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Abstract—This paper highlights the necessity of the rider
weight consideration during observer’s design for motorcycle
dynamics estimation or control. It presents a novel approach
using a linear parameter varying (LPV) model associated with
the well-know Takagi-Sugeno (TS) methods to derive a robust ob-
server regarding the rider weight uncertainty. Then the proposed
solution is illustrated with an application to a proposed observer
in our previous works by comparing results of estimation between
a nominal, a heavier and a lighter rider. Finally, a complete
simulation scenario shows the ability of the proposed method
to estimate the lateral motorcycle dynamic states considering an
uncertain rider weight.

I. INTRODUCTION

While the fatalities of the powered four wheeled vehicles
(PFWV) users are constantly decreasing, the mortality of
the motorcycle riders is still an important issue for many
countries. By analogy with the PFWV market where the
development of active and semi-active safety systems such
as the anti-lock braking system (ABS), the electronic stability
program (ESP), etc have largely contributed in the avoidance
of many critical situations and in the reduction of crash
severity, motorcycle makers have recently developed several
similar systems. Among these systems one can cite: the anti-
lock braking system (ABS) similar to the one for PFWV, the
electronic stability control (ESC), the traction control system
(TCS) or the motorcycle stability control (MSC) developed by
Bosch.

In many countries PTWV are becoming the most common
mean of transportation and are often dedicated to urban use.
Currently there is a real challenge between manufacturers
which try to sold new vehicles as cheap as possible to widen
motorcycle user community. Emphasis on safety without sig-
nificantly increase the selling price is a real challenge. That is
why estimation and observation became major tools to make
easier and cheaper the development of safety systems. They
allow a reduction of the number of sensors and hence the
cost is not so impact. Plenty of researches have addressed
longitudinal and lateral PTWV dynamics estimation during
the last years.

Among all the litterature, one can cite [1] and [2] where au-
thors adressed longitudinal dynamic estimation whereas in [3],
[4], [5], [6], [7] and [8] authors designed observers for lateral
dynamics. An important difficulty during the observer’s design

for PTWV is the uncertainty of some parameters like the tire’s
properties (camber stiffness, cornering stiffness, radius of the
wheel, etc.), the mass of fuel, the rider’s properties, etc. The
influence of the rider’s morphology especially the mass, on the
PTWV dynamics is very important and this paper proposed
a novel approach to design a robust observer according to
the rider mass uncertainty. A ratio between a nominal rider’s
weight and the real one is considered and the observer is
synthesized with this ratio as a varying parameter which could
be estimated with the longitudinal equation of PTWV motion.
Finally, the Takagi-Sugeno approach is used to compute the
observer’s gains.

Before developing any active or semi-active safety system,
the need of a mathematical model of the powered two wheeled
vehicles (PWTV) is essential. Many works have addressed
motorcycle modeling and for most of them longitudinal (in-
plane) dynamics and lateral (out-of-plane) dynamics model
are clearly separated. Lateral PWT models have been largely
studied in [9], [10], [11], [12] and many others. In the
next section dealing with the lateral motorcycle modeling,
the model presented in [12] is considered for the observer’s
design. This model is very similar to the one used in the
well-known multi-body simulator BikeSim which represents
the motorcycle as a set of 9 bodies and allows 16 degree of
freedom. Then the model is then linearized around straight
trajectory to facilitate observer’s synthesis. Finally, it allows 4
degrees of freedom (DOF): the yaw, the roll, the steering and
the lateral slip.

This paper is organized as follows. Section 2 presents moti-
vations and states the problem. The model of the motorcycle is
introduced in section 3 whereas in section 4, we recall the main
steps of the design of the observer which is used to illustrate
the proposed approach. Simulation results are discussed in
section 5 and finally concluding remarks will be provided in
section 7.

II. MOTIVATION

When studying motorcycles, the ratio between rider and
vehicle mass cannot be neglected and it highly depends of
the vehicle’s category. Indeed, among the lightest PWTV the
most common are the small scooters weighting around 80 kg
whereas some big cruisers or big touring bikes weight more



than 400 kg. Very few investigations deal with the global
motorcycle market statistics especially about the vehicle’s
features (weight, dimensions, etc). Nevertheless, the small
scooters and the heavy motorcycles are not the most common
PWTV, there are lot of intermediate categories of bikes: sport,
racing, roadster, big scooter, ... Considering all this vehicles
features, let us consider an average motorcycle’s mass around
180 kg. In [13] the author presents an anthropometric study
concerning the morphology of motorcycle’s rider in UK and
highlights the average rider’s profile which weights around 78
kg. Taking into account the rider’s equipment: helmet, gloves,
boots, motorcycle jacket, let us increase the average rider’s
mass to 85 kg which leads to the ratio for a single rider without
passenger Mrider/Mvehicle = 0.47. Unlike motorcycle, the
average mass for all the car sold in EU during 2015 is around
1400 kg [14] and considering the same single driver morphol-
ogy the ratio becomes Mdriver/Mvehicle = 0.06. Moreover,
the most of PWTV are approved for a driver with a passenger
and additional masses (payloads, bags, etc) for a maximum
mass which may be less than the gross vehicle weight rating
(GVWR) specified on the vehicle registration document. By
analogy with motorcycles, it depends on the car’s category but
PFWV are often approved for one driver with 4 passengers
and payloads. This comparison clearly shows the necessity to
consider the different rider morphologies especially for PTWV
purposes.

Previous studies have ever deal with the rider’s weight
uncertainty like in [15] where the author studies the influence
of the rider’s properties on the PTWV stability especially on
the weave mode. In [16] or [17], authors used a common
method to include rider mass uncertainty which is taken into
consideration as an uncertain state matrix and input vector
such as in the state space representation A = Anominal + ∆A
and B = Bnominal + ∆B, with ∆A and ∆B containing
the uncertainties regarding the nominal case. Then, the robust
techniques such as L2-gain are used to minimize the transfer
of the term due to the uncertainties on the estimation errors.
Nevertheless, such a method always leads to a LMI formu-
lation with a parameter to be minimized and sometimes no
solution exists to design a robust observer. The following work
proposes a novel approach to get around the problem of the
insolvable LMIs.

The development of the proposed method is based on our
previous work [4]. In this paper, an observer is synthesized to
estimate the lateral motorcycle dynamics states and the rider’s
action on the handlebar. The observer’s design is derived
from a LPV model depending of the longitudinal velocity
vx. The model is computed since the nominal case which
means for a nominal rider and doesn’t take into account
any uncertainty. Then the convergence study is based on the
Lyapunov theory associated with LMI tools and L2-gain to
guarantee boundlessness of the state estimation error. Notice
that here the L2-gain technic is not used to handle the model’s
uncertainties but in order to guarantee the error convergence
of the augmented system. In [4] the effectiveness of the
proposed nominal observer has been tested for a simulation

scenario with two successive double lane changes (DLC) at
variable speed. In addition, a simple DLC scenario at constant
speed 100 km/h is simulated with the nominal observer and
then with rider weight’s uncertainty in the model. For the
considered scenario the estimation error due to this uncertainty
is acceptable.

However a deeper investigation has shown that for more
complex scenarios with highly variable forward speed, the
proposed observer is not enough robust regarding the rider’s
weight uncertainty. For example, let us consider a road circuit
simulation without any limitation on the forward speed, the
observer is initially derived with the nominal driver weight of
85 kg and then the rider’s weight parameter in the model is
increased of 20 kg to 105 kg. Figure 12 clearly shows the error
introduced by this uncertainty and the necessity to consider
it during the observer’s design. Notice that introducing the
rider’s weight uncertainty in a state matrix and input vector
respectively ∆A and ∆B lead to unsolvable LMIs. That is
why this paper proposed another approach to deal with this
issue.
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III. MOTORCYCLE DYNAMICS

A. Rider mass property and its estimation

This section aims to describe how the rider mass uncertainty
is considered. The lateral motorcycle model which is presented
below is based on a multi-body model of the whole motorcycle
and rider who is considered as a set of two rigid bodies
composed of an upper and a lower bodies. To facilitate the
rider mass consideration during modeling, let us consider
the following assumptions: lower and upper gravity center
positions are considered constant and the mass is equally
distributed between the upper and lower body according to
the initial repartition Mriderupper/Mriderlower

= 1.68 . The
rider weight uncertainty problem is addressed by considering
a weight ratio rw which represents the ratio between nominal
rider weight used to design the nominal model or observer
and the real rider one. rw > 1 and rw < 1 means respectively
that the real rider is heavier or lighter than the nominal one.
This ratio not only affects the rider weight parameter but also



the inertial properties which linearly depends of the body’s
mass. Hence, taking into account the rider’s weight uncertainty
imply of course to change the corresponding rider weights for
the upper body and the lower body by multiplying with the
rider’s weight ratio rw but also to modify the inertia matrix
associated to the two rider’s bodies. Let us remind that each
term Iij i, j = x, y, z of an inertia tensor of a rigid body
depends linearly on the mass. So the upper and lower rider
inertia tensors will be also multiplied by rw.

The obvious way to estimate the rider mass M and to
deduce the ratio rw is to use the longitudinal model of the
motorcycle. Indeed, under some assumptions the mass can
be identified during acceleration at low speed. Longitudinal
model of the motorcycle is described by: Mv̇x = Fxf + Fxr − Fres

iyf ω̇f = −RfFxf + Tf
iyrω̇r = −RrFxr + Tr

(1)

with M the global mass including rider and PTWV masses, v̇x
the longitudinal acceleration, Ri the radius of the wheels, Fxi

the longitudinal tire forces, iyi the wheel inertia, ω̇i the wheel
angular accelerations and Ti the driving or braking torques.
Fres is the resistant forces such as Fres = Frolling(vx) +
Faero(v2x) + Fslope

For low speed model during acceleration (v̇x 6= 0) on
flat road, the longitudinal equation of motion can be sim-
plified according to the following assumptions: there is no
driving/braking torque applied on the front wheel Tf = 0, the
rolling forces Frolling(vx), the aerodynamic forces Faero(v2x)
and the force due to the road slope Fslope are neglected. It
comes :

M =
1

v̇x
(− iyf

rf
ω̇f −

iyr
rr
ω̇r +

1

rr
Tr) (2)

Since the ABS equippes the most part of the new vehicles,
the wheel speed sensors included in the system allow to
measure the angular velocity of the front and rear wheels
respectively ωf and ωr. With the recent differentiation tech-
niques [18] it is easy to obtain a reliable estimation of the time
derivatives of the wheel speed. In addition, the growing market
of low cost sensors and the development of the embedded
electronics gives the opportunity of the motorcycle makers to
equip new vehicles with other kind of sensors like inertial
measurement unit (IMU) or with simple accelerometers (in
both cases, the sensor provides a measure of the longitudi-
nal acceleration ax). Moreover, the democratization of the
injection engines in the motorcycle field enables to know the
driving torque in real time. Indeed, the use of the injection
is based on an engine map giving the outgoing torque on the
driving shaft. With the features of the transmission mechanism
especially the ratio, the driving torque on the rear wheel Tr
is considered known. Hence, the equation (2) allows us to
estimate the rider’s mass Mrider knowing the vehicle mass
Mveh with the equation Mrider = M −Mveh.

B. Lateral Model of motorcycle

The present section is based on our previous works. The
main steps of the model’s derivation are summarized here
but for more detail please refer to [19] and [4]. Lateral
dynamics of the motorcycle involves the roll inclination, the
yaw rotation, and the steering and lateral motions of the bike.
The coupling between the longitudinal and lateral motions is
materialized by considering a variable longitudinal velocity
that appears in the lateral dynamics. The multi-body model
given in [19] is linearized around the straight-running trim
trajectory and includes the rider mass uncertainty as a second
varying parameter, it can be expressed by the following state
space representation:{

˙̃x = Ã(vx, rw)x̃+ B̃(rw)τ

ỹ = C̃x
(3)

where x̃ = [φ, δ, vy, ψ̇, φ̇, δ̇, Fyf , Fyr]T denotes the state
vector and τ is the rider’s torque. Ã(vx, rw) and B̃(rw) are
time-varying state matrices and input vector related to the
forward velocity vx and the driver weight’s ratio rw. To
guarantee observability and observer design conditions the
needed measurements are the yaw rate ψ̇ and roll rate φ̇
(both are given by the central unit); the steering angle δ
and steering rate δ̇ which may be obtained from an optical
encoder. Finally, with the appropriate output matrix C̃ it
comes ỹ = [δ, ψ̇, φ̇, δ̇]T . Note that C̃ is not time-varying. For
more details about the matrices and the vector please refer to
Appendix.

According to the unmeasurability of the rider’s torque τ
and the existence of its first time derivative τ̇ which is always
satisfied because the rider’s torque is naturally bounded and
continuous, the system is augmented as it follows : ẋ =

[
Ã(vx, rw) B̃(rw)

0 0

]
x+

[
0
1

]
τ̇

y = [C̃ 0]x

(4)

with x = [x̃, τ ]T and y = ỹ which respectively denote the
augmented state vector and the vector of the measures. Note
that the system as expressed in (4) is an exact form considering
that τ̇ exists.

For the next sections let us consider the following notations:

A(vx, rw) =

[
Ã(vx, rw) B̃(rw)

0 0

]
, C = [C̃ 0],

F =

[
0
1

]
, f = τ̇ (5)

C. Exact T-S model of the augmented model

In order to express the LPV model (4) in T-S fuzzy structure,
let us consider the non-linearities vx and rw.

By following the well-known sector non-linearity approach
[20], The state equation of (4) can be exactly expressed as
follows:

ẋ =

4∑
i=1

µi (vx, rw)Aix+ Ff (6)



Note that there is two non-linearities that’s why the system
is described with 22 = 4 sub-models. The variables µi(.) are
called membership or weighting functions and must satisfy the
following convex sum property:

4∑
i=1

µi (vx, rw) = 1

0 ≤ µi (vx, rw) ≤ 1
(7)

Let us introduce the functions hi(.) i = 1, .., 4 such as:

{
h1 =

vxmax−vx
vxmax−vxmin

h2 =
vx−vxmin

vxmax−vxmin

and

{
h3 =

rdwmax−rw
rdwmax−rdwmin

h4 =
rw−rdwmin

rdwmax−rdwmin

(8)

Then the µi(.) functions are computed as it follows:{
µ1 = h1.h3
µ2 = h2.h3

and
{
µ3 = h1.h4
µ4 = h2.h4

(9)

Finally, the augmented model (6) expressed in exact TS
form allows to design a Luenberger observer to estimate the
vehicle lateral dynamics and the rider’s torque.

IV. OBSERVER DESIGN

In this section let us remind the main steps of the observer’s
design. Consider the full state-space representation in TS form: ẋ =

4∑
i=1

µi (vx, rw)Aix+ Ff

y = Cx
(10)

For the observer design the two non-linearities vx and rw are
considered measured. The measure of rw have been discussed
in the previous section.

Consider the well-known Luenberger observer in TS form: ˙̂x =
4∑

i=1

µi (vx, rw) (Aix̂+ Li (y − ŷ))

ŷ = Cx̂
(11)

with Li the observer gain matrices which ensure error
convergence. The estimated states and output vector are re-
spectively denoted x̂ and ŷ. Now consider the state estimation
error as follows:

e = x− x̂ (12)

Finally, the dynamic of the error can be expressed as it
follows:

ė =

4∑
i=1

µi (vx, rw)Aie+ Ff

with Ai = Ai − LiC.
Let us consider the Lyapunov function V with the symmet-

ric definite positive matrix X such that:

V = eTXe, X = XT > 0 (13)

whose time derivatives V̇ leads to:

V̇ = eT
4∑

i=1

µi (vx, rw)
(
AT

i X +XAi

)
e +fTFTXe

+ eTXFf (14)

To attenuate the effect of the perturbation f on the estima-
tion error e let us define the L2-gain as the quantity:

sup
‖f‖2 6=0

‖e‖2
‖f‖2

≤ γ2 (15)

with γ a positive scalar and ||.||2 the L2-norm which for a
vector z(t) is given by:

‖z(t)‖2 =

 ∞∫
0

zT (t) z (t) dt

1/2

(16)

The L2-gain leads to the inequality:

eT e− γ2fT f < 0 (17)

Considering V̇ < 0 it follows:

V̇ + eT e− γ2fT f < 0 (18)

By exploiting the expression of V̇ , inequality (18) can be
expressed in matrix form as follows:[

e
f

]T [
Θ XF

FTX −γ2

] [
e
f

]
< 0 (19)

with Θ =
4∑

i=1

µi (vx, rw)
(
AT

i X +XAi

)
+ I

Let us consider the following change of variables L̄i =
XLi, Ai = Ai + LiC and γ̄ = γ2. Since the weighting
functions satisfy the convex sum property, sufficient conditions
ensuring the convergence of estimation error are obtained as
follows:[

AT
i X +XAi − L̄iC − CT L̄T

i + I XF
FTX −γ̄

]
< 0, i = 1, ..., 4

(20)
Finally, given a scalar γ, if there exists a symmetric and

positive definite matrix X and matrices L̄i, i = 1, ..., r such
that the LMI (20) is satisfied, then the error is stable and the
transfer from the perturbation f to the estimation error e is
bounded by γ. Note that the observer gain matrix L is obtained
by:

L =

4∑
i=1

µi(vx, rw)X−1L̄i (21)

In practice to get better performances of the observer it is
possible to transform the previous LMI (20) in an optimization
problem by considering γ as a variable parameter of optimiza-
tion.

V. SIMULATION RESULTS
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Fig. 2. Simulation scenario



This section aims to show the ability of the proposed
solution to robustly estimate the lateral motorcycle dynamics
states according to the rider’s mass variations. The simulation
is performed on a complete riding scenario without any
restriction especially on the forward speed and the trajectory.
A first simulation is performed with a nominal rider weighting
85 kg leading to a ratio rw = 1 and two others with a lighter
and a heavier rider respectively weighting 65 kg and 105 kg
(more or less 20 kg around the nominal case) and leading
respectively to rw = 0.76 and rw = 1.24. The two non-
nominal riders aims to represent the morphology inequalities
among the motorcycle’s users.
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Fig. 3. Measured states

The performed scenario is exactly the same for the three
simulations and directly comes from the well-known simulator
BikeSim. This simulator allows to record the rider’s torque
applied on the handlebar and the forward speed along the
circuit which are the input of our model. For the sake of clarity
the figure 2 introduced only the rider’s torque and the velocity
for the nominal rider and then the results compare the different
cases.
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Fig. 4. State’s estimation with the nominal observer
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(d) Rear lateral tire force estima-
tion error for light (cyan), nominal
(blue) and heavy (magenta) rider
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Fig. 4. State’s estimation with the nominal observer

Figure 3 shows the measured states along the track for the
three different riders. Note that the same colors are adopted
for the next graphics: cyan, blue and magenta respectively
represent the light, the nominal and the heavy rider. As
discussed previously, an IMU allows us to measure the roll and
yaw rate whereas an optical encoder installed on the steering
column gives a measure of the steering angle and rate.

Figure 4 represents the estimation’s error with the nominal
observer designed with rw = 1 and the different riders. It is
clear that the rider mass uncertainty leads to important error
without any consideration during the observer design. Please
note that the error is only bounded with ISS property that is
why even with the nominal observer and the nominal rider the
state estimation is non-zero.

Figure 5 illustrates the ability of the proposed method
to robustly estimate the dynamics states with rider mass
uncertainty. Compared to figure 4 where the estimation error
is sometimes more than 60% for the rider’s torque with the
proposed approach the estimation error is inferior to 5% for
all the states.
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Fig. 5. State’s estimation with the proposed observer
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Fig. 5. State’s estimation with the proposed observer

VI. CONCLUSION

The present work clearly shows the necessity of the rider’s
mass consideration during observer design and more generally
during the development of advanced rider assistance systems
(ARAS) for PTWV. The proposed solution uses a novel
approach using the well-known sector non-linearity technic
regarding the rider’s weight uncertainty. Then the method is
explained during the design of an observer for lateral dynamics
and rider’s action estimation. The considered observer have
been already introduced in [4] for a nominal case and the
main steps of the synthesis are remind. Finally, a complete
circuit simulation without any restriction on the motorcycle
dynamics demonstrates the ability of the proposed approach
to robustly estimate the lateral dynamics states and the rider’s
torque with different rider’s weight.

VII. APPENDIX

Variables, matrices and notations
ẋ, ẍ time derivatives of the variable x
x̂ estimate of a variable x
xT transpose of vector or matrix x
xf , xr denotes front and rear
vx, vy longitudinal and lateral vehicle speeds
ωf , ωr angular wheel speeds
φ, ψ, δ roll, yaw and steer angles
τ rider’s torque
M global mass (rider and vehicle)
rw rider’s weight ratio
Fxf , Fxr longitudinal tire forces
Fyf , Fyr lateral tire forces
Ã, A state matrices
B̃, B input vectors
C observation matrix
F perturbation matrix
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