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Spectral theory of pseudo-differential operators of degree 0 and application to forced linear waves

we use are already classical: they are, on one hand, the general theory of pseudo-differential operators, culminating in the works of Lars Hörmander, Hans Duistermaat, Alan Weinstein and many others, in the beginning of the seventies, see , and, on the other hand, the theory initiated by Eric Mourre in the beginning of the eighties in order to get a flexible way to have a limit absorption principle, see .

What is the content, beyond that of ? The main result is Theorem 6.1 where we extend the result of to the generic Morse-Smale case stil in dimension 2. The other new contribution is a precise description in arbitrary dimension of the dynamical assumptions allowing to apply Mourre theory thanks to the Gårding inequality (see Section 3) by constructing a global escape function.

After recalling general facts on the Hamiltonian dynamics of a homogeneous Hamiltonian h of degree 0 in Section 1 and on the spectral theory of H in Section 2, we give, in Section 3, a necessary and sufficient condition on the dynamics at infinity, which insures the existence of an escape function that will be the key input in order to apply Mourre's theory thanks to the Gårding inequality. In Section 4, we recall general facts that we got in for the forced wave equation from Mourre's theory. In Section 5, we use radial propagation estimates (see ), going back to works of Melrose and Vasy, in order to locate the wavefrontset of the Schwartz distribution u ∞ which is the limit (modulo bounded functions in L 2 ) of u(t) as t → +∞.

We consider then, in Section 6, the case where M is a surface (n = 2), extending our results of to the generic case where the foliation is Morse-Smale and can have singular points (foci, nodes or saddles). Finally, we consider, in Section 7, the case where M is a 3D manifold with a free S 1 -action leaving H invariant which is important for applications to physics. We end the paper with a short review of related problems in Section 8 and two Appendices.

Introduction

This paper contains new developpements of some ideas already introduced in our paper concerning the spectral theory of self-adjoint pseudodifferential operators of degree 0 on closed manifolds. The main motivation comes from the study of forced internal or inertial waves in physics, see , GDDSV-06, MBSL-97, ML-95, Og-05, RV-10, RV-18, Pill-18] and many other works. In what follows, H is a classical self-adjoint scalar pseudo-differential operator of degree 0 on a compact manifold M of dimension n without boundary, f is a smooth function and the spectral parameter ω is a real number. The main object to study is the following linear forced wave equation:

1 i du dt + Hu = f e -iωt , u(0) = 0 . (1) 
We are interested in the behaviour of u(t) as t → +∞. Thanks to the spectral theorem, we can relate this behaviour to the spectral theory of H and hence to the Hamiltonian dynamics of the principal symbol h : T M \ 0 → R which is a smooth function homogeneous of degree 0. The main tools that 1 Hamiltonian of degree 0: classical dynamics

In what follows, we fix the following notations: M is a smooth connected compact manifold of dimension n ≥ 2 without boundary, q is the generic point of M and |dq| a smooth density on M . The Hamiltonian h is a smooth positively homogeneous function h : T M \ 0 → R. We denote by (q, p) some local canonical coordinates on T M and by extension a generic point of T M . The Hamiltonian vector field of h is denoted by X h and we fix the "symplectic" conventions so that

X h = ∂h ∂p ∂ q - ∂h ∂q ∂ p , X h f = {h, f }
and denote by Φ t the flow of X h . Because of the homogeneity of h, we have pdq(X h ) = 0 and X h is homogeneous of degree -1. Let us fix ω ∈ R and define the energy shell Σ ω := h -1 (ω). We will assume in what follows that ω is not a critical value of h and hence Σ ω is a smooth conic hypersurface in T M \ 0. We need to introduce Z ω := Σ ω /R + which is a smooth closed manifold of dimension 2n -2 and will be seen as the boundary at infinity of Σ ω . The vector field X h defines by projection a conformal class of vector fields on Z ω , which we will call an (oriented) foliation and denote by F. This foliation can admit singular points corresponding to the lines R + .(q, p) where X h is parallel to the cone direction p∂ p . Note that we can and will often reduce ourselves to the case ω = 0 by looking at the Hamiltonian h -ω.

2 Hamiltonian of degree 0: spectral theory

Let us choose a self-adjoint pseudo-differential operator H of degree 0 acting on L 2 (M, |dq|) and of principal symbol h. Note that H is a bounded operator.

In what follows, all pseudo-differential operators are "classical", it means that the symbols do have full expansions in homogeneous functions with integer degrees. We are mainly interested by the spectral theory of H. As a warm up, we have the Theorem 2.1 The essential spectrum of H is the interval

J := [h -, h + ] with h -:= min h, h + := max h. Proof.-If ω ∈ C \ J, H
-ω is elliptic and hence admits an inverse R(ω) modulo compact operators which can be chosen holomorphic in ω by taking R(ω) := Op(h -ω) -1 where Op is a fixed quantization on M :

R(ω)(H -ω) = Id + K(ω)
with K compact and holomorphic in ω. On the other hand, H being bounded, (H -ω) is invertible for large values of ω. It follows from the Fredholm analytic Theorem that the operator H -ω is invertible outside a discrete set where the kernels are finite dimensional.

On the other hand, if ω ∈ J, with h(q 0 , p 0 ) = ω and > 0 is fixed, choose a small neighbourhood U of q 0 so that, if q ∈ U , |h(q, p 0 )

-ω| ≤ . Pick then φ ∈ C ∞ o (U ) with M |φ| 2 (q)|dq| = 1. Let us check that, for t large enough, (H -ω) φe itqp 0 L 2 (M ) ≤ 2 (2)
It follows from the general properties of the principal symbols that H φ(q)e itqp 0 = h(q, p 0 )φ(q)e itqp 0 + O 1 t Take t so that the L 2 norm of the remainder is smaller than . We get inequality (2) by applying the triangular inequality. Hence

(H -ω) φe itqp 0 L 2 (M ) ≤ 2 φe itqp 0 L 2 (M ) which proves that σ(H) ∩ [ω -2 , ω + 2 ] = ∅.

Escape functions

The key object of this paper is an escape function for h on the energy shell Σ 0 : Definition 3.1 A smooth function k : Σ 0 → R, positively homogeneous of degree 1, is called an escape function if there exists δ > 0 so that the Poisson bracket {h, k} = X h k is larger than δ on Σ 0 .

A key observation is:

Remark 3.1 If we extend k to T M \0 as a smooth function k homogeneous of degree 1, then k restricted to Σ ω is stil an escape function on Σ ω for ω small enough.

We first give a general dynamical assumption on the oriented foliation F which turns out to be equivalent to the existence of a global escape function. We need some definitions, using the definitions of Appendix B: Definition 3.2 We will say that the oriented 1D foliation F of the manifold Z 0 admits a simple structure (K + , K -) if Z 0 = K + ∪ K -∪ Ω as a disjoint union where:

• K + is an attractor of the oriented foliation F, the sink • K -is a repellor of the oriented foliation F, the source • All leaves of points in Ω converge to K + at "+∞" and to K -at "-∞"; in particular, the basin of K + is Ω ∪ K + and the basin of K -for the reversed orientation of F is Ω ∪ K -. and Definition 3.3 We say that a compact invariant set K + is weakly hyperbolic, denoted (WH), if there exists, in some neighbourhood of K + , a vector field W generating F and a smooth density dµ so that div dµ (W ) < 0. Similarly for K -, div dµ (W ) > 0.

Our main result in this section is Theorem 3.1 If the foliation F has a simple structure (K + , K -) with K + and K -satisfying (WH), then there exists an escape function.

The converse is true: the existence of an escape function implies that the foliation F has a simple structure (K + , K -) so that K + and of K -satisfy (WH). This simple structure is uniquely determined by F.

Dynamical assumptions implying weak hyperbolicity

Let us choose a vector field W generating F, whose flow is denoted by φ t , t ∈ R, and equip Z 0 with a smooth density dµ.

Let us describe properties of closed invariant sets of F from which we can deduce (WH):

1. If some component of K + is an isolated point a, the assumption (WH)

says that the trace of the linearized vector field of W at the point a is negative. This is independent of the choice of W . The case where the singular point is hyperbolic is studied in the work of . They show that, in the generic situation, there exists a pseudo-differential normal form for such points. Independently, the classical part of this normal form is also described in dimension 2 in the works of .

2. If some component of K + is a closed curve γ, the assumption (WH) says that the modulus of the determinant of the linearized Poincaré map is < 1. In dimension n = 2, this is equivalent to our assumption (M 2) in .

3. They are more complicated attractors which satisfy (WH). The Lorenz attractor is one of them: the vector field generating it has negative divergence.

Construction of an escape function

We construct an escape function assuming that F has a simple structure with K ± satisfying (WH).

Escape function near Γ +

Let Γ ± be the sub-cones of Σ 0 generated by the sets K ± . We will construct in this section an escape function k + in some conic neighbourhood U + of Γ + . A similar construction can be done on the basin of Γ -. Let us first construct "polar coordinates" (ρ, θ) on Σ 0 where ρ ∈ R + \ 0, θ ∈ Z 0 and the dilations on Σ 0 act by λ.(ρ, θ) = (λρ, θ):

Lemma 3.1 If W is a given vector field on Z 0 generating F, there exist polar coordinates (ρ, θ) ∈ (R + \ 0) × Z 0 on Σ 0 so that X h = a(θ)∂ ρ + 1 ρ W .
Proof.-We start with arbitrary polar coordinates (ρ 1 , θ): for example identify Z 0 with the co-sphere bundle S 1 for some Riemannian metric on M and define ρ 1 (q, p) so that (q, p/ρ 1 (q, p)) ∈ S 1 . We get, using the homogeneity of X h and the fact that W span F,

X h = a 1 (θ)∂ ρ 1 + 1 ρ W with ρ = A(θ)ρ 1 and hence ∂ ρ 1 = A(θ)∂ ρ .
The Liouville measure dL 0 := |dqdp/dh| on Σ 0 , being homogeneous of degree n, w.r. to dilations, writes dL 0 = ρ n-1 |dρ|dµ where dµ is a smooth measure on Z 0 .

The fact that div dL 0 (X h ) = 0

rewrites (n -1)a + div µ (W ) = 0 (3)
The assumption (WH) implies that we have a smooth > 0 function

F defined near K + so that div F µ (W ) = dF (W ) F + div µ (W ) ≤ -c < 0 Then, if k + := F -1/(n-1) ρ, we get dk + (X h ) = - 1 n -1 F -1/(n-1) dF (W ) F -(n -1)a which is equal to dk + (X h ) = - 1 n -1 F -1/(n-1) div F µ (W )
and we get that the function k + is an escape function in some conical neighbourhhood of Γ + . We define similarly k -:= -F -1/(n-1) ρ.

Note that k + tends to +∞ as z tends to K + viewed as a set of points at infinity of Σ 0 . We have also k + ∼< p > from the definition and the fact that F is positive.

Similarly, the function k -defined near Γ -tends to -∞ as z tends to K -.

Extension to Σ 0

We choose a positive function m on Σ 0 which is smooth, homogeneous of degree 0 and equal to m ± := {h, k ± } in some conical neighbourhoods U ± of Γ ± . It follows from Item 3 of Proposition B.1 that we can choose U + so that Φ t (U + ) ⊂ U + for t ≥ 0 and similarly for U -.

Let z be in the basin of Γ + and define

l + (z) = lim t→+∞ k + (Φ t (z)) - t 0 m(Φ s (z))ds
The limit exists because the expression of which we take the limit is independent of t for t large enough. Moreover the limit is smooth: if z is given and Φ T (z) ∈ U + for all T ≥ T 0 , there exists a neighbourhood V of z so that Φ T 0 (V ) ⊂ U + and hence Φ T (V ) ⊂ U + for all T ≥ T 0 . We have then, for

w ∈ V , l + (w) = k + (Φ T 0 (w)) - T 0 0 m(Φ s (w))ds
which is clearly smooth. We define similarly l -. The functions l ± are escape functions in the basins of Γ ± and satisfy in the respective basins {h, l ± } = m.

Let Γ 0 be the cone Γ 0 := {l + = 0} which is smooth and transversal to X h because dl + (X h ) = m > 0. On Γ 0 we have now the two functions l ± . The difference δ(z) = l + (z) -l -(z) is homogeneous of degree 1 and is constant along the flow lines. We will define k on the Hamiltonian trajectories t → Φ t (z) starting from z ∈ Γ 1 0 := {g = 1} ∩ Γ 0 . For further use, we denote by S this hypersurface of T M . The set Γ 1 0 is compact and hence the function |δ| is bounded by some constant C > 0 on it. Let us put m 0 := min m > 0 and let ψ : R → R be a smooth function satisfying

• ψ(t) = 0 is t ≤ 0 • ψ(t) = 1 if t ≥ 4C/m 0 • |ψ | ≤ m 0 /2C We define now for z ∈ Γ 1 0 , k(φ t (z)) = (1 -ψ(t))l -(Φ t (z)) + ψ(t)l + (Φ t (z))
The derivative of k with respect to X h is then equal to m+ψ (l + -l -) ≥ m 0 /2. We extend then k by homogeneity.

Deriving the properties of F from the existence of an escape function

In what follows, we assume only the existence of an escape function k.

Let us give a construction of Γ ± using only the dynamics of X h . We will see that these sets are defined independently of the choice of k: Γ + is the set of points z ∈ Σ 0 so that there exists t 0 < 0 with Φ t (z) → 0 as t → t + 0 , i.e. the trajectory of X h is not complete as time t → -∞. Similarly for Γ - with t 1 > 0. We define K ± so that they generate the cones Γ ± . Note that Γ + ∩ Γ -= ∅: ifnot, let z ∈ Γ + ∩ Γ -, then Φ t (z) tends to the zero section of T X as t = t 0 + 0, because the Hamiltonian flow is complete near the infinity of T X. Φ t (z) tends also to the zero section as t = t 1 -0. This is not possible because the escape function tends to 0 at the zero section and is monotonic along the orbits.

Le us recall that we see K ± as sets at infinity of the energy shell, namely the bases at infinity of the cones Γ ± .

Proposition 3.1 The picture of the dynamics is as follows:

• if z ∈ Σ 0 \ (Γ + ∪ Γ -), Φ t (z) is defined for all t ∈ R, Φ t (z) → K + as t → +∞ and Φ t (z) → K -as t → -∞ • if z ∈ Γ + , Φ t (z)
is defined for all t > t 0 (z), Φ t (z) → K + as t → +∞ and Φ t (z) → 0 as t → t 0 (z)

• if z ∈ Γ -, Φ t (z) is defined for all t < t 0 (z), Φ t (z) → K -as t → -∞ and Φ t (z) → 0 as t → t 0 (z).
Proof. -Let us choose a metric g on M and consider the set

C 0 := k -1 (0) ∩ (g ) -1
(1) where g is the dual metric. The set C 0 is a generating set for the cone

C := k -1 (0). If z ∈ C 0 , the trajectory t → Φ t (z) is complete, because t → k(Φ t (z)
) is strictly monotonic and hence does not tend to the zero section where k = 0 at t = ±∞. Conversely, every complete trajectory cuts C 0 exactly in one point. This way we get a subset S of Σ 0 generating Σ 0 \ (Γ + ∪ Γ -):

S := {Φ t (z) | z ∈ C 0 , t ∈ R}
The orbits sitting in S have no limit points in S because the flow derivative of k is bounded below by some positive number. Let us consider the projections on Z 0 of S, Γ + and Γ + , say Ω, K + and K -. We have a disjoint union

Z 0 = Ω ∪ K + ∪ K -.
Each set is invariant by the foliation. Let us look at a leaf γ in Ω: γ has no limit points in Ω (because the foliation in Ω is diffeomorphic to the flow foliation in C). The limit points are then in K + ∪ K -. We have Γ + ⊂ {k > 0} and Γ -⊂ {k < 0}. Hence the limit points at +∞ are in K + and the limit points at -∞ in K -. The set K + is an attractor: it is enough to consider the neighbourhoods U N of K + which are the projections of the sets ({k

≥ N } ∩ C) ∪ Γ + .
Let us show that the existence of an escape function implies that K + satisfy (WH): we choose polar coordinates (ρ, θ) near Γ + with the ρ = k and we have, from the equations derived in section 3.2.1, that dk(X h ) = a > 0 and hence div µ W = -a/n < 0: all components of K + satisfy (WH). A similar argument works for K -.

Radial sink and sources

Let us recall and introduce some notations: the radial compactification of T M is denoted by T M and the boundary at infinity which we can identify with the sphere bundle is S M := T M/R + . The compactification of Σ 0 is Σ 0 with the boundary at infinity Z 0 = SΣ 0 ⊂ T M .

Let us rephrase the Definition E.52 of in our context:

Definition 3.4 Let us introduce the symbol r = -kh, with k, an escape function (homogeneous of degree 1), and denote by ψ t the flow of r extended to the boundary. The compact set K -⊂ Z 0 is a radial source for r if there exists a neighbourhood U ⊂ T M of K -, so that, uniformly for z ∈ U , 1. For t ≤ 0, |k|(ψ t (z)) ≥ Ce θ|t| for some C, θ > 0.

2. ψ t (z) → K -as t → -∞.

We have:

Proposition 3.2 If k is an escape function, K -is a radial source for r = -kh.
Proof-. We have, in the domain where k < 0, in particular near K -, X r = |k|X h -hX k . The vector field X r is homogeneous of degree 0 and hence projects onto S M . We denote Y r this projection. Note that Y r is tangent to Z 0 where it generate the foliation F.

Let us prove item 1: we have X r (|k|) = |k|X h |k| ≤ -δ|k|. This implies that in a neighbourhood U 0 of K -where k ≤ -1, we have, for t ≤ 0, |k|(ψ t (z)) ≥ Ce δ|t| .

Let us prove item 2: let us choose V 0 a neighbourhood of K -inside S M as follows: we choose first a neighbourhood V 1 of K -in Z 0 , with a smooth boundary, so that Y r is outgoing and transversal to the boundary: take V 1 as the closure of the projection of the sets {k ≤ -b} ∩ S for b large enough with S defined in Section 3.2.2. We take for V 0 a neighbourhood of

K -in S M which is of the form {exp(uY r )(m)|m ∈ V 1 , |u| ≤ a}.
If a is small enough the vector field Y r is transversal and outgoing at the boundary of V 0 . Because Y r (h) = h{h, k} and {h, k} ≥ δ > 0. Hence we get a repellor L -:= ∩ t≤0 ψ t (V 1 ). The repellor L -contains K -and being invariant by the dynamics of Y r restricted to Z 0 is equal to K -. We then take for U 1 a small neighbourhood of V 0 in T M and we get item 2 by taking for U in the definition of a radial source the intersection U 0 ∩ U 1 .

Applying Mourre's theory

Let us first recall some results of . Let us fix ω = 0 for simplicity and assume that there exists an escape function k on the energy shell Σ 0 . Then k can be extended to T M \ 0 as an escape function in the cone |h| ≤ a with some a > 0. Let K be a self-adjoint operator of degree 1 of principal symbol k. Using the " Gårding's inequality" (see pp 129-136), one gets that K is a conjugate operator in the sense of Mourre: if J is as small enough open interval containing 0 and π J is the spectral projector of H associated to the interval J, then

iπ J [H, K]π J ≥ cπ J + R
where c > 0 and R compact. Moreover the operator H is K-smooth, i.e. the map t → e itK He -itK is smooth with values into the bounded self-adjoint operators. Let us define the K-Sobolev spaces, denoted H s K , in the usual way using the s-powers of (1 + K 2 ) 1 2 . The usual Sobolev spaces will be denoted by H s . Let us give a comparison between the K-Sobolev spaces and the usual ones. There is a shift in the exponents due to the fact that the pseudo-differential calculus does not apply to non elliptic operators like K.

Lemma 4.1 If f ∈ H 1 , then f ∈ H s K for any s ≤ 1. If f ∈ H -1 K , then f ∈ H -s for any s ≤ -1. Proof.- If f ∈ H 1 , < (1 + K 2 )f |f >< ∞ because K 2 is
a pseudodifferential operator of order 2 and hence f ∈ H 1 K . The other inclusion follows by duality w.r. to the L 2 product.

It follows then from Mourre theory [Mo-81, Mo-83, JMP-84, Gé-08] that Theorem 4.1 (Mourre) The operator H has a finite number of eigenvalues in J, they have finite multiplicity. Assuming that 0 is not an eigenvalue, the resolvent (H -z) -1 defined for z > 0 admits a boundary value ω → (H -ω -i0) -1 for ω real close to 0 which, for any > 0, is Hölder continuous for some positive Hölder exponent, depending on , from the Sobolev space

H 1 2 + K into H -1 2 - K for all > 0. Moreover, if Π -is the spectral projector on the negative part of the spec- trum of K, then, if f ∈ H 1+ K , then Π -((H -i0) -1 f ) ∈ L 2 .
It follows then in our context:

Theorem 4.2 ([CSR-18]) Assuming the existence of an escape function at ω = 0 and that 0 is not an eigenvalue of H, then the solution u(t) of the forced wave equation (1) with a smooth forcing f can uniquely be written as

u(t) = u ∞ + η(t) + r(t)
where

• u ∞ = (H -i0) -1 (f ) belongs to H -1 2 - K ⊂ H -1 for all > 0 • η(t) → 0 in H -1 2 - K ⊂ H -1 for all > 0 • The function t → r(t) is bounded in L 2 has a Fourier transform van- ishing near 0 • u(t) 2 L 2 ∼ ct as t → +∞ with in general c > 0.
5 Using radial source and sink propagation results

Wavefront set of u ∞

We will now derive results on the distribution u ∞ using the radial propagation estimates of Dyatlov-Zworski, based on earlier ideas of Richard Melrose [Me-94] and Andras Vasy [Va-13], and get

Theorem 5.1 The wavefront set of u ∞ is contained in the cone Γ + .

Proof.-

The result follows from the argument explained in the revised version of [DZ-18], section 3.1. This use only the fact that K -is a source (see Section 3.4). They introduce an operator < D > which is elliptic self-adjoint invertible of degree 1. We choose it so that its principal symbol near Γ -is |k|. They introduce then

v :=< D > -1 2 (H -i ) -1 < D > -1 2 (g) , with g =< D > 1 2 (f ) and u = (H -i ) -1 (f ) =< D > 1 2 v .
Using a refined version of the Theorem E.54 of [DZ-17], they show that there exists A, elliptic near Γ -of degree 0, so that, for any s, the norms Av s are uniformly bounded in > 0. We need to use here, in the inequality (3.2) of , that v -N is bounded; we know it from Mourre theory for N ≥ 1. Passing to the limit which is known to exists in H -1 by Theorem 4.2, we get that u ∞ is smooth near Γ -. The usual propagation of singularities applied to the equation Hu ∞ ∈ C ∞ gives the result.

Proposition 5.1 If Hu = 0 and u ∈ L 2 (M ), then u is smooth.

Proof.-It follows from Exercice 33 in Appendix E7 of , that u is smooth near Γ -and changing H into -H, u is also smooth near Γ + .

Remark 5.1 In the case n = 2, not all closed conical invariants subsets of Γ + can be wavefront sets of some u ∞ . If the wavefront set contains the line generated by a (ws)saddle point, it contains also one of the 2 branches of the associated unstable manifold and hence, being closed, also an attractive invariant set. This is proved in the paper [GS-77] at least for generic cases.

Sobolev regularity of u ∞

We saw in Section 4 that u ∞ belongs to H -1 . Let us show that the radial sink estimates of allows to get Theorem 5.2 Under the assumption of existence of an escape function, we have, for all > 0, u ∞ ∈ H -1 2 -.

Proof.-

We use the fact that K + is a sink as defined in , definition E.52.: this is proved exactly the same way that we proved that K -is a source in Section 3.4, or just by reversing the orientations. We use then Theorem E.56 of directly for the operator H knowing already that u ∞ is smooth away of Γ + . Replacing < ξ > by < k + > we see that the threshold condition (E.5.44) is satisfied for s < -1 2 .

The 2D case

In this Section n = 2.

6.1 Morse-Smale foliation Definition 6.1 A hyperbolic singular point of F is said weakly stable if the trace of the linearization of any smooth vector field generating F is < 0. We define similarly weakly unstable hyperbolic singular points. We denote these properties respectively (ws) and (wu).

Note that if dh = 0 on Σ 0 , any saddle points is either weakly stable or weakly instable depending on the fact that X h is pointing to the infinity or not, this follows from equation ( 3) where a = 0. Let us recall that a vector field on a surface is Morse-Smale if the non wandering points are singular hyperbolic points and closed hyperbolic cycles and there is no saddle connection, i.e. there is no leave whose both limit points are saddle points. We extend this definition to oriented foliations of surfaces by choosing any vector field generating the foliation. Theorem 6.1 Let n be equal to 2. Let us assume that the foliation F is Morse-Smale. Then there exists an escape function. The set K + is the union of all the attracting cycles and points and all the unstable manifolds of the ws-saddle points. The set K -is constructed in a similar way. Remark 6.1 Any generic foliation of a closed surface satisfies the previous properties: Mauricio Peixoto proved in the sixties that Morse-Smale vector fields on surfaces are generic, see , Chapter 4, for a detailed proof. As pointed out to me by Sylvain Courte, this genericity property extends to our context, i.e. to singular foliations of a surface embedded in a contact manifold, as it is proved in the PhD thesis of Emmanuel Giroux [Gi-91], Lemme 1.3. Proof-. Note first that K + and K -are compact. They are also disjoint because there is no saddle connection.

Let us prove that K + is an attractor. Let K 0 be the union of the attracting component of K + . The compact K 0 itself is an attractor. Let us assume for simplicity that there exists an unique (ws) saddle-point b. Near b the foliation has a local normal form: the level sets of the function xy in a ball B contained in R 2

x,y with the orientation given by x∂ x -y∂ y . Let us consider a neighbourhood U 0 of K 0 satisfying the conclusion of Proposition B.1. The bassin of K 0 is the complement in Z 0 of the union of all unstable cycles and all the stable manifolds of the saddle points. In particular by taking φ -T (U 0 ) with T large enough instead of U 0 one can assume that U 0 contains L := {|x| ≥ a, |y| ≤ b} ∩ B with a, b > 0. Let us take now for the neighbourhood of K + the set U := U 0 ∪ L. Clearly ∩ t≥0 φ t (U ) = K + . Remark 6.2 K 0 ∪ {b} is not an attractor! Let us fix a density dµ on Z 0 and construct a vector field W generating F near K + whose divergence is non positive on K + . First, we construct a vector field W b with div(W j ) < 0 in some neighbourhood U b of each (ws) saddle point b. We construct also (see Appendix A.2) a vector field W a in the basin of each attractive cycle or point a with non positive divergence. Let us choose a positive function l a tending to +∞ at the boundary of the basin of a. Then, for L a large enough the set {l a ≥ L a } intersects the unstable manifolds

Y j of each (ws) saddle point b j inside U b j . We choose χ a ∈ C ∞ o (R, [0, 1]
) so that χ a (s) = 1 for 0 ≤ s ≤ L a and χ a (s) ≤ 0 for s ≥ 0. Then we take,

W = a   (χ a • l a )W a + C b j (ws) ψ j W b j   where ψ j satifies • ψ j ∈ C ∞ 0 (U b j , R + ) • ψ j = 1 on {l a ≥ L a } ∩ Y j • dψ j (W ) ≤ 0 on Y j ∩ U b j
and C >> 1. This smooth vector field is well defined near K + and has negative divergence on K + .

Lagrangian distributions associated to hyperbolic closed leaves

Let Γ ⊂ T X \0 be a conic component of Γ + generated by a closed hyperbolic cycle K +,0 of the foliation F. The cone Γ is a conic Lagrangian submanifold of T X \ 0: the Euler identity implies ω(X h , p∂ p ) = 0. A theorem of Alan Weinstein [We-71] implies that there is an homogeneous canonical transformation χ defined in a conic neighbourhood C of Γ whose image is a conic neighbourhood of the zero section of T Γ and so that χ(Γ) is the zero section of T Γ. More precisely χ restricted to Γ identifies Γ to the zero section of its own cotangent bundle. Taking polar coordinates (x, η) ∈ (R/Z) × (R + \ 0) on the cone Γ, the cotangent bundle of Γ admits coordinates (x, η; ξ, y) with the symplectic form dξ ∧dx+dy ∧dη. Note that they are not the symplectic cocodinates of T X, but those of T Γ! Let X 0 be defined as X 0 := (R/2πZ) x ×R y . The symplectic map (x, η; ξ, y) → (x, -y; ξ, η) from T Γ onto T X 0 identifies T Γ with T X 0 . With this identification, Γ is moved into Γ 0 = {y = 0, ξ = 0} which is the conormal bundle of the circle of γ 0 ⊂ X 0 defined by y = 0. The Hamiltonian vector field X 0 of h 0 := h • χ -1 preserves Γ 0 . Along Γ 0 , it is then given by X 0 = ∂ ξ h 0 ∂ x -∂ y h 0 ∂ η and there ∂ x h 0 = ∂ η h 0 = 0. Because the foliation F is non singular near K +,0 , we have ∂ ξ h 0 = 0. Hence the image of the energy shell Σ 0 is given by ξ/η = F (x, y). The projection π : Z 0 → X 0 is a local diffeomorphism near K +,0 . Because it is a diffeomorphism on the cycle K +,0 , it is even a global diffeomorphism.

Using the tools introduced by Alan Weinstein in [We-75], we can build a FIO microlocally unitary U : L 2 (X) → L 2 (X 0 , M ) with M a flat bundle, called the Maslov bundle, so that U HU -K is smoothing in C and σ p (K) = h • χ -1 , sub(K) = 0. We are then reduced to the case already studied in where the projection of γ onto M is a diffeomorphism. This proves, following then [CSR-18], the Theorem 6.2 If Γ is a component of Γ + generated by a closed hyperbolic stable cycle of F, the distribution u ∞ is microlocally near Γ a Lagrangian distribution.

7 The 3D case with S 1 invariance Quite often in physical situations, there is an invariance of the problem by rotation or translation: internal waves in some canal , inertial waves inside the earth or some stars [RV-18], . . . We will study the case where M = N q ×S 1 θ is a 3-manifold with the canonical action of S 1 by translation on the second factor. We denote by (q, p; θ, τ ) some local canonical coordinates on T M and assume that N is equipped with a smooth density |dq| and M with |dqdθ|. Let us give a smooth Hamiltonian h = h(q, p, τ ), homogeneous of degree 0, on T M \ 0 and a self-adjoint pseudo-differential operator of degree 0, H, of principal symbol h, acting on L 2 (M, |dqdθ|). We assume that H commutes with the S 1 -action. The operator H is then a direct sum of operators on M :

H = ⊕ n∈Z H n
where H n acts on L 2 (N, |dq|) as a self-adjoint pseudo-differential operator of principal symbol h n (q, p) := h(q, p, n) which is also equal to h(q, p/n, 1) if n = 0.

The spectrum of H is clearly the closure of the union of the spectra of the H n 's.

7.0.1 Spectra of H and the H n 's Let us define h 0 (q, p) := h(q, p, 0) and h 1 (q, p) = h(q, p, 1). Note that h 1 is a smooth symbol of degree 0 on T N which is asymptotic to h 0 at infinity. The essential spectrum of H is the interval

I ∞ := [a ∞ , b ∞ ] where a ∞ = inf h 1 and b ∞ = sup h 1 . The essential spectrum of the H n 's is quite different: from the identities h(q, p, n) = h q, p |p| , n |p| = h 0 (q, p) + O 1 |p| ,
one gets that the principal symbol of H n is h 0 . Hence the essential spectrum of any of the H n 's is I 0 := [a 0 , b 0 ] where a 0 = inf h 0 and b 0 = sup h 0 . Note that we have I 0 ⊂ I ∞ and they are often identical in the applications to physical problems. We are interested in more precise properties of the spectra: we claim that, in I ∞ \ I 0 , the spectrum of H is pure point dense, i.e. there is a basis of L 2 pairwise orthogonal eigenfunctions. Moreover the eigenvalues of H n obey a Weyl rule when n → ∞. One expects that the spectrum has no embedded eigenvalues in the interior of I 0 . But quasi-modes of the type "well in an island" are possible if the dynamics of h 1 has stable bounded invariant sets (see Section 7.0.2).

Theorem 7.1 (Weyl law) The spectra σ(H n ) of the operators H n in I ∞ \I 0 are discrete. For any compact interval J included in I ∞ \ I 0 , we have

#{σ(H n ) ∩ J} ∼ n→∞ n 2 4π 2 vol ({q, p|h 1 (q, p) ∈ J})
where the volume is defined with the Liouville measure on T N and the eigenvalues of H n in J are counted with multiplicities.

Proof.-The full symbol of H writes h = h(q, p, τ ) + ∞ j=1 k j (q, p, τ ) with k j homogeneous of degree j. Hence H n can be viewed as a semi-classical pseudo-differential operator on N of semi-classical symbol hn = h 1 (q, p) + ∞ j=1 j k j (q, p, 1) with = 1/n. The Theorem follows hence from the semi-classical Weyl asymptotics.

Classical dynamics

We will assume that the frequency ω = 0 is fixed and the 2D Hamiltonian h 0 (q, p) := h(q, p, 0) admits an escape function. We will look at the dynamics of h 1 := h(q, p, 1). Note that the dynamics of h reduces on each set τ = a with a = 0 to that of h 1 by some simple rescaling of the time. Moreover lim p→∞ h 1 (q, p) = h 0 (q, p) Near infinity the dynamics stil admits an escape (Liapounov function) and hence the orbits, if they come close enough to infinity, will converge to K + at +∞ and K -at -∞. The dynamics t → φ t of h 1 is hence complete. We split the phase space into 3 pieces: T M = Ω ∪ C + ∪ C -where

• Ω is the set of (q, p) so that φ t (q, p) → K ± as t → ±∞ • C + is the set of (q, p) so that φ t (q, p) stays bounded for t ≥ 0 • C -is the set of (q, p) so that φ t (q, p) stays bounded for t ≤ 0 Finally, we define C := C + ∩ C -the set (q, p) so that φ t (q, p) stays bounded for t ∈ R. In the literature, C is called the trapped set.

It could happen that C supports some quasi-modes associated to the semi-classical parameter 1/n. Generically, these quasi-modes are not close to true L 2 -eigenfunctions because such eigenfunctions do not exist. There are stil visible in the wave dynamics for a very long time...

Open problems

There are stil many open problems. Let us describe a few of them:

• How does the spectral picture extends outside the intervals with a.c. spectra? This problem is already not solved in the simple case where Z 0 is a 2-torus, assuming the existence of a global transversal to the foliation, and the Poincaré map loses its hyperbolicity in a generic way.

• More generally, can we study what happens at the critical values of h assuming that this function is Morse or even Morse-Bott on S M ?

• What can we do in the case of a manifold with boundary? In particular, can we say something in the case of a polygon which is studied in the experiments of the Thierry Dauxois's team .

• Prove the generic absence of embedded eigenvalues.

• Consider the viscous case, namely the forced equation

du dt + iHu -σ∆u = f e -iωt , u(0) = 0 . ( 4 
)
where σ is a positive number and ∆ is the Laplacian associated to some Riemannian metric on M . Study the "small viscosity" limit σ → 0? In particular, do the limits σ → 0 + and t → +∞ commute?

• There is a discrete analogue of Mourre's theory for unitary maps, see for example . What can be said from the spectral theory of the unitary action of a diffeomorphism of a closed manifold on halfdensities? For example, what is the spectral theory of a diffeomorphism of the circle with irrational rotation number which is not C 1 -conjugated to a rotation?

Appendices

A Divergences

A.1 Formulae

Let us give a smooth vector field W whose flow is denoted φ t , t ∈ R and a smooth density dµ. The divergence of W with respect to dµ is the function defined by div dµ (W ) := L W dµ dµ 2. If K is an attractor, the basin of K is the set of points x so that φ t (x) → K as t → +∞.

3. A point x ∈ X is wandering if there exists a neighbourhood U of x so that φ t (U ) ∩ U = ∅ for t large enough.

The set of wandering points is open. The basins are open subsets of X. We will need the following properties (Lemma 1.6 of ):

Proposition B.1 If K is an attractor, and V a neighbourhood of K, there exists an open set U satisfying 1. K ⊂ U ⊂ V 2. ∩ t≥0 φ t ( Ū ) = K 3. For all t ≥ 0, φ t (U ) ⊂ U

The convergence of φ t (m) to K is uniform on every compact subset of the basin of K.

The previous sets are the same for V and f V where f : X →]0, +∞[ is smooth. They can therefore be defined for a 1D oriented foliation generated by a smooth vector field. In particular the open set U of the previous proposition is independent of f .

where the Lie derivative L W dµ is defined by L W dµ := d dt |t=0 φ t (dµ). Cartan's formula gives div dµ (W ) = d(ι(W )dµ) dµ where ι(.) is the inner product. In particular, we get the usefull formulae

A.2 Extending vector fields with negative divergence Lemma A.1 Let us assume that the invariant compact K admits a smooth (Liapounov) function l defined in the basin B of K with dl(W ) < 0 outside K and l(K) = 0 and l → +∞ at the boundary of B (this is the case in particular if the attractor K is hyperbolic). If the vector field W satisfies div dµ (W ) < 0 in some open neighbourhood V of K, then there exists a vector field W 1 = F W in B, so that F > 0 and div dµ (W 1 ) < 0 in B.

Proof-. Let us choose r > 0 so that {l ≤ r} ⊂ V . It is enough to take F = 1 in {l ≤ r} and, for any x ∈ B with l(x) = r and any t ≥ 0, F (φ t (x)) := e t 0 Φ(φs(x))ds with Φ smooth, Φ = 0 near l(y) ≤ r and, for all y with l(y) > r, Φ(y) < -div dµ (W )(y).

B Attractors and their basins

:

We give here some useful definitions and elementary properties of dynamical systems. We consider a smooth closed manifold X with a smooth vector field V whose flow is the 1-parameter group of diffeomeorphisms of X denoted by φ t , t ∈ R. The definitions and statements are taken from the reference . We have the following Definition B.1

1. If K ⊂ X is a compact invariant set, i.e. a subset of X preserved by the flow, K is called an attractor if there exists an open neighbourhood U of K in X so that K = ∩ t≥0 φ t (U ).