant indicators
in reliability theory, in particular in the study of repairable systems. We
first consider a subset of the state space E, U ⊂ E (U 6= ∅, U 6= E),
with up states U = {1, 2, ..., r} and down states D = {r + 1, ..., s}. Let
U = (Uk)k∈N be the sequence of the backward recurrence times of Z, that
is, Uk := k − SN(k). Following Chryssaphinou et al. (2008), the stochastic
process (Z,U) = (Zk, Uk)k∈N is a (time) homogeneous Markov chain governed
by its initial distribution, α̃ := (α̃(i, 0); i ∈ E), and its transition matrix

P̃ := (P̃
(
(i, t1), (j, t2)

)
; (i, t1), (j, t2) ∈ E × N). In what follows, the matrix

Λ, of dimension
(
s(M + 1)

)2 × (s(M + 1)
)2

, is defined by

Λ =


Λ(1, 0) 0 . . . . . . 0

...
. . .

...
...

...
...

... Λ(i, t1)
...

...
...

...
...

. . .
...

0 . . . . . . . . . Λ(s,M)

,
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where the block Λ(i, t1) is the square matrix

Λ(i, t1) =
(
δ(j,t2)(r,t3)P̃

(
(i, t1), (j, t2)

)
− P̃

(
(i, t1), (j, t2)

)
P̃
(
(i, t1), (r, t3)

))
,

and

δ(j,t2)(r,t3) =

{
1, if (j, t2) = (r, t3),
0, elsewhere,

for every (i, t1), (j, t2), (r, t3) ∈ E × TM . Moreover, we define by Γ the matrix:

Γ =



1
π̃(1,0)

Λ(1, 0) 0 . . . . . . 0
...

. . .
...

...
...

...
... 1

π̃(i,t1)
Λ(i, t1)

...
...

...
...

...
. . .

...
0 . . . . . . . . . 1

π̃(s,M)
Λ(s,M)


,

where π̃ := (π̃(i, t1); (i, t1) ∈ E × TM), is the stationary distribution of
(Z,U). Consider now a sample path H(M) of an MRC with a fixed length
M and denote by TM = {0, 1, . . . ,M}. For all i, j ∈ E and 1 ≤ k ≤ M , we
further define the counting processes:

1. Ni(M) =
∑N(M)−1

n=1 1{Jn=i} is the number of visits to state i of the EMC,
before time M ;

2. Nij(k,M) =
∑N(M)

n=1 1{Jn−1=i,Jn=j,Xn=k} is the number of transitions
from i to j, up to time M , with sojourn time in state i equal to k.

Then, following Barbu and Limnios (2008), the empirical estimators of the
semi-Markov kernel, qij, and the survival function, Hi(k), are defined by

q̂ij(k,M) =
Nij(k,M)

Ni(M)
, and Ĥ i(l,M) = 1−

∑
j∈E
∑l

k=0 q̂ij(k,M), respectively.

Additionally, the transition probabilities of the Markov chain (Z,U) are es-
timated by (Chryssaphinou et al. (2008)):

̂̃
PM

(
(i, t1), (j, t2)

)
=


q̂ij(t1 + 1,M)/Ĥ i(t1,M), if t2 = 0,

Ĥ i(t1 + 1,M)/Ĥ i(t1,M), if i = j, t2 − t1 = 1,
0, elsewhere.

3.2 Full conditional ROCOF

In the sequel we are interested in studying the impact of both the starting
up and the ending down states on the ROCOF, simultaneously. In order to
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do that, we define the full conditional ROCOF as the expected number of
transitions of the SMC to the set D at time k, given that it starts in state
i ∈ U and it ends in state j ∈ D, i.e.,

r]ij(k) = E[N ]
ij(k)−N ]

ij(k − 1)],

where

N ]
ij(k) =

∑k
l=1 1{Zl−1=i,Zl=j}.

Theorem 1. The full conditional ROCOF of the SMC at time k is given by

r]ij(k) =
k−1∑
m=0

[(ãP̃ k−1)(i,m)]P̃
(
(i,m), (j, 0)

)
, k ∈ N∗,

for any fixed arbitrary states i ∈ U , j ∈ D.

Proof. For fixed i ∈ U , j ∈ D and k ∈ N∗,

r]ij(k) = E[N ]
ij(k)−N ]

ij(k − 1)]

= E1{Zk−1=i,Zk=j} = P (Zk−1 = i, Zk = j)

= P (Zk−1 = i, Zk = j). (1)

Moreover, following Votsi et al. (2014), we have that

P (Zk−1 = i, Zk = j) =
k−1∑
m=0

[(ãP̃ k−1)(i,m)]P̃
(
(i,m), (j, 0)

)
, (2)

for i 6= j. Therefore, from (1) and (2), we get the desired result.

For a given i ∈ U , j ∈ D, we estimate the full conditional ROCOF by
means of the plug-in type estimator:

r̂]ij(k,M) =
k−1∑
m=0

[(̂̃a ̂̃P k−1

M )(i,m)]
̂̃
PM

(
(i,m), (j, 0)

)
.

Proposition 1. For any state i ∈ U , j ∈ D and any fixed arbitrary positive
integer k ∈ N, the estimator of the conditional intensity of the hitting time
at time k is strongly consistent in the sense that

r̂]ij(k,M)
a.s.−−−−→

M→∞
r]ij(k).
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Proof. Following Sadek and Limnios (2002) for the Markov chain (Z,U), we

have
̂̃
PM

a.s.−−−−→
M→∞

P̃ and since we deal with finite sums, we can write directly:

r̂]ij(k,M) =
k−1∑
m=0

[(̂̃a ̂̃P k−1

M )(i,m)]
̂̃
PM

(
(i,m), (j, 0)

)
a.s.−−−−→

M→∞

k−1∑
m=0

[(ãP̃ k−1)(i,m)]P̃
(
(i,m), (j, 0)

)
= r]ij(k).

Proposition 2. For any fixed i ∈ U , j ∈ D, k ≥ 1,
√
M
(
r̂]ij(k,M)− r]ij(k)

)
converges in distribution, as M tends to infinity, to a zero mean normal
random variable with variance Φ′ijΓΦ′ij

>. Moreover Φij : [0, 1]d → R+ (d =
(s(M + 1))2) is the function

Φij

(
P̃
(
(i′,m′), (j′, t′)

)
; (i′,m′), (j′, t′) ∈ E × TM

)
=

k−1∑
m=0

(
(ãP̃ k−1)(i,m)

)
P̃
(
(i,m), (j, 0)

)
=

k−1∑
m=0

(∑
s∈E

ã(s, 0)P̃ k−1((s, 0), (i,m)
))
P̃
(
(i,m), (j, 0)

)
and

Φ′ij =
( ∂Φij

∂P̃
(
(i′,m′), (j′, t′)

) ; (i′,m′), (j′, t′) ∈ E × TM
)
,

is the d−dimensional row vector of first derivatives of r]ij(k) with respect to

P̃
(
(i′,m′), (j′, t′)

)
.

Proof. Following the definition of the conditional intensity of the hitting time,
we have

√
M(r̂]ij(k,M)− r]ij(k))

=
√
M

k−1∑
m=0

(
[(̂̃a ̂̃P k−1

M )(i,m)]
̂̃
PM

(
(i,m), (j, 0)

)
− [(ãP̃ k−1)(i,m)]P̃

(
(i,m), (j, 0)

))
=
√
M
(

Φ
(̂̃
PM

(
(i′,m′), (j′, t′)

))
− Φ

(
P̃
(
(i′,m′), (j′, t′)

)))
,
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where Φ is a polynomial function and consequently differentiable. The vector
function

√
M
((̂̃
PM

(
(i′,m′), (j′, t′)

))
−
(
P̃
(
(i′,m′), (j′, t′)

)))
converges, as M tends to infinity, to the normal distribution centred at the
origin with covariance matrix Γ. Then by means of the delta method (see,
e.g., van Der Vaart 1998), we obtain that

√
M
(

Φ
(̂̃
PM

(
(i′,m′), (j′, t′)

))
− Φ

(
P̃
(
(i′,m′), (j′, t′)

))) L−−−−→
M→∞

N (0,Φ′ΓΦ′
>

).

We now prove the asymptotic normality of the random vector (r̂]ij)i,j∈E
with an explicit formula for the covariance matrix.

Lemma 1. For n ≥ 2, the random vector F n =
(
fn(i′,m′),(j′,t′)

)
(i′,m′),(j′,t′)∈E×TM

where

fn(i′,m′),(j′,t′) =
√
M
(̂̃
P
n(

(i′,m′), (j′, t′)
)
− P̃ n

(
(i′,m′), (j′, t′)

))
has the same limit in distribution as the random vector

Gn =
(
gn(i′,m′),(j′,t′)

)
(i′,m′),(j′,t′)∈E×TM

where

gn(i′,m′),(j′,t′) =
∑

(j,t)∈E×TM

(
P̃ n−1((i′,m′), (j, t))f(j,t),(j′,t′) + P̃ n−1((j, t), (j′, t′))f(i′,m′),(j,t))

+ 1{n≥3}

n−1∑
k=2

∑
(i1,t1)∈E×TM

∑
(i2,t2)∈E×TM

P̃ n−k((i′,m′), (i1, t1)) P̃ k−1((i2, t2), (j′, t′))f(i1,t1),(i2,t2).
Moreover, F n converges, as M tends to infinity, to a centered normal random
vector with covariance matrix Σ = Σf Γ ΣT

f . The matrix

Σf = Σf ((i
′,m′), (j′, t′), (u′, v′), (s′, t′))(i′,m′),(j′,t′),(u′,v′),(s′,w′)∈E×TM

of dimension d× d (d = (s(M + 1))2) is given by

Σf ((i
′,m′), (j′, t′), (u′, v′), (s′, w′)) = δ(j′,t′),(s′,w′) P̃

n−1((i′,m′), (u′, v′))
+ δ(i′,m′),(u′,v′) P̃

n−1((s′, w′), (j′, t′))
+

n−1∑
k=2

P̃ n−k((i′,m′), (u′, v′)) P̃ k−1((s′, w′), (j′, t′)).
8



Proof. Since (Z,U) is a Markov chain and P̃
(
(i′,m′), (j′, t′)

)
(i′,m′), (j′, t′) ∈

E×TM is its transition matrix, we follow (Sadek and Limnios, 2002, Theorem
4) and obtain the desired result.

Theorem 2. For any fixed k ≥ 3,the random vector R(k) = (Rij(k))i,j∈E

where Rij(k) =
√
M
(
r̂]ij(k,M)−r]ij(k)

)
converges in distribution, as M tends

to infinity, to a centered normal random vector with variance ΣΓΣ>.

Proof. First, we notice that

Rij(k) =
√
M

k−1∑
m=0

∑
s∈E

ã(s, 0)
(̂̃
P
k−1(

(s, 0), (i,m)
)̂̃
P
(
(i,m), (j, 0)

)
− P̃ k−1((s, 0), (i,m)

)
P̃
(
(i,m), (j, 0)

))
=

k−1∑
m=0

∑
s∈E

ã(s, 0)
(
fk−1(s,0),(i,m)

(̂̃
P
(
(i,m), (j, 0)

)
− P̃

(
(i,m), (j, 0)

))
+ P̃ k−1((s, 0), (i,m)

)
f(i,m),(j,0) + fk−1(s,0),(i,m)P̃

(
(i,m), (j, 0)

))
.

Second, using Lemma 1 and following Sadek and Limnios (2002, Proposition
1), we obtain that

fk−1(s,0),(i,m)

L−−−−→
M→∞

Z,

where Z is a centered normal random variable, and

̂̃
P
(
(i,m), (j, 0)

)
− P̃

(
(i,m), (j, 0)

) P−−−−→
M→∞

0.

Then from Slutsky’s theorem, we deduce that Rij(k) has the same limit
in distribution as

k−1∑
m=0

∑
s∈E

ã(s, 0)
(
P̃ k−1((s, 0), (i,m)

)
f(i,m),(j,0) + fk−1(s,0),(i,m)P̃

(
(i,m), (j, 0)

))
,

which in turn has the same limit in distribution as

k−1∑
m=0

∑
s∈E

ã(s, 0)
(
P̃ k−1((s, 0), (i,m)

)
f(i,m),(j,0) + gk−1(s,0),(i,m)P̃

(
(i,m), (j, 0)

))
.

Since the last function is continuous and linear w.r.t. the vector f(i′,m′),(j′,t′),
we use the continuous mapping theorem and deduce that Rij converges in
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distribution to a centered normal random vector with covariance matrix Σ =
Σ ΓΣT . The rectangular matrix Σ = Σ((i, j), (u′, v′), (s′, w′))i,j∈E,(u′,v′),(s′,w′)∈E×TM
of dimension d (d = s2 × (s(M + 1))2) is given by

Σ((i, j), (u′, v′), (s′, w′)) = δ(u′,i)1(v′≤k−1) δ(s′,w′),(j,0)
∑
s∈E

ã(s, 0)P̃ k−1((s, 0), (u′, v′)
)

+ δ(s′,i)1(w′≤k−1) P̃
(
(i, w′), (j, 0)

)∑
s∈E

ã(s, 0)P̃ k−2((s, 0), (u′, v′)
)

+ δ(u′,v′),(s,0) ã(u′, 0)
k−1∑
m=0

P̃
(
(i,m), (j, 0)

)
P̃ k−2((s′, w′), (i,m)

)
+

k−1∑
m=0

∑
s∈E

k−2∑
r=2

ã(s, 0) P̃
(
(i,m), (j, 0)

)
P̃ k−1−r((s, 0), (u′, v′)

)
P̃ r−1((s′, w′), (i,m)

)
.

3.3 Left conditional ROCOF

Here we aim at studying the impact of the starting up state and the ending
down state on the ROCOF. In order to do that, we first define the left
conditional ROCOF as the expected number of transitions of the SMC to
the set D at time k, given that it starts from the fixed state i ∈ U , i.e.,

r̃i(k) = E[Ñi(k)− Ñi(k − 1)],

where

Ñi(k) =
∑k

l=1 1{Zl−1=i,Zl∈D}.

Following Votsi et al. (2014), we obtain an explicit expression of the left
conditional ROCOF for a current up state i ∈ U .

Theorem 3. The left conditional ROCOF of the SMC at time k is given by

r̃i(k) =
∑
j∈D

k−1∑
m=0

[(ãP̃ k−1)(i,m)]P̃
(
(i,m), (j, 0)

)
, k ∈ N∗,

for any fixed, arbitrary state i ∈ U .

Proof. For fixed i ∈ U and k ∈ N∗,

r̃i(k) = E[Ñi(k)− Ñi(k − 1)]

= E1{Zk−1=i,Zk∈D} = P (Zk−1 = i, Zk ∈ D)

=
∑
j∈D

P (Zk−1 = i, Zk = j). (3)

Therefore, from (2) and (3), we get the desired result.
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For a given state i ∈ U , we estimate the left conditional ROCOF by
means of the plug-in type estimator

̂̃ri(k,M) =
∑
j∈D

k−1∑
m=0

[(̂̃a ̂̃P k−1

M )(i,m)]
̂̃
PM

(
(i,m), (j, 0)

)
,

where (̂̃a ̂̃P k−1

M )(i,m) is the (i,m) element of the vector ̂̃a ̂̃P k−1

M , for every k ∈
N∗.

Proposition 3. For any fixed, arbitrary state i ∈ U and any fixed, arbitrary
positive integer k ∈ N, the estimator of the left conditional ROCOF at time
k is strongly consistent in the sense that

̂̃ri(k,M)
a.s.−−−−→

M→∞
r̃i(k).

Proof. To prove the consistency, we work as in Votsi and Limnios (2015). In

particular, since we have
̂̃
PM

a.s.−−−−→
M→∞

P̃ and deal with finite sums, we obtain

directly the desired result.

Proposition 4. For any fixed i ∈ U , k ≥ 1,
√
M
(̂̃ri(k,M)− r̃i(k)

)
converges

in distribution, as M tends to infinity, to a zero mean normal random vari-
able with variance Φ′iΓΦ′i

>. Moreover Φi : [0, 1]d → R+ (d = (s(M + 1))2) is
the function

Φi

(
P̃
(
(i′,m′), (j′, t′)

)
; (i′,m′), (j′, t′) ∈ E × TM

)
=
∑
j∈D

k−1∑
m=0

[(ãP̃ k−1)(i,m)]P̃
(
(i,m), (j, 0)

)
=
∑
j∈D

k−1∑
m=0

(∑
s∈E

ã(s, 0)P̃ k−1((s, 0), (i,m)
))
P̃
(
(i,m), (j, 0)

)
and

Φ′i =
( ∂Φi

∂P̃
(
(i′,m′), (j′, t′)

) ; (i′,m′), (j′, t′) ∈ E × TM
)
,

is the d−dimensional row vector of first derivatives of r̃i(k) with respect to

P̃
(
(i′,m′), (j′, t′)

)
.

Proof. First, we have that

√
M(̂̃ri(k,M)−r̃i(k)) =

√
M
(

Φi

(̂̃
PM

(
(i′,m′), (j′, t′)

))
−Φi

(
P̃
(
(i′,m′), (j′, t′)

)))
.
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The function Φi is a polynomial function of its arguments, it is then differ-
entiable. Moreover, following (Sadek and Limnios, 2002, Corollary 1) for the
double Markov chain, the vector function

√
M
((̂̃
PM

(
(i′,m′), (j′, t′)

))
−
(
P̃
(
(i′,m′), (j′, t′)

)))
converges, as M tends to infinity, to the normal distribution centered at the
origin with covariance matrix Γ. Then by means of the delta method (see,
e.g., van der Vaart (1998)), we obtain the desired result.

Theorem 4. For any fixed k ≥ 3, the random vector
√
M
(
r̃i(k,M) −

ri(k)
)
i∈U converges in distribution, as M tends to infinity, to a centred nor-

mal random vector with variance ΣUΓΣU
> with ΣU = ΣU(i, (u′, v′), (s′, w′))i∈U,(u′,v′),(s′,w′)∈E×TM

of dimension d (d = r × (s(M + 1))2) is given by

ΣU(i, (u′, v′), (s′, w′)) = δ(u′,i)1(v′≤k−1) 1(s′∈D)δ(w′,0)
∑
s∈E

ã(s, 0)P̃ k−1((s, 0), (u′, v′)
)

+ δ(s′,i)1(w′≤k−1)
∑
j∈D

P̃
(
(i, w′), (j, 0)

)∑
s∈E

ã(s, 0)P̃ k−2((s, 0), (u′, v′)
)

+ δ(u′,v′),(s,0) ã(u′, 0)
∑
j∈D

k−1∑
m=0

P̃
(
(i,m), (j, 0)

)
P̃ k−2((s′, w′), (i,m)

)
+
∑
j∈D

k−1∑
m=0

∑
s∈E

k−2∑
r=2

ã(s, 0)P̃
(
(i,m), (j, 0)

)
P̃ k−1−r((s, 0), (u′, v′)

)
P̃ r−1((s′, w′), (i,m)

)
.

Proof. Working as in Theorem 2, we get the desired result.

3.4 Right conditional ROCOF

We go one step further and aim at studying the impact of the ending down
state to the ROCOF. In order to do that, we define the right conditional
ROCOF as the expected number of transitions of the SMC to the set D at
time k, given that it ends in state j ∈ D, i.e.,

rj(k) = E[N j(k)−N j(k − 1)],

where

N j(k) =
∑k

l=1 1{Zl−1∈U,Zl=j}.

Following Votsi and Limnios (2015), we obtain an explicit expression of the
right conditional ROCOF for any ending state j ∈ D.
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Theorem 5. The right conditional ROCOF of the SMC at time k is given
by

rj(k) =
∑
i∈U

k−1∑
m=0

[(ãP̃ k−1)(i,m)]P̃
(
(i,m), (j, 0)

)
, k ∈ N∗,

for any state j ∈ D.

Proof. For fixed j ∈ D and k ∈ N∗,

rj(k) = E[N j(k)−N j(k − 1)]

= E1{Zk−1∈U,Zk=j} = P (Zk−1 ∈ U,Zk = j)

=
∑
i∈U

P (Zk−1 = i, Zk = j). (4)

Therefore, from (2) and (4), we get the desired result.

For a fixed state j ∈ D, we estimate the right conditional ROCOF by
means of the plug-in type estimator :

r̂j(k,M) =
∑
i∈U

k−1∑
m=0

[(̂̃a ̂̃P k−1

M )(i,m)]
̂̃
PM

(
(i,m), (j, 0)

)
.

Proposition 5. For any fixed arbitrary state j ∈ D and any fixed arbitrary
positive integer k ∈ N, the estimator of the conditional ROCOF at time k is
strongly consistent in the sense that

r̂j(k,M)
a.s.−−−−→

M→∞
rj(k).

Proof. Working as in Proposition 1, we obtain the desired result.

Proposition 6. For any fixed j ∈ D, k ≥ 1,
√
M
(
r̂j(k,M) − rj(k)

)
con-

verges in distribution, as M tends to infinity, to a zero mean normal random
variable with variance Φ′jΓΦ′j

> Φj : [0, 1]d → R+ (d = (s(M + 1))2) is the
function

Φj

(
P̃
(
(i′,m′), (j′, t′)

)
; (i′,m′), (j′, t′) ∈ E × TM

)
=
∑
i∈U

k−1∑
m=0

[(ãP̃ k−1)(i,m)]P̃
(
(i,m), (j, 0)

)
=
∑
i∈U

k−1∑
m=0

(∑
s∈E

ã(s, 0)P̃ k−1((s, 0), (i,m)
))
P̃
(
(i,m), (j, 0)

)
13



and

Φ′j =
( ∂Φj

∂P̃
(
(i′,m′), (j′, t′)

) ; (i′,m′), (j′, t′) ∈ E × TM
)
,

is the d−dimensional row vector of first derivatives of rj(k) with respect to

P̃
(
(i′,m′), (j′, t′)

)
.

Proof. Working as in Proposition 2, we obtain the desired result.

Theorem 6. For any fixed k ≥ 3, the random vector
√
M
(
r̃j(k,M) −

rj(k)
)
j∈D converges in distribution, as M tends to infinity, to a centred nor-

mal random vector with variance ΣDΓΣD
> with ΣD = ΣD(j, (u′, v′), (s′, w′))j∈D,(u′,v′),(s′,w′)∈E×TM

of dimension d (d = (s− r)× (s(M + 1))2) is given by

ΣD(j, (u′, v′), (s′, w′)) = δ((s′,w′),(j,0))1(u′∈U)1(v′≤k−1)
∑
s∈E

ã(s, 0)P̃ k−1((s, 0), (u′, v′)
)

+ 1(s′∈U)1(w′≤k−1) P̃
(
(i, w′), (j, 0)

)∑
s∈E

ã(s, 0)P̃ k−2((s, 0), (u′, v′)
)

+ δ(u′,v′),(s,0) ã(u′, 0)
∑
i∈U

k−1∑
m=0

P̃
(
(i,m), (j, 0)

)
P̃ k−2((s′, w′), (i,m)

)
+
∑
i∈U

k−1∑
m=0

∑
s∈E

k−2∑
r=2

ã(s, 0)P̃
(
(i,m), (j, 0)

)
P̃ k−1−r((s, 0), (u′, v′)

)
P̃ r−1((s′, w′), (i,m)

)
.

Proof. Working as in Theorem 2, we get the desired result.

4 Numerical Example

4.1 Simulated Data

To validate our findings and see how we can employ the conditional ROCOF
to quantify the effects of the up state, we adopt simulation methods. In
particular, we use the algorithm presented by Barbu and Limnios (2008),
which generates trajectories of an MRC in a fixed time interval [0,M ]. The
algorithm, in its general form, takes as input the transition probability matrix
of the EMC and the conditional sojourn time distributions.

We generate a trajectory of the MRC with length equal to M = 100000.
The initial law a and the transition kernel P are given by

α =
(
0.5 0.5 0

)
and P =

 0 0.6 0.4
0.7 0 0.3
0.5 0.5 0

 ,
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Initialization;
Set k = 0, S0 = 0 and sample J0 from the initial distribution α;
Iteration;
while Sk ≤M do

Sample the random variable J ∼ P(Jk, ·) and set Jk+1 = J(ω);
Sample the random variable X ∼ fJkJk+1

(·);
Set Sk+1 = Sk +X;
Set k = k + 1;

end

Algorithm 1: Monte-Carlo Algorithm

respectively. The sojourn times follow the discrete time Weibull distribution

fij(k) :=

{
qk−1

b − qkb, if k ≥ 1,
0, if k = 0,

with parameters (q, b) = (0.1, 0.9) for the transitions 1 −→ 2 and 2 −→ 1,
(q, b) = (0.1, 2.0) for the transition 2 −→ 3 and (q, b) = (0.6, 0.9) for the
remaining transitions. We further denote by U = {1, 2} the subset of up
states and by D = {3} the subset of down states. Our objective is to estimate
the DTIHT and quantify the impact of the current up state on the estimator.

Figure 2: DTIHT and conditional hitting time intensities versus time.

We first notice that the DTIHT tends to increase for k smaller than 13,
which means that the system is deteriorating, and then it becomes constant
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due to the stationarity of the semi-Markov chain. The estimated and true
values of the DTIHT seem to be quite close, which validates our numerical
approach. Moreover, we observe that the DTIHT is mostly affected by the
up state i = 1 as the contribution of this state represents 83 % of its total
value. The right conditional ROCOF in this example is equal to the DTIHT
as there is only one down state.

4.2 Real Data

We further estimate the conditional ROCOF in a dataset that contains earth-
quake records with magnitudes M ≥ 5.5 that occurred in Northern Aegean
Sea (Greece) during the period [1953, 2007] (see Votsi et al. (2012) for more
informations). Following Votsi et al. (2012), three states are defined corre-
sponding to earthquake magnitudes: State 1: [5.5, 5.6], State 2: [5.7, 6.1] and
State 3: [6.1, 7.2]. Since we are more interested in the occurrence of high mag-
nitude earthquakes, we consider down states are visited when earthquakes
with magnitudes belonging to the third state occur, whereas up states are
visited when earthquakes with lower magnitudes occur.

Figure 3: DTIHT and conditional hitting time intensities versus time.

We first notice that the DTIHT tends to increase for k smaller than 13,
which means that the system is deteriorating, and then it becomes constant
due to the stationarity of the semi-Markov chain. The estimated and true
values of the DTIHT seem to be quite close, which validates our numerical
approach. Moreover, we observe that the DTIHT is mostly affected by the
up state i = 1 as the contribution of this state represents 83 % of its total
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value. The right conditional ROCOF in this example is equal to the DTIHT
as there is only one down state.

5 Concluding Remarks

In the present paper we study the sensitivity of the ROCOF in the current up
and ending down states in a semi-Markov context. This is the first attempt
to arise sensitivity issues of reliability indicators for SMMs. The results high-
light that defining more precise reliability indicators could lead to more exact
results for practitioners and researchers. Due to the flexibility and universal-
ity of the framework provided by SMMs, there exists a variety of extensions
that could be adapted. Further research includes the extension of the results
to higher order or non-homogeneous SMMs. Another topic for exploration
is the study of sensitivity issues for reliability indicators concerning hidden
Markov renewal models. DTIHT could further be investigated when inde-
pendent and identical copies of the process are observed, each over a fixed
duration, instead of one single copy over a fixed time interval. Modelling
the reliability of mechanical systems subjected to earthquake-like loads is a
subject of major concern and SMMs can be used to achieve this goal. An
application to non-linear oscillators under seismic forces is a topic of further
work.
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