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6.1 Introduction

Hidden Markov models (HMMs) are stochastic models that are widely used
in numerous applications in reliability and DNA analysis [2], seismology [26],
speech recognition [19] etc. They are mostly used to describe systems that
are observed at discrete times. However, the observations are induced by an
underlying (“hidden”) process that is unknown or unexplained. In the simplest
case this underlying process is a first-order, homogeneous Markov chain whose
state space is finite.

Since the underlying process is a Markov chain, the sojourn times (i.e.
the times between the successive visited states) are considered to follow the
geometric distribution. However, in practice there is no clear evidence that
the sojourn times should follow this particular distribution. In other words,
there is no evidence that favors the choice of a Markov chain as the underlying
chain over the most general semi-Markov chain. If the underlying process is
a semi-Markov chain then the corresponding model is a hidden semi-Markov
model (HSMM) and therefore HSMMs constitute an important extension of
HMMs ([4],[5],[7],[20]).

Contrary to HMMs, HSMMs enable us to describe systems whose hid-
den states evolve based on their last visited state (Markov property) and on
the time elapsed since its last visit. As a result, popular “memory-full” dis-
tributions, such as the Weibull or the shifted Poisson distributions could be
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2 6 Reliability indicators for hidden Markov renewal models

employed to describe the sojourn times. HSMMs were introduced in [9] to-
wards an application in speech recognition and since then they have been
extensively studied and applied in many scientific disciplines. For the non-
parametric HSMM, the maximum likelihood estimators (MLEs) and their
asymptotic behaviour were studied in [3]. Later on, the asymptotic properties
of the MLEs for HSMMs defined in a general state space were studied in [22].

In the literature of semi-Markov models (SMMs) many reliability indica-
tors have been introduced, including availability, maintainability, mean times
to failure, hazard rates etc. For recent advances in the topic concerning discrete
time SMMs, see [2], [11], [10] and [1]. For continuous time SMMs, we address
the interested reader in [15] and [16]. For advances in estimation methods of
nonparametric SMMs, see [22] and the references therein.

Here we concentrate on the failure occurrence rate (ROCOF), which is a
fundamental reliability indicator for random systems that could experience
multiple failures. In a continuous time context, the value of ROCOF at time
t ∈ R

∗ represents the derivative of the mean number of failures that occurred
up to time t, whereas in a discrete time context (k ∈ N

∗) it represents the
probability that a failure occurs during the interval [k − 1, k]. The failure oc-
currence rate may be increasing or decreasing, which means that the system of
interest may improve or degenerate, respectively. On the other hand constant
ROCOF means that the state of the system does not change over time.

ROCOF was firstly introduced for first-order Markov processes defined in
a finite state space in [27]. More recently the previous results were generalized
for higher-order Markov processes [6]. In a continuous time semi-Markov con-
text, ROCOF was studied in [18] for finite state space processes and in [14]
for general state space processes, respectively. The discrete time counterpart
of ROCOF, was evaluated for semi-Markov chains in [25]. The authors pro-
posed an empirical estimator and applied their results to seismological data.
In particular they estimated the time-varying probability of the occurrence of
a strong earthquake in Aegean Sea. Later on ROCOF was studied for discrete
hidden Markov renewal chains (HMRCs) in [24] in the case that failures are
associated with specific observations rather than hidden states. Counting pro-
cesses were used to define an empirical estimator whose asymptotic behavior
was studied. In particular the estimator was shown to be consistent and its
asymptotic normal distribution was obtained by means of delta method.

In the previous studies ROCOF was defined as a “global” reliability indi-
cator in the sense that it was defined by means of all the starting functioning
states and all the ending inoperative states. In this sense it does not distin-
guish neither on the starting functioning state nor on the ending inoperative
state. It takes into account all the starting operational and all the ending de-
fective states simultaneously. However, the study of the influence of each state
of the system (functioning or unworkable) in the evaluation of ROCOF could
be of special interest. To the best of our knowledge, no studies have been done
on the impact of the starting functioning states or/and the ending unworkable
states on the ROCOF. To address this short-coming in the context of HM-
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RCs, we introduce the conditional counterparts of the failure occurrence rate.
The study of these elementary rates could uplight the functioning states that
mostly influence the ROCOF and give insight into the dynamics of failures.
In this sense these indicators could enable us to identify opportunities for
improving reliability performance, which is of special interest for real-life ap-
plications. We further present consistent and asymptotically normal empirical
estimators of the conditional versions of ROCOF.

The chapter is organized as follows. In Section 1.2 we present the notation
and preliminaries of HMRCs. Section 1.3 describes the definition, evaluation
and statistical estimation of the conditional rates of failure occurrences. Fi-
nally, in Section 1.4, we give some concluding remarks.

6.2 Hidden Markov renewal models

First we denote by J = (Jn)n∈N a Markov chain (embedded Markov chain
(EMC)) with finite state space E = {1, . . . , s} and by S = (Sn)n∈N a sequence
of jump times, i.e. times when the EMC visits different, successive states. We
further denote by X = (Xn)n∈N the sequence of sojourn (or inter-arrival)
times, where X0 = S0 = 0 a.s. and Xn = Sn − Sn−1 for all n ∈ N

∗. The semi-
Markov chain Z = (Zk)k∈N is defined by Zk = JN(k), where N(k) = max{n ≥
0 : Sn ≤ k}, k ∈ N. The stochastic process (J,S) = (Jn, Sn)n∈N, called
Markov renewal chain (MRC), is considered to be (time) homogeneous and is
characterized by the semi-Markov kernel (SMK) q = (qij(k); i, j ∈ E, k ∈ N),
where

qij(k) = P (Jn+1 = j,Xn+1 = k|Jn = i)

for any i, j ∈ E and k, n ∈ N.
The evaluation of the conditional ROCOF requires additionally the defi-

nition of the ℓ-fold convolution of the SMK q(ℓ) = (q
(ℓ)
ij (k); i, j ∈ E, k ∈ N),

where
q
(ℓ)
ij (k) = P (Jℓ = j, Sℓ = k|J0 = i),

for any i, j ∈ E and ℓ, k ∈ N. The ℓ-fold convolution of the semi-Markov kernel
could further be obtained recursively by means of the lower order convolutions
of the semi-Markov kernel [2].

We further denote by a = (a(i); i ∈ E), where a(i) = P (J0 = i), the initial
law of the EMC. The transition probability matrix of the EMC is defined by
P = (pij ; i, j ∈ E), where pij = P (Jn+1 = j|Jn = i), i, j ∈ E, n ∈ N, and the
conditional distribution of the sojourn time in state i ∈ E given that the next
visited state is j ∈ E is given by fij(k) = P (Xn+1 = k|Jn = i, Jn+1 = j),
k ∈ N. Here we assume that there are neither instantaneous transitions nor
self-transitions for the EMC. Moreover we define the survival function of the
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sojourn time in state i ∈ E by Hi(k) = P (Xn+1 > k|Jn = i), k ∈ N and the
corresponding mean sojourn time by mi = E(S1|J0 = i).

time

(state, observation)

•

•

•

(J1, Y1)

(J0, Y0)

(Jn, Yn)

S0 S1 S2 Sn−1 Sn

(Jn) : system’s state

(Yn) : observation

(Sn) : jump time

(Xn) : sojourn timeX1

X2

Xn

FIGURE 6.1

A representative sample path of the process (Jn, Sn, Yn)n∈N.

In what follows we consider that the next assumptions are fulfilled:

A1 The EMC J is ergodic.

A2 For any state i ∈ E, mi = E(S1|J0 = i), is finite.

A3 The MRC (J,S) is aperiodic.

Second we denote by Y = (Yn)n∈N an observation sequence that is defined
in a finite state space A and is recorded only at jump times n ∈ N. We as-
sume that the observations are conditionally independent given the underlying
states of the EMC, i.e.

P (Yn = a|Y0, . . . , Yn−1, J0, . . . , Jn = i) = P (Yn = a|Jn = i),

for any a ∈ A, i ∈ E, n ∈ N.
Here we consider that observations are recorded at jump times and call

the process (J,S,Y) = (Jn, Sn, Yn)n∈N a hidden Markov renewal chain. The
state space of (J,S,Y) is denoted by E∗ (|E∗| = d) and its initial law by
α = (α(i, y); i ∈ E, y ∈ A), where α(i, y) = P (J0 = i, S0 = 0, Y0 = y). On the
contrary if we consider that observations are recorded at calendar times k ∈ N

(and not just at jump times n ∈ N), then the process (Z,Y) = (Zk, Yk)k∈N is
a hidden semi-Markov chain [2].

We consider that A is divided into two disjoint, non-empty subsets U and
D such that U,D ⊂ A (U,D 6= A). The subset U = {1, . . . , r} represents the
functioning (or up) states, whereas the subset D = {r + 1, . . . , s} stands for
the unworkable (or down) states. We denote by L = E × N (|L| = ℓ) the
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state space of the MRC and by π = (π(i, s); i ∈ E, s ∈ N), where π(i, s) =∑
u∈E ν(u)qui(s), its stationary distribution. Since we assume stationarity, the

stationary distribution of the EMC coincides with its initial distribution, a.
We further define Ri(U) = P (Yn ∈ U |Jn = i) and Ri(D) = P (Yn ∈ D|Jn = i),
for any i ∈ E, n ∈ N.

We turn now our attention to statistical estimation aspects with regards to
HMRCs. We first consider a sample path of the HMRC up to fixed arbitrary
time M ∈ N, i.e.

H(M) = (J0, Y0, S1, . . . , JN(M), YN(M), SN(M), UM ),

where UM = M − SN(M). Then we denote SM
0 = (S0, . . . , SN(M)), Y

M
0 =

(Y0, . . . , YN(M)), J
M
0 = (J0, . . . , JN(M)) and TM = {0, . . . ,M}. We further

denote by δ Kronecker’s delta and define the (block diagonal) covariance ma-
trix ∆, of dimension (ℓd)× (ℓd), by

∆ =




Φ(1, 0) 0 . . . . . . 0
...

. . .
...

...
...

...
... Φ(i, t)

...
...

...
...

...
. . .

...
0 . . . . . . . . . Φ(s, SN(M))



,

where

Φ(i, t) =
1

π(i, t)

(
δ(j,t′,m)(r,t′′,q)Rj;mqij(t

′ − t)− qij(t
′ − t)Rj;mRr;qqir(t

′′ − t)
)
,

for any (i, t) ∈ L, (j, t′,m), (r, t′′, q) ∈ E∗.

Second, we introduce the counting processes of transitions of (Jn)n∈N up
to time M

• Nij(M) =
∑N(M)

n=1 1{Jn−1=i,Jn=j},

• Nij(k,M) =
∑N(M)

n=1 1{Jn−1=i,Xn=k,Jn=j},

where i, j ∈ E, k ∈ N
∗. We further introduce the counting process of visits of

(Jn)n∈N and (Yn)n∈N up to time M

• Ni;a(M) =
∑N(M)

n=1 1{Jn−1=i,Yn−1=a},

where i ∈ E, a ∈ A.

Since we assume stationarity, the parameter set of the model is ϑ = (q,R).
Moreover the complete likelihood function, i.e. the likelihood function which
is based on the complete data, is denoted by fM (JM

0 , Y M
0 , SM

0 |ϑ). Then the
partial likelihood function, which is based on the incomplete data, is given by

gM (Y M
0 |ϑ) =

∑

JM
0 ∈EN(M)+1

∑

SM
0 ∈TM

N(M)

fM (JM
0 , Y M

0 , SM
0 |ϑ).
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The complete log-likelihood function is expressed in terms of the afore-
mentioned counting processes as follows:

log fM (JM
0 , Y M

0 , SM
0 |ϑ) = log

( ∏

i,j∈E

p
Nij(M)
ij

∏

i,j∈E

∏

k∈N∗

f
Nij(k,M)
ij

∏

i∈E

∏

a∈A

R
Ni;a(M)
i;a Hi(k)

)

=
∑

i,j∈E

Nij(M) log pij +
∑

i,j∈E

∑

k∈N∗

Nij(k,M) log fij(k)

+
∑

i∈E

∑

a∈A

Ni;a(M) logRi;a + log
( ∑

k≥M−SN(M)

Hi(k)
)
.

The MLEs of the parameters

ϑMLE = argmax
ϑ

gM (Y M
0 |ϑ),

could be obtained by an adaptation of the EM algorithm [12] (as it is pre-
sented in [2]) in the case that observations are recorded at jump times. In the

following we denote the MLEs of qij(k), q
(ℓ)
ij (k), Ri;a and Ri(A1) by q̂ij(k,M),

q̂
(ℓ)
ij (k,M), R̂i;a(M) and R̂i(A1,M), respectively, for any i, j ∈ E, k, ℓ ∈ N,
a ∈ A, A1 ⊂ A.

6.3 Conditional failure occurrence rates

Our main objective is to study reliability indicators that could be used to
improve the performance of random, repairable systems that are encountered
in real-life problems. These indicators could be taken into account in the
development of maintenance strategies and in decision making. In particular,
we focus on the conditional failure occurrence rates.

6.3.1 Full conditional ROCOF

First of all we are interested in studying the impact of both the starting up
and the ending down states on the ROCOF, simultaneously. In order to do
that, we define the full conditional ROCOF as the mean transition number of
the HMRC to the set D at time k, starting in state i ∈ U and ending in state
j ∈ D, i.e.

r
♯
ij(k) = E

(
N

♯
ij(k)

)
− E

(
N

♯
ij(k − 1)

)
,

where

N
♯
ij(k) =

k∑

l=1

1{Yl−1=i,Yl=j}.
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Proposition 1 The full conditional ROCOF at time k ∈ N
∗ is given by

r
♯
ij(k) =

∑

(ℓ,y)∈E×A

k∑

l=1

∑

s0,s1∈E

k∑

k0=0

a(ℓ, y)Rℓ;yRs0;iRs1;jq
(l−1)
is0

(k0)qs0s1(k − k0),

for any fixed, arbitrary states i ∈ U , j ∈ D.

Proof 1 For fixed k ∈ N
∗, i ∈ U , j ∈ D we define

r
♯

(ℓ,y,i,j)(k) = E

(
N

♯
ij(k)−N

♯
ij(k − 1)|J0 = ℓ, Y0 = y

)

=

k∑

l=1

P (Yl−1 = i, Yl = j, Sl = k|J0 = ℓ, Y0 = y). (6.1)

Moreover,

P (Yl−1 = i, Yl = j, Sl = k|J0 = ℓ, Y0 = y)

=
∑

s0,s1∈E

k∑

k0=0

Rs0;iRs1;jq
(l−1)
is0

(k0)qs0s1(k − k0). (6.2)

Consequently, from (6.1) and (6.2), we get

r
♯
ij(k) =

∑

(ℓ,y)∈E×A

a(ℓ, y)Rℓ;yr
♯

(ℓ,y,i,j)(k)

=
∑

(ℓ,y)∈E×A

k∑

l=1

∑

s0,s1∈E

k∑

k0=0

a(ℓ, y)Rℓ;yRs0;iRs1;jq
(l−1)
is0

(k0)qs0s1(k − k0).

For any fixed, arbitrary states i ∈ U , j ∈ D, the full conditional ROCOF
at time k ∈ N

∗ could be estimated by the following plug-in type estimator

r̂
♯
ij(k,M) =

∑

(ℓ,y)∈E×A

k∑

l=1

∑

s0,s1∈E

k∑

k0=0

â(ℓ, y)R̂ℓ;y(M)R̂s0;i(M)R̂s1;j(M)q̂
(l−1)
is0

(k0,M)q̂s0s1(k − k0,M).

Proposition 2 For any i ∈ U , j ∈ D, the estimator of the full conditional
ROCOF at time k ∈ N is strongly consistent, i.e.

lim
M→∞

r̂
♯
ij(k,M) = r

♯
ij(k)

with probability 1.
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Proof 2 Following [2], the estimators q̂ij(k,M), q̂
(n)
ij (k,M) and R̂i;a(M) are

strongly consistent. Moreover since the estimator r̂
♯
ij(k,M) includes a finite

number of terms, the result is straightforward.

Proposition 3 For any k ∈ N
∗, i ∈ U , j ∈ D, the random vector√

M
(
r̂
♯
ij(k,M)− r

♯
ij(k)

)
is asymptotically normal, i.e.

√
M

(
r̂
♯
ij(k,M)− r

♯
ij(k)

) L−−−−→
M→∞

N (0,Ψ′
1∆Ψ′

1
⊤
),

where Ψ1 : Rℓd → R
+ is defined by

Ψ1

(
(Rj′;m′ , qi′j′(k

′ − k′0)); (i′, k′0) ∈ L, (i′, j′, k′) ∈ E∗
)

=
∑

(ℓ,y)∈E×A

k∑

l=1

∑

s0,s1∈E

k∑

k0=0

a(ℓ, y)Rℓ;yRs0;iRs1;jq
(l−1)
is0

(k0)qs0s1(k − k0),

and Ψ′
1
⊤

=
((

∂Ψ1

∂Rj′;m′

, ∂Ψ1

∂qi′j′ (k
′−k′

0)

)
; (i′, k′0) ∈ L, (i′, j′, k′) ∈ E∗

)
, is the col-

umn vector of derivatives of r♯ij(k) with respect to Rj′ ;m′ and qi′j′(k
′ − k′0).

Proof 3 First we notice that

√
M

(
r̂
♯
ij(k,M)− r

♯
ij(k)

)

=
√
M

∑

(ℓ,y)∈E×A

k∑

l=1

∑

s0,s1∈E

k∑

k0=0

(
â(ℓ, y)R̂ℓ;y(M)R̂s0;i(M)R̂s1;j(M)q̂

(l−1)
is0

(k0,M)q̂s0s1(k − k0,M)

− a(ℓ, y)Rℓ;yRs0;iRs1;jq
(l−1)
is0

(k0)qs0s1(k − k0)
)
.

Then since
√
M

(
q̂i′j′ (k

′ − k′0,M)R̂j′;m′(M)− qi′j′(k
′ − k′0)Rj′;m′

)
L−−−−→

M→∞
N (0,∆),

delta method [23] leads directly to

√
M

(
Ψ1

(
q̂i′j′ (k

′ − k′0,M), R̂j′;m′(M)
)
−Ψ1

(
q̂i′j′(k

′ − k′0,M), R̂j′;m′(M)
)) L−−−−→

M→∞
N (0,Ψ′

1∆Ψ′
1
⊤
).

6.3.2 Right conditional ROCOF

We go one step further and aim at studying the impact of the ending down
state on the ROCOF. In order to do that, we define the right conditional
ROCOF as the mean transition number of the HMRC to the set D at time k,
given that it ends in state j ∈ D, i.e.

rj(k) = E
(
N j(k)

)
− E

(
N j(k − 1)

)
,
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where

N j(k) =

k∑

l=1

1{Yl−1∈U,Yl=j}.

Proposition 4 The right conditional ROCOF at time k ∈ N
∗ is defined by

rj(k) =
∑

(ℓ,y)∈E×A

k∑

l=1

∑

s0,s1∈E

k∑

k0=0

a(ℓ, y)Rℓ;yRs0(U)Rs1;jq
(l−1)
is0

(k0)qs0s1(k − k0),

for any fixed, arbitrary state j ∈ D.

Proof 4 For fixed k ∈ N
∗, j ∈ D we define

r(ℓ,y,j)(k) = E

(
N j(k)−N j(k − 1)|J0 = ℓ, Y0 = y

)

=

k∑

l=1

P (Yl−1 ∈ U, Yl = j, Sl = k|J0 = ℓ, Y0 = y). (6.3)

Moreover,

P (Yl−1 ∈ U, Yl = j, Sl = k|J0 = ℓ, Y0 = y)

=
∑

s0,s1∈E

k∑

k0=0

Rs0(U)Rs1;jq
(l−1)
is0

(k0)qs0s1(k − k0). (6.4)

Consequently, from (6.3) and (6.4), we get

rj(k) =
∑

(ℓ,y)∈E×A

a(ℓ, y)Rℓ;yr(ℓ,y,j)(k)

=
∑

(ℓ,y)∈E×A

k∑

l=1

∑

s0,s1∈E

k∑

k0=0

a(ℓ, y)Rℓ;yRs0(U)Rs1 ;jq
(l−1)
is0

(k0)qs0s1(k − k0).

For any fixed, arbitrary state j ∈ D, the right conditional ROCOF at time
k ∈ N

∗ could be estimated as follows:

r̂j(k,M) =

∑

(ℓ,y)∈E×A

k∑

l=1

∑

s0,s1∈E

k∑

k0=0

α̂(ℓ, y)R̂ℓ;y(M)R̂s0(U,M)R̂s1;j(M)q̂
(l−1)
is0

(k0,M)q̂s0s1(k − k0,M).

Proposition 5 For any j ∈ D, k ∈ N, the estimator of the right conditional
ROCOF at time k is strongly consistent, i.e.

lim
M→∞

r̂j(k,M) = rj(k)

with probability 1.
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Proof 5 To prove the consistency, we work as in Proposition 2.

Proposition 6 For any k ∈ N
∗, j ∈ D, the random vector

√
M

(
r̂j(k,M) −

rj(k)
)
is asymptotically normal, i.e.

√
M

(
r̂j(k,M)− rj(k)

) L−−−−→
M→∞

N (0,Ψ′
2∆Ψ′

2
⊤
),

where Ψ2 : Rℓd → R
+ is the function

Ψ2

(
(Rj′ ;m′ , qi′j′ (k

′ − k′0)); (i′, k′0) ∈ L, (i′, j′, k′) ∈ E∗
)

=
∑

(ℓ,y)∈E×A

k∑

l=1

∑

s0,s1∈E

k∑

k0=0

a(ℓ, y)Rℓ;yRs0(U)Rs1;jq
(l−1)
is0

(k0)qs0s1(k − k0)

and Ψ′⊤
2 =

((
∂Ψ2

∂Rj′;m′

, ∂Ψ2

∂qi′j′ (k
′−k′

0)

)
; (i′, k′0) ∈ L, (i′, j′, k′) ∈ E∗

)
, is the col-

umn vector of derivatives of rj(k) with respect to Rj′ ;m′ and qi′j′(k
′ − k′0).

Proof 6 We first notice that

√
M

(
r̂j(k,M)− rj(k)

)

=
√
M

∑

(ℓ,y)∈E×A

k∑

l=1

∑

s0,s1∈E

k∑

k0=0

(
â(ℓ, y)R̂ℓ;y(M)R̂s0(U,M)R̂s1;j(M)q̂

(l−1)
is0

(k0,M)q̂s0s1(k − k0,M)

− a(ℓ, y)Rℓ;yRs0(U)Rs1;jq
(l−1)
is0

(k0)qs0s1(k − k0)
)
.

Then since

√
M

(
q̂i′j′ (k

′ − k′0,M)R̂j′;m′(M)− qi′j′(k
′ − k′0)Rj′;m′

)
L−−−−→

M→∞
N (0,∆),

we have that

√
M

(
Ψ2

(
q̂i′j′ (k

′ − k′0), R̂j′ ;m′

)
−Ψ2

(
q̂i′j′ (k

′ − k′0), R̂j′ ;m′

)) L−−−−→
M→∞

N (0,Ψ′
2∆Ψ′

2
⊤
).

6.3.3 Left conditional ROCOF

The left conditional ROCOF is defined as the mean transition number of the
HMRC to the set D at time k, given that it starts from the fixed state i ∈ U ,
i.e.

r̃i(k) = E
(
Ñi(k)

)
− E

(
Ñi(k − 1)

)
,

where

Ñi(k) =
k∑

l=1

1{Yl−1=i,Yl∈D}.
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Proposition 7 The left conditional ROCOF at time k ∈ N
∗ is defined by

r̃i(k) =
∑

(ℓ,y)∈E×A

k∑

l=1

∑

s0,s1∈E

k∑

k0=0

a(ℓ, y)Rℓ;yRs0;iRs1(D)q
(l−1)
is0

(k0)qs0s1(k − k0),

for any fixed, arbitrary state i ∈ U .

Proof 7 For fixed k ∈ N
∗, i ∈ U we define

r̃(ℓ,y,i)(k) = E
(
Ñi(k)− Ñi(k − 1)|J0 = ℓ, Y0 = y

)

=

k∑

l=1

P (Yl−1 = i, Yl ∈ D,Sl = k|J0 = ℓ, Y0 = y).

(6.5)

Moreover,

P (Yl−1 = i, Yl ∈ D,Sl = k|J0 = ℓ, Y0 = y)

=
∑

s0,s1∈E

k∑

k0=0

Rs0;iRs1(D)q
(l−1)
is0

(k0)qs0s1(k − k0). (6.6)

Consequently, from (6.5) and (6.6), we get

r̃i(k) =
∑

(ℓ,y)∈E×A

a(ℓ, y)Rℓ;yr̃(ℓ,y,i)(k)

=
∑

(ℓ,y)∈E×A

k∑

l=1

∑

s0,s1∈E

k∑

k0=0

a(ℓ, y)Rℓ;yRs0;iRs1(D)q
(l−1)
is0

(k0)qs0s1(k − k0).

For any fixed, arbitrary state i ∈ U , the left conditional ROCOF at time
k ∈ N

∗ could be estimated by the following plug-in type, empirical estimator

̂̃ri(k,M) =

∑

(ℓ,y)∈E×A

k∑

l=1

∑

s0,s1∈E

k∑

k0=0

α̂(ℓ, y)R̂ℓ;y(M)R̂s0;i(M)R̂s1(D,M)q̂
(l−1)
is0

(k0,M)q̂s0s1(k − k0,M).

Proposition 8 For any state i ∈ U and any fixed arbitrary k ∈ N
∗, the

estimator of the right conditional ROCOF at time k is strongly consistent in
the sense that

lim
M→∞

̂̃ri(k,M) = r̃i(k)

with probability 1.



12 6 Reliability indicators for hidden Markov renewal models

Proof 8 To prove the consistency, we work as in Proposition 2.

Proposition 9 For any k ≥ 1, j ∈ D, the random vector
√
M

(̂̃ri(k,M) −
r̃i(k)

)
is asymptotically normal, i.e.

√
M

(̂̃ri(k,M)− r̃i(k)
) L−−−−→

M→∞
N (0,Ψ′

3∆Ψ′
3
⊤
),

where Ψ3 : Rℓd → R
+ is the function

Ψ3

(
(Rj′ ;m′ , qi′j′ (k

′ − k′0)); (i′, k′0) ∈ L, (i′, j′, k′) ∈ E∗
)

=
∑

(ℓ,y)∈E×A

k∑

l=1

∑

s0,s1∈E

k∑

k0=0

a(ℓ, y)Rℓ;yRs0;iRs1(D)q
(l−1)
is0

(k0)qs0s1(k − k0)

and Ψ′⊤
3 =

((
∂Ψ3

∂qi′j′ (k
′−k′

0)
, ∂Ψ3

∂Rj′;m′

)
; (i′, k′0) ∈ L, (i′, j′, k′) ∈ E∗

)
, is the col-

umn vector of derivatives of r̃i(k) with respect to Rj′;m′ and qi′j′ (k
′ − k′0).

Proof 9 We first have that
√
M

(̂̃ri(k,M)− r̃i(k)
)

=
√
M

∑

(ℓ,y)∈E×A

k∑

l=1

∑

s0,s1∈E

k∑

k0=0

(
â(ℓ, y)R̂ℓ;y(M)R̂s0;i(M)R̂s1(D,M)q̂

(l−1)
is0

(k0,M)q̂s0s1(k − k0,M)

− a(ℓ, y)Rℓ;yRs0;iRs1(D)q
(l−1)
is0

(k0)qs0s1(k − k0)
)
.

Then since
√
M

(
q̂i′j′ (k

′ − k′0,M)R̂j′;m′(M)− qi′j′(k
′ − k′0)Rj′;m′

)
L−−−−→

M→∞
N (0,∆),

we obtain directly the desired result.

The (unconditional) ROCOF for HMRCs was introduced in [24] as the
mean transition number of the HMRC to the set D at time k, i.e.,

r(k) = E
(
M(k)−M(k − 1)

)
,

where

M(k) =

k∑

l=1

1{Yl−1∈U,Yl∈D}.

Remark 1 The following relationship between the ROCOF and its condi-
tional counterparts holds true

r(k) =
∑

i∈U

∑

j∈D

r
♯
ij(k) =

∑

j∈D

rj(k) =
∑

i∈U

r̃i(k),

for any k ∈ N
∗.
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6.4 Concluding Remarks

Failure occurrence rates are important risk indicators in the theory and ap-
plications of stochastic models. We encounter their distribution as reliabil-
ity or survival function in mechanical systems or biology, respectively. Many
stochastic models have been developed to analyze data associated with failure
occurrences. Often these data are driven by hidden or unobservable mecha-
nisms. Here we propose hidden Markov renewal models to describe systems
that could experience multiple random failures. We concentrate on ROCOF
which plays a critical role in the reliability analysis, since its increasing value
signals the degradation of the system under study, whereas its decreasing value
indicates its improvement.

We study the sensitivity of the ROCOF in the current up and ending down
states by introducing its conditional counterparts. This is the first attempt to
arise sensitivity issues of reliability indicators for hidden Markov renewal mod-
els. We provide plug-in type estimators and show that they have appealing
asymptotic properties including consistency and asymptotic normality. Once
the estimators are shown to be asymptotically normal, the estimation of the
confidence interval is straightforward. It is worth noting that the estimation
of the (conditional) ROCOF necessitates the estimation of the correponding
parameters of the HMRC. The maximum likelihood estimators could be ob-
tained by minor modifications of the EM algorithm.

The obtained results could be applied in different scientific disciplines in-
cluding seismology and mechanics. To be more precise let us present two possi-
ble applications of our results. In seismology, earthquake occurrences are gov-
erned by the actual level of the stress field, which is not observable. We could
consider a hidden Markov renewal model where states correspond to stress
levels and observations to earthquake magnitude classes. In this case the con-
ditional counterparts of ROCOF could describe the impact of each magnitude
class in the occurrence of the magnitude class which includes stronger earth-
quakes. On the other side, mechanical systems are subject to random loadings
that could affect their integrity when they exceed certain thresholds. Semi-
markov models could be used to describe loading data and conditional failure
occurrence rates could be determined to allow the monitoring of mechanical
systems. Since the real state of such systems is unknown the conditional fail-
ure occurrence rate could be studied in a hidden Markov renewal context.
For recent advances in the applications of HSMMs in health monitoring we
address readers to [8].

From a theoretical point of view, the current results could be extended for
general HMRCs. A topic of interest for future research is the study of (con-
ditional) ROCOF for (general) HSMMs. In this case the ROCOF for HMMs
could be studied as a particular case. ROCOF could further be investigated
when independent and identical copies of the process are observed, each over a
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fixed duration. Finally, the consideration of models with a more refined struc-
ture [17] could improve the understanding of the functioning of a system and
eventually provide feedback for the management of random systems.
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