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Spectral theory of pseudo-differential operators
of degree 0

and application to forced linear waves

Yves Colin de Verdière∗

May 13, 2019

Introduction

This paper contains new developpements of some ideas already introduced
in our paper [CSR-18] concerning the spectral theory of self-adjoint pseudo-
differential operators of degree 0 on closed manifolds. The main motiva-
tion comes from the study of forced internal or inertial waves in physics,
see [BFM-13, Br-16, GDDSV-06, MBSL-97, ML-95, Og-05, RV-10, RV-18,
Pill-18] and many other works. In what follows, H is a classical self-adjoint
scalar pseudo-differential operator of degree 0 on a compact manifold M of
dimension n without boundary, f is a smooth function and the spectral pa-
rameter ω is a real number. The main object to study is the following linear
forced wave equation:

1

i

du

dt
+Hu = fe−iωt, u(0) = 0 . (1)

We are interested in the behaviour of u(t) as t→ +∞. Thanks to the spectral
theorem, we can relate this behaviour to the spectral theory of H and hence
to the Hamiltonian dynamics of the principal symbol h : T ?M \ 0 → R
which is a smooth function homogeneous of degree 0. The main tools that
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we use are already classical: they are, on one hand, the general theory of
pseudo-differential operators, culminating in the works of Lars Hörmander,
Hans Duistermaat, Alan Weinstein and many others, in the beginning of the
seventies, see [Du-11, Fo-89, We-71, We-75, DZ-17], and, on the other hand,
the theory initiated by Eric Mourre in the beginning of the eighties in order
to get a flexible way to have a limit absorption principle, see [Mo-81, Mo-83,
JMP-84, Gé-08, Ca-05].

What is the content, beyond that of [CSR-18]? The main result is Theo-
rem 6.1 where we extend the result of [CSR-18] to the generic Morse-Smale
case stil in dimension 2. The other new contribution is a precise description in
arbitrary dimension of the dynamical assumptions allowing to apply Mourre
theory thanks to the G̊arding inequality (see Section 3) by constructing a
global escape function.

After recalling general facts on the Hamiltonian dynamics of a homoge-
neous Hamiltonian h of degree 0 in Section 1 and on the spectral theory of H
in Section 2, we give, in Section 3, a necessary and sufficient condition on the
dynamics at infinity, which insures the existence of an escape function that
will be the key input in order to apply Mourre’s theory thanks to the G̊arding
inequality. In Section 4, we recall general facts that we got in [CSR-18] for
the forced wave equation from Mourre’s theory. In Section 5, we use radial
propagation estimates (see [DZ-17, DZ-18]), going back to works of Melrose
and Vasy, in order to locate the wavefrontset of the Schwartz distribution u∞
which is the limit (modulo bounded functions in L2) of u(t) as t→ +∞.

We consider then, in Section 6, the case where M is a surface (n = 2),
extending our results of [CSR-18] to the generic case where the foliation is
Morse-Smale and can have singular points (foci, nodes or saddles). Finally,
we consider, in Section 7, the case where M is a 3D manifold with a free
S1−action leaving H invariant which is important for applications to physics.
We end the paper with a short review of related problems in Section 8 and
two Appendices.

Aknowledgments: I would like first to thank Laure Saint-Raymond for
proposing to me to work with her on this exciting problem and for shar-
ing many ideas. Other people were helping me at different steps of this work:
Thierry Dauxois, Semyon Dyatlov, Frédéric Faure, Vladimir Georgescu, Eti-
enne Ghys, Johannes Sjöstrand, Michal Wrochna, Maciej Zworski, I thank
all of them very warmly.

Many thanks also to the referee whose detailed report including many
pertinent remarks allowed me to improve the paper.
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1 Hamiltonian of degree 0: classical dynam-

ics

In what follows, we fix the following notations: M is a smooth connected
compact manifold of dimension n ≥ 2 without boundary, q is the generic
point of M and |dq| a smooth density on M . The Hamiltonian h is a smooth
positively homogeneous function h : T ?M \ 0 → R. We denote by (q, p)
some local canonical coordinates on T ?M and by extension a generic point
of T ?M . The Hamiltonian vector field of h is denoted by Xh and we fix the
“symplectic” conventions so that

Xh =
∂h

∂p
∂q −

∂h

∂q
∂p, Xhf = {h, f}

and denote by Φt the flow of Xh. Because of the homogeneity of h, we have
pdq(Xh) = 0 and Xh is homogeneous of degree −1. Let us fix ω ∈ R and
define the energy shell Σω := h−1(ω). We will assume in what follows that ω
is not a critical value of h and hence Σω is a smooth conic hypersurface
in T ?M \ 0. We need to introduce Zω := Σω/R+ which is a smooth closed
manifold of dimension 2n − 2 and will be seen as the boundary at infinity
of Σω. The vector field Xh defines by projection a conformal class of vector
fields on Zω, which we will call an (oriented) foliation and denote by F .
This foliation can admit singular points corresponding to the lines R+.(q, p)
where Xh is parallel to the cone direction p∂p. Note that we can and will
often reduce ourselves to the case ω = 0 by looking at the Hamiltonian h−ω.

2 Hamiltonian of degree 0: spectral theory

Let us choose a self-adjoint pseudo-differential operator H of degree 0 acting
on L2(M, |dq|) and of principal symbol h. Note that H is a bounded operator.
In what follows, all pseudo-differential operators are “classical”, it means that
the symbols do have full expansions in homogeneous functions with integer
degrees. We are mainly interested by the spectral theory of H. As a warm
up, we have the

Theorem 2.1 The essential spectrum of H is the interval J := [h−, h+] with
h− := minh, h+ := maxh.
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Proof.– If ω ∈ C \ J , H − ω is elliptic and hence admits an inverse R(ω)
modulo compact operators which can be chosen holomorphic in ω by taking
R(ω) := Op(h− ω)−1 where Op is a fixed quantization on M :

R(ω)(H − ω) = Id +K(ω)

withK compact and holomorphic in ω. On the other hand, H being bounded,
(H − ω) is invertible for large values of ω. It follows from the Fredholm
analytic Theorem that the operator H−ω is invertible outside a discrete set
where the kernels are finite dimensional.

On the other hand, if ω ∈ J , with h(q0, p0) = ω and ε > 0 is fixed, choose
a small neighbourhood U of q0 so that, if q ∈ U , |h(q, p0)−ω| ≤ ε. Pick then
φ ∈ C∞o (U) with

∫
M
|φ|2(q)|dq| = 1. Let us check that, for t large enough,

‖(H − ω)
(
φeitqp0

)
‖L2(M) ≤ 2ε (2)

It follows from the general properties of the principal symbols that

H
(
φ(q)eitqp0

)
= h(q, p0)φ(q)eitqp0 +O

(
1

t

)
Take t so that the L2 norm of the remainder is smaller than ε. We get
inequality (2) by applying the triangular inequality. Hence

‖(H − ω)
(
φeitqp0

)
‖L2(M) ≤ 2ε‖φeitqp0‖L2(M)

which proves that σ(H) ∩ [ω − 2ε, ω + 2ε] 6= ∅.
�

3 Escape functions

The key object of this paper is an escape function for h on the energy shell
Σ0:

Definition 3.1 A smooth function k : Σ0 → R, positively homogeneous of
degree 1, is called an escape function if there exists δ > 0 so that the Poisson
bracket {h, k} = Xhk is larger than δ on Σ0.

A key observation is:
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Remark 3.1 If we extend k to T ?M \0 as a smooth function k̃ homogeneous
of degree 1, then k̃ restricted to Σω is stil an escape function on Σω for ω
small enough.

We first give a general dynamical assumption on the oriented foliation F
which turns out to be equivalent to the existence of a global escape function.
We need some definitions, using the definitions of Appendix B:

Definition 3.2 We will say that the oriented 1D foliation F of the manifold
Z0 admits a simple structure (K+, K−) if Z0 = K+ ∪ K− ∪ Ω as a disjoint
union where:

• K+ is an attractor of the oriented foliation F , the sink

• K− is a repellor of the oriented foliation F , the source

• All leaves of points in Ω converge to K+ at “+∞” and to K− at “−∞”;
in particular, the basin of K+ is Ω ∪ K+ and the basin of K− for the
reversed orientation of F is Ω ∪K−.

and

Definition 3.3 We say that a compact invariant set K+ is weakly hyperbolic,
denoted (WH), if there exists, in some neighbourhood of K+, a vector field
W generating F and a smooth density dµ so that divdµ(W ) < 0. Similarly
for K−, divdµ(W ) > 0.

Our main result in this section is

Theorem 3.1 If the foliation F has a simple structure (K+, K−) with K+

and K− satisfying (WH), then there exists an escape function.
The converse is true: the existence of an escape function implies that the

foliation F has a simple structure (K+, K−) so that K+ and of K− satisfy
(WH). This simple structure is uniquely determined by F .

3.1 Dynamical assumptions implying weak hyperbol-
icity

Let us choose a vector field W generating F , whose flow is denoted by φt, t ∈
R, and equip Z0 with a smooth density dµ.

Let us describe properties of closed invariant sets of F from which we can
deduce (WH):
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1. If some component of K+ is an isolated point a, the assumption (WH)
says that the trace of the linearized vector field of W at the point a
is negative. This is independent of the choice of W . The case where
the singular point is hyperbolic is studied in the work of Guillemin and
Schaeffer [GS-77]. They show that, in the generic situation, there exists
a pseudo-differential normal form for such points. Independently, the
classical part of this normal form is also described in dimension 2 in
the works of Davydov and co-authors [Da-85, Ar-88, DIIS-03].

2. If some component of K+ is a closed curve γ, the assumption (WH)
says that the modulus of the determinant of the linearized Poincaré
map is < 1. In dimension n = 2, this is equivalent to our assumption
(M2) in [CSR-18].

3. They are more complicated attractors which satisfy (WH). The Lorenz
attractor is one of them: the vector field generating it has negative
divergence.

3.2 Construction of an escape function

We construct an escape function assuming that F has a simple structure
with K± satisfying (WH).

3.2.1 Escape function near Γ+

Let Γ± be the sub-cones of Σ0 generated by the sets K±. We will construct
in this section an escape function k+ in some conic neighbourhood U + of
Γ+. A similar construction can be done on the basin of Γ−.

Let us first construct “polar coordinates” (ρ, θ) on Σ0 where ρ ∈ R+ \ 0,
θ ∈ Z0 and the dilations on Σ0 act by λ.(ρ, θ) = (λρ, θ):

Lemma 3.1 If W is a given vector field on Z0 generating F , there exist
polar coordinates (ρ, θ) ∈ (R+ \ 0)× Z0 on Σ0 so that

Xh = a(θ)∂ρ +
1

ρ
W .

Proof.– We start with arbitrary polar coordinates (ρ1, θ): for example identify
Z0 with the co-sphere bundle S?1 for some Riemannian metric onM and define
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ρ1(q, p) so that (q, p/ρ1(q, p)) ∈ S?1 . We get, using the homogeneity of Xh
and the fact that W span F ,

Xh = a1(θ)∂ρ1 +
1

ρ
W

with ρ = A(θ)ρ1 and hence ∂ρ1 = A(θ)∂ρ. �
The Liouville measure dL0 := |dqdp/dh| on Σ0, being homogeneous of

degree n, w.r. to dilations, writes dL0 = ρn−1|dρ|dµ where dµ is a smooth
measure on Z0.

The fact that
divdL0(Xh) = 0

rewrites
(n− 1)a+ divµ(W ) = 0 (3)

The assumption (WH) implies that we have a smooth> 0 function F defined
near K+ so that

divFµ(W ) =
dF (W )

F
+ divµ(W ) ≤ −c < 0

Then, if k+ := F−1/(n−1)ρ, we get

dk+(Xh) = − 1

n− 1
F−1/(n−1)

(
dF (W )

F
− (n− 1)a

)
which is equal to

dk+(Xh) = − 1

n− 1
F−1/(n−1)divFµ(W )

and we get that the function k+ is an escape function in some conical neigh-
bourhhood of Γ+. �

We define similarly k− := −F−1/(n−1)ρ.
Note that k+ tends to +∞ as z tends to K+ viewed as a set of points at

infinity of Σ0. We have also k+ ∼< p > from the definition and the fact that
F is positive.

Similarly, the function k− defined near Γ− tends to −∞ as z tends to K−.
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3.2.2 Extension to Σ0

We choose a positive function m on Σ0 which is smooth, homogeneous of
degree 0 and equal to m± := {h, k±} in some conical neighbourhoods U± of
Γ±. It follows from Item 3 of Proposition B.1 that we can choose U+ so that
Φt(U+) ⊂ U+ for t ≥ 0 and similarly for U−.

Let z be in the basin of Γ+ and define

l+(z) = lim
t→+∞

(
k+(Φt(z))−

∫ t

0

m(Φs(z))ds

)
The limit exists because the expression of which we take the limit is inde-
pendent of t for t large enough. Moreover the limit is smooth: if z is given
and ΦT (z) ∈ U+ for all T ≥ T0, there exists a neighbourhood V of z so that
ΦT0(V ) ⊂ U+ and hence ΦT (V ) ⊂ U+ for all T ≥ T0. We have then, for
w ∈ V ,

l+(w) = k+(ΦT0(w))−
∫ T0

0

m(Φs(w))ds

which is clearly smooth.
We define similarly l−. The functions l± are escape functions in the basins

of Γ± and satisfy in the respective basins {h, l±} = m.
Let Γ0 be the cone Γ0 := {l+ = 0} which is smooth and transversal

to Xh because dl+(Xh) = m > 0. On Γ0 we have now the two functions
l±. The difference δ(z) = l+(z) − l−(z) is homogeneous of degree 1 and is
constant along the flow lines. We will define k on the Hamiltonian trajectories
t→ Φt(z) starting from z ∈ Γ1

0 := {g? = 1} ∩ Γ0. For further use, we denote
by S this hypersurface of T ?M . The set Γ1

0 is compact and hence the function
|δ| is bounded by some constant C > 0 on it. Let us put m0 := minm > 0
and let ψ : R→ R be a smooth function satisfying

• ψ(t) = 0 is t ≤ 0

• ψ(t) = 1 if t ≥ 4C/m0

• |ψ′| ≤ m0/2C

We define now for z ∈ Γ1
0,

k(φt(z)) = (1− ψ(t))l−(Φt(z)) + ψ(t)l+(Φt(z))

The derivative of k with respect to Xh is then equal to m+ψ′(l+−l−) ≥ m0/2.
We extend then k by homogeneity.
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3.3 Deriving the properties of F from the existence of
an escape function

In what follows, we assume only the existence of an escape function k.
Let us give a construction of Γ± using only the dynamics of Xh. We will

see that these sets are defined independently of the choice of k: Γ+ is the
set of points z ∈ Σ0 so that there exists t0 < 0 with Φt(z) → 0 as t → t+0 ,
i.e. the trajectory of Xh is not complete as time t → −∞. Similarly for Γ−
with t1 > 0. We define K± so that they generate the cones Γ±. Note that
Γ+ ∩ Γ− = ∅: ifnot, let z ∈ Γ+ ∩ Γ−, then Φt(z) tends to the zero section
of T ?X as t = t0 + 0, because the Hamiltonian flow is complete near the
infinity of T ?X. Φt(z) tends also to the zero section as t = t1 − 0. This is
not possible because the escape function tends to 0 at the zero section and
is monotonic along the orbits.

Le us recall that we see K± as sets at infinity of the energy shell, namely
the bases at infinity of the cones Γ±.

Proposition 3.1 The picture of the dynamics is as follows:

• if z ∈ Σ0 \ (Γ+ ∪ Γ−), Φt(z) is defined for all t ∈ R, Φt(z) → K+ as
t→ +∞ and Φt(z)→ K− as t→ −∞

• if z ∈ Γ+, Φt(z) is defined for all t > t0(z), Φt(z) → K+ as t → +∞
and Φt(z)→ 0 as t→ t0(z)

• if z ∈ Γ−, Φt(z) is defined for all t < t0(z), Φt(z) → K− as t → −∞
and Φt(z)→ 0 as t→ t0(z).

Proof. – Let us choose a metric g on M and consider the set C0 := k−1(0) ∩
(g?)−1(1) where g? is the dual metric. The set C0 is a generating set for
the cone C := k−1(0). If z ∈ C0, the trajectory t → Φt(z) is complete,
because t → k(Φt(z)) is strictly monotonic and hence does not tend to the
zero section where k = 0 at t = ±∞. Conversely, every complete trajectory
cuts C0 exactly in one point. This way we get a subset S of Σ0 generating
Σ0 \ (Γ+ ∪ Γ−):

S := {Φt(z) | z ∈ C0, t ∈ R}

The orbits sitting in S have no limit points in S because the flow derivative of
k is bounded below by some positive number. Let us consider the projections
on Z0 of S, Γ+ and Γ+, say Ω, K+ and K−. We have a disjoint union
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Z0 = Ω ∪ K+ ∪ K−. Each set is invariant by the foliation. Let us look
at a leaf γ in Ω: γ has no limit points in Ω (because the foliation in Ω
is diffeomorphic to the flow foliation in C). The limit points are then in
K+ ∪ K−. We have Γ+ ⊂ {k > 0} and Γ− ⊂ {k < 0}. Hence the limit
points at +∞ are in K+ and the limit points at −∞ in K−. The set K+ is
an attractor: it is enough to consider the neighbourhoods UN of K+ which
are the projections of the sets ({k ≥ N} ∩ C) ∪ Γ+.

�
Let us show that the existence of an escape function implies that K+

satisfy (WH): we choose polar coordinates (ρ, θ) near Γ+ with the ρ = k and
we have, from the equations derived in section 3.2.1, that dk(Xh) = a > 0
and hence divµW = −a/n < 0: all components of K+ satisfy (WH). A
similar argument works for K−.

3.4 Radial sink and sources

Let us recall and introduce some notations: the radial compactification of
T ?M is denoted by T ?M and the boundary at infinity which we can identify
with the sphere bundle is S?M := T ?M/R+. The compactification of Σ0 is
Σ0 with the boundary at infinity Z0 = SΣ0 ⊂ T ?M .

Let us rephrase the Definition E.52 of [DZ-17] in our context:

Definition 3.4 Let us introduce the symbol r = −kh, with k, an escape
function (homogeneous of degree 1), and denote by ψt the flow of r extended
to the boundary. The compact set K− ⊂ Z0 is a radial source for r if there
exists a neighbourhood U ⊂ T ?M of K−, so that, uniformly for z ∈ U ,

1. For t ≤ 0, |k|(ψt(z)) ≥ Ceθ|t| for some C, θ > 0.

2. ψt(z)→ K− as t→ −∞.

We have:

Proposition 3.2 If k is an escape function, K− is a radial source for r =
−kh.

Proof–. We have, in the domain where k < 0, in particular near K−,
Xr = |k|Xh−hXk. The vector field Xr is homogeneous of degree 0 and hence
projects onto S?M . We denote Yr this projection. Note that Yr is tangent
to Z0 where it generate the foliation F .
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Let us prove item 1: we have Xr(|k|) = |k|Xh|k| ≤ −δ|k|. This implies
that in a neighbourhood U0 of K− where k ≤ −1, we have, for t ≤ 0,
|k|(ψt(z)) ≥ Ceδ|t|.

Let us prove item 2: let us choose V0 a neighbourhood of K− inside S?M
as follows: we choose first a neighbourhood V1 of K− in Z0, with a smooth
boundary, so that Yr is outgoing and transversal to the boundary: take V1

as the closure of the projection of the sets {k ≤ −b} ∩ S for b large enough
with S defined in Section 3.2.2. We take for V0 a neighbourhood of K− in
S?M which is of the form {exp(uYr)(m)|m ∈ V1, |u| ≤ a}. If a is small
enough the vector field Yr is transversal and outgoing at the boundary of
V0. Because Yr(h) = h{h, k} and {h, k} ≥ δ > 0. Hence we get a repellor
L− := ∩t≤0ψt(V1). The repellor L− contains K− and being invariant by
the dynamics of Yr restricted to Z0 is equal to K−. We then take for U1 a
small neighbourhood of V0 in T ?M and we get item 2 by taking for U in the
definition of a radial source the intersection U0 ∩ U1. �

4 Applying Mourre’s theory

Let us first recall some results of [CSR-18]. Let us fix ω = 0 for simplicity and
assume that there exists an escape function k on the energy shell Σ0. Then
k can be extended to T ?M \ 0 as an escape function in the cone |h| ≤ a with
some a > 0. Let K be a self-adjoint operator of degree 1 of principal symbol
k. Using the “ G̊arding’s inequality” (see [Fo-89] pp 129–136), one gets that
K is a conjugate operator in the sense of Mourre: if J is as small enough
open interval containing 0 and πJ is the spectral projector of H associated
to the interval J , then

iπJ [H,K]πJ ≥ cπJ +R

where c > 0 and R compact. Moreover the operator H is K-smooth, i.e.
the map t→ eitKHe−itK is smooth with values into the bounded self-adjoint
operators. Let us define the K-Sobolev spaces, denoted Hs

K , in the usual

way using the s-powers of (1 + K2)
1
2 . The usual Sobolev spaces will be

denoted by Hs. Let us give a comparison between the K−Sobolev spaces
and the usual ones. There is a shift in the exponents due to the fact that the
pseudo-differential calculus does not apply to non elliptic operators like K.

Lemma 4.1 If f ∈ H1, then f ∈ Hs
K for any s ≤ 1. If f ∈ H−1

K , then
f ∈ H−s for any s ≤ −1.
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Proof.–

If f ∈ H1, < (1 + K2)f |f >< ∞ because K2 is a pseudo-
differential operator of order 2 and hence f ∈ H1

K . The other
inclusion follows by duality w.r. to the L2 product.

�
It follows then from Mourre theory [Mo-81, Mo-83, JMP-84, Gé-08] that

Theorem 4.1 (Mourre) The operator H has a finite number of eigenvalues
in J , they have finite multiplicity. Assuming that 0 is not an eigenvalue,
the resolvent (H − z)−1 defined for =z > 0 admits a boundary value ω →
(H−ω−i0)−1 for ω real close to 0 which, for any ε > 0, is Hölder continuous
for some positive Hölder exponent, depending on ε, from the Sobolev space

H
1
2

+ε

K into H−
1
2
−ε

K for all ε > 0.
Moreover, if Π− is the spectral projector on the negative part of the spec-

trum of K, then, if f ∈ H1+ε
K , then Π− ((H − i0)−1f) ∈ L2.

It follows then in our context:

Theorem 4.2 ([CSR-18]) Assuming the existence of an escape function at
ω = 0 and that 0 is not an eigenvalue of H, then the solution u(t) of the
forced wave equation (1) with a smooth forcing f can uniquely be written as

u(t) = u∞ + η(t) + r(t)

where

• u∞ = (H − i0)−1(f) belongs to H−
1
2
−ε

K ⊂ H−1 for all ε > 0

• η(t)→ 0 in H−
1
2
−ε

K ⊂ H−1 for all ε > 0

• The function t → r(t) is bounded in L2 has a Fourier transform van-
ishing near 0

• ‖u(t)‖2
L2 ∼ ct as t→ +∞ with in general c > 0.
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5 Using radial source and sink propagation

results

5.1 Wavefront set of u∞

We will now derive results on the distribution u∞ using the radial propaga-
tion estimates of Dyatlov-Zworski, based on earlier ideas of Richard Melrose
[Me-94] and Andras Vasy [Va-13], and get

Theorem 5.1 The wavefront set of u∞ is contained in the cone Γ+.

Proof.–

The result follows from the argument explained in the revised
version of [DZ-18], section 3.1. This use only the fact that K− is
a source (see Section 3.4). They introduce an operator < D >
which is elliptic self-adjoint invertible of degree 1. We choose it
so that its principal symbol near Γ− is |k|. They introduce then

vε :=< D >−
1
2 (H − iε)−1 < D >−

1
2 (g) ,

with g =< D >
1
2 (f) and uε = (H− iε)−1(f) =< D >

1
2 vε. Using

a refined version of the Theorem E.54 of [DZ-17], they show that
there exists A, elliptic near Γ− of degree 0, so that, for any s, the
norms ‖Avε‖s are uniformly bounded in ε > 0. We need to use
here, in the inequality (3.2) of [DZ-18], that ‖vε‖−N is bounded;
we know it from Mourre theory for N ≥ 1. Passing to the limit
which is known to exists in H−1 by Theorem 4.2, we get that u∞
is smooth near Γ−. The usual propagation of singularities applied
to the equation Hu∞ ∈ C∞ gives the result.

�

Proposition 5.1 If Hu = 0 and u ∈ L2(M), then u is smooth.

Proof.–

It follows from Exercice 33 in Appendix E7 of [DZ-17], that u is
smooth near Γ− and changing H into −H, u is also smooth near
Γ+.
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Remark 5.1 In the case n = 2, not all closed conical invariants subsets of
Γ+ can be wavefront sets of some u∞. If the wavefront set contains the line
generated by a (ws)saddle point, it contains also one of the 2 branches of
the associated unstable manifold and hence, being closed, also an attractive
invariant set. This is proved in the paper [GS-77] at least for generic cases.

5.2 Sobolev regularity of u∞

We saw in Section 4 that u∞ belongs to H−1. Let us show that the radial
sink estimates of [DZ-17] allows to get

Theorem 5.2 Under the assumption of existence of an escape function, we
have, for all ε > 0, u∞ ∈ H−

1
2
−ε.

Proof.–

We use the fact that K+ is a sink as defined in [DZ-17], definition
E.52.: this is proved exactly the same way that we proved that
K− is a source in Section 3.4, or just by reversing the orientations.
We use then Theorem E.56 of [DZ-17] directly for the operator
H knowing already that u∞ is smooth away of Γ+. Replacing
< ξ > by < k+ > we see that the threshold condition (E.5.44) is
satisfied for s < −1

2
.

�

6 The 2D case

In this Section n = 2.

6.1 Morse-Smale foliation

Definition 6.1 A hyperbolic singular point of F is said weakly stable if the
trace of the linearization of any smooth vector field generating F is < 0. We
define similarly weakly unstable hyperbolic singular points. We denote these
properties respectively (ws) and (wu).
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Note that if dh 6= 0 on Σ0, any saddle points is either weakly stable or weakly
instable depending on the fact that Xh is pointing to the infinity or not, this
follows from equation (3) where a 6= 0.

Let us recall that a vector field on a surface is Morse-Smale if the non
wandering points are singular hyperbolic points and closed hyperbolic cycles
and there is no saddle connection, i.e. there is no leave whose both limit
points are saddle points. We extend this definition to oriented foliations of
surfaces by choosing any vector field generating the foliation.

Theorem 6.1 Let n be equal to 2. Let us assume that the foliation F is
Morse-Smale. Then there exists an escape function. The set K+ is the union
of all the attracting cycles and points and all the unstable manifolds of the
ws-saddle points. The set K− is constructed in a similar way.

Remark 6.1 Any generic foliation of a closed surface satisfies the previous
properties: Mauricio Peixoto proved in the sixties that Morse-Smale vector
fields on surfaces are generic, see [PdM-82], Chapter 4, for a detailed proof.
As pointed out to me by Sylvain Courte, this genericity property extends to
our context, i.e. to singular foliations of a surface embedded in a contact
manifold, as it is proved in the PhD thesis of Emmanuel Giroux [Gi-91],
Lemme 1.3.

Proof–. Note first that K+ and K− are compact. They are also disjoint
because there is no saddle connection.

Let us prove thatK+ is an attractor. LetK0 be the union of the attracting
component of K+. The compact K0 itself is an attractor. Let us assume
for simplicity that there exists an unique (ws) saddle-point b. Near b the
foliation has a local normal form: the level sets of the function xy in a
ball B contained in R2

x,y with the orientation given by x∂x − y∂y. Let us
consider a neighbourhood U0 of K0 satisfying the conclusion of Proposition
B.1. The bassin of K0 is the complement in Z0 of the union of all unstable
cycles and all the stable manifolds of the saddle points. In particular by
taking φ−T (U0) with T large enough instead of U0 one can assume that U0

contains L := {|x| ≥ a, |y| ≤ b} ∩ B with a, b > 0. Let us take now for the
neighbourhood of K+ the set U := U0 ∪ L. Clearly ∩t≥0φt(U) = K+.

Remark 6.2 K0 ∪ {b} is not an attractor!
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Let us fix a density dµ on Z0 and construct a vector field W generating
F near K+ whose divergence is non positive on K+. First, we construct
a vector field Wb with div(Wj) < 0 in some neighbourhood Ub of each (ws)
saddle point b. We construct also (see Appendix A.2) a vector field Wa in the
basin of each attractive cycle or point a with non positive divergence. Let us
choose a positive function la tending to +∞ at the boundary of the basin of a.
Then, for La large enough the set {la ≥ La} intersects the unstable manifolds
Yj of each (ws) saddle point bj inside Ubj . We choose χa ∈ C∞o (R, [0, 1]) so
that χa(s) = 1 for 0 ≤ s ≤ La and χ′a(s) ≤ 0 for s ≥ 0. Then we take,

W =
∑
a

(χa ◦ la)Wa + C
∑
bj(ws)

ψjWbj


where ψj satifies

• ψj ∈ C∞0 (Ubj , R+)

• ψj = 1 on {la ≥ La} ∩ Yj

• dψj(W ) ≤ 0 on Yj ∩ Ubj
and C >> 1. This smooth vector field is well defined near K+ and has
negative divergence on K+. �

6.2 Lagrangian distributions associated to hyperbolic
closed leaves

Let Γ ⊂ T ?X\0 be a conic component of Γ+ generated by a closed hyperbolic
cycle K+,0 of the foliation F . The cone Γ is a conic Lagrangian submanifold
of T ?X \ 0: the Euler identity implies ω(Xh, p∂p) = 0. A theorem of Alan
Weinstein [We-71] implies that there is an homogeneous canonical transfor-
mation χ defined in a conic neighbourhood C of Γ whose image is a conic
neighbourhood of the zero section of T ?Γ and so that χ(Γ) is the zero section
of T ?Γ. More precisely χ restricted to Γ identifies Γ to the zero section of its
own cotangent bundle. Taking polar coordinates (x, η) ∈ (R/Z)×(R+\0) on
the cone Γ, the cotangent bundle of Γ admits coordinates (x, η; ξ, y) with the
symplectic form dξ∧dx+dy∧dη. Note that they are not the symplectic coco-
dinates of T ?X, but those of T ?Γ! Let X0 be defined as X0 := (R/2πZ)x×Ry.
The symplectic map (x, η; ξ, y)→ (x,−y; ξ, η) from T ?Γ onto T ?X0 identifies
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T ?Γ with T ?X0. With this identification, Γ is moved into Γ0 = {y = 0, ξ = 0}
which is the conormal bundle of the circle of γ0 ⊂ X0 defined by y = 0. The
Hamiltonian vector field X0 of h0 := h ◦ χ−1 preserves Γ0. Along Γ0, it is
then given by X0 = ∂ξh0∂x−∂yh0∂η and there ∂xh0 = ∂ηh0 = 0. Because the
foliation F is non singular near K+,0, we have ∂ξh0 6= 0. Hence the image of
the energy shell Σ0 is given by ξ/η = F (x, y). The projection π : Z0 → X0

is a local diffeomorphism near K+,0. Because it is a diffeomorphism on the
cycle K+,0, it is even a global diffeomorphism.

Using the tools introduced by Alan Weinstein in [We-75], we can build
a FIO microlocally unitary U : L2(X) → L2(X0,M) with M a flat bundle,
called the Maslov bundle, so that UHU?−K is smoothing in C and σp(K) =
h ◦ χ−1, sub(K) = 0. We are then reduced to the case already studied in
[CSR-18] where the projection of γ onto M is a diffeomorphism.

This proves, following then [CSR-18], the

Theorem 6.2 If Γ is a component of Γ+ generated by a closed hyperbolic
stable cycle of F , the distribution u∞ is microlocally near Γ a Lagrangian
distribution.

7 The 3D case with S1 invariance

Quite often in physical situations, there is an invariance of the problem by
rotation or translation: internal waves in some canal [ML-95], inertial waves
inside the earth or some stars [RV-18], . . . We will study the case where
M = Nq×S1

θ is a 3-manifold with the canonical action of S1 by translation on
the second factor. We denote by (q, p; θ, τ) some local canonical coordinates
on T ?M and assume that N is equipped with a smooth density |dq| and M
with |dqdθ|. Let us give a smooth Hamiltonian h = h(q, p, τ), homogeneous
of degree 0, on T ?M \ 0 and a self-adjoint pseudo-differential operator of
degree 0, H, of principal symbol h, acting on L2(M, |dqdθ|). We assume that
H commutes with the S1-action. The operator H is then a direct sum of
operators on M :

H = ⊕n∈ZHn

where Hn acts on L2(N, |dq|) as a self-adjoint pseudo-differential operator of
principal symbol hn(q, p) := h(q, p, n) which is also equal to h(q, p/n, 1) if
n 6= 0.

17



The spectrum of H is clearly the closure of the union of the spectra of
the Hn’s.

7.0.1 Spectra of H and the Hn’s

Let us define h0(q, p) := h(q, p, 0) and h1(q, p) = h(q, p, 1). Note that h1 is
a smooth symbol of degree 0 on T ?N which is asymptotic to h0 at infinity.
The essential spectrum of H is the interval I∞ := [a∞, b∞] where a∞ = inf h1

and b∞ = suph1. The essential spectrum of the Hn’s is quite different: from
the identities

h(q, p, n) = h

(
q,

p

|p|
,
n

|p|

)
= h0(q, p) +O

(
1

|p|

)
,

one gets that the principal symbol of Hn is h0. Hence the essential spectrum
of any of the Hn’s is I0 := [a0, b0] where a0 = inf h0 and b0 = suph0. Note
that we have I0 ⊂ I∞ and they are often identical in the applications to
physical problems.

We are interested in more precise properties of the spectra: we claim that,
in I∞ \ I0, the spectrum of H is pure point dense, i.e. there is a basis of L2

pairwise orthogonal eigenfunctions. Moreover the eigenvalues of Hn obey a
Weyl rule when n → ∞. One expects that the spectrum has no embedded
eigenvalues in the interior of I0. But quasi-modes of the type “well in an
island” are possible if the dynamics of h1 has stable bounded invariant sets
(see Section 7.0.2).

Theorem 7.1 (Weyl law) The spectra σ(Hn) of the operators Hn in I∞\I0

are discrete. For any compact interval J included in I∞ \ I0, we have

#{σ(Hn) ∩ J} ∼n→∞
n2

4π2
vol ({q, p|h1(q, p) ∈ J})

where the volume is defined with the Liouville measure on T ?N and the eigen-
values of Hn in J are counted with multiplicities.

Proof.– The full symbol of H writes

h̃ = h(q, p, τ) +
∞∑
j=1

kj(q, p, τ)
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with kj homogeneous of degree j. Hence Hn can be viewed as a semi-classical
pseudo-differential operator on N of semi-classical symbol

h̃n = h1(q, ~p) +
∞∑
j=1

~jkj(q, ~p, 1)

with ~ = 1/n. The Theorem follows hence from the semi-classical Weyl
asymptotics. �

7.0.2 Classical dynamics

We will assume that the frequency ω = 0 is fixed and the 2D Hamiltonian
h0(q, p) := h(q, p, 0) admits an escape function. We will look at the dynamics
of h1 := h(q, p, 1). Note that the dynamics of h reduces on each set τ = a
with a 6= 0 to that of h1 by some simple rescaling of the time. Moreover

lim
p→∞

h1(q, p) = h0(q, p)

Near infinity the dynamics stil admits an escape (Liapounov function) and
hence the orbits, if they come close enough to infinity, will converge to K+

at +∞ and K− at −∞. The dynamics t → φt of h1 is hence complete. We
split the phase space into 3 pieces: T ?M = Ω ∪ C+ ∪ C− where

• Ω is the set of (q, p) so that φt(q, p)→ K± as t→ ±∞

• C+ is the set of (q, p) so that φt(q, p) stays bounded for t ≥ 0

• C− is the set of (q, p) so that φt(q, p) stays bounded for t ≤ 0

Finally, we define C := C+ ∩C− the set (q, p) so that φt(q, p) stays bounded
for t ∈ R. In the literature, C is called the trapped set.

It could happen that C supports some quasi-modes associated to the
semi-classical parameter 1/n. Generically, these quasi-modes are not close
to true L2−eigenfunctions because such eigenfunctions do not exist. There
are stil visible in the wave dynamics for a very long time...

8 Open problems

There are stil many open problems. Let us describe a few of them:
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• How does the spectral picture extends outside the intervals with a.c.
spectra? This problem is already not solved in the simple case where
Z0 is a 2-torus, assuming the existence of a global transversal to the
foliation, and the Poincaré map loses its hyperbolicity in a generic way.

• More generally, can we study what happens at the critical values of h
assuming that this function is Morse or even Morse-Bott on S?M?

• What can we do in the case of a manifold with boundary? In particular,
can we say something in the case of a polygon which is studied in the
experiments of the Thierry Dauxois’s team [Br-16].

• Prove the generic absence of embedded eigenvalues.

• Consider the viscous case, namely the forced equation

du

dt
+ iHu− σ∆u = fe−iωt, u(0) = 0 . (4)

where σ is a positive number and ∆ is the Laplacian associated to some
Riemannian metric on M . Study the “small viscosity” limit σ → 0? In
particular, do the limits σ → 0+ and t→ +∞ commute?

• There is a discrete analogue of Mourre’s theory for unitary maps, see
for example [FRT-13]. What can be said from the spectral theory
of the unitary action of a diffeomorphism of a closed manifold on half-
densities? For example, what is the spectral theory of a diffeomorphism
of the circle with irrational rotation number which is not C1-conjugated
to a rotation?

Appendices

A Divergences

A.1 Formulae

Let us give a smooth vector field W whose flow is denoted φt, t ∈ R and a
smooth density dµ. The divergence of W with respect to dµ is the function
defined by

divdµ(W ) :=
LWdµ
dµ
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where the Lie derivative LWdµ is defined by LWdµ := d
dt |t=0

φ?t (dµ). Cartan’s

formula gives

divdµ(W ) =
d(ι(W )dµ)

dµ

where ι(.) is the inner product. In particular, we get the usefull formulae

divdµ(fW ) = df(W ) + fdivdµ(W )

divgdµ(W ) =
dg(W )

g
+ divdµ(W )

A.2 Extending vector fields with negative divergence

Lemma A.1 Let us assume that the invariant compact K admits a smooth
(Liapounov) function l defined in the basin B of K with dl(W ) < 0 outside
K and l(K) = 0 and l → +∞ at the boundary of B (this is the case in
particular if the attractor K is hyperbolic). If the vector field W satisfies
divdµ(W ) < 0 in some open neighbourhood V of K, then there exists a vector
field W1 = FW in B, so that F > 0 and divdµ(W1) < 0 in B.

Proof–. Let us choose r > 0 so that {l ≤ r} ⊂ V . It is enough to take F = 1
in {l ≤ r} and, for any x ∈ B with l(x) = r and any t ≥ 0,

F (φt(x)) := e
∫ t
0 Φ(φs(x))ds

with Φ smooth, Φ = 0 near l(y) ≤ r and, for all y with l(y) > r, Φ(y) <
−divdµ(W )(y). �

B Attractors and their basins

:
We give here some useful definitions and elementary properties of dy-

namical systems. We consider a smooth closed manifold X with a smooth
vector field V whose flow is the 1-parameter group of diffeomeorphisms of
X denoted by φt, t ∈ R. The definitions and statements are taken from the
reference [Hu-82]. We have the following

Definition B.1 1. If K ⊂ X is a compact invariant set, i.e. a subset of
X preserved by the flow, K is called an attractor if there exists an open
neighbourhood U of K in X so that K = ∩t≥0φt(U).
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2. If K is an attractor, the basin of K is the set of points x so that
φt(x)→ K as t→ +∞.

3. A point x ∈ X is wandering if there exists a neighbourhood U of x so
that φt(U) ∩ U = ∅ for t large enough.

The set of wandering points is open. The basins are open subsets of X.
We will need the following properties (Lemma 1.6 of [Hu-82]):

Proposition B.1 If K is an attractor, and V a neighbourhood of K, there
exists an open set U satisfying

1. K ⊂ U ⊂ V

2. ∩t≥0φt(Ū) = K

3. For all t ≥ 0, φt(U) ⊂ U

The convergence of φt(m) to K is uniform on every compact subset of the
basin of K.

The previous sets are the same for V and fV where f : X →]0,+∞[
is smooth. They can therefore be defined for a 1D oriented foliation gener-
ated by a smooth vector field. In particular the open set U of the previous
proposition is independent of f .
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