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Abstract—This paper presents a new robust estimation of
the lateral velocity and yaw rate using switched Takagi-Sugeno
fuzzy interval observers. The longitudinal velocity is treated as
the online measured time-varying parameter and the cornering
stiffness at front and rear tires are assumed to be unknown but
bounded with a priori known bounds. Based on a multiple model
switching structure, this design divides the range of variation of
the longitudinal velocity into a finite number of adjoint regions
and, accordingly, develops multiple interval observers for the
multiple model set. The switching law which is assumed to be
available online selects automatically the appropriate candidate
estimator, according to the operation sub-region. Applying the
proposed set-approach to estimate the lateral vehicle dynamics
allows to cope with uncertainties and ensures guaranteed bounds
on the lateral velocity and yaw rate despite changes in tire/road
and driving conditions. Sufficient conditions for the existence of
the robust proposed observer are expressed in terms of Linear
Matrix Inequalities through the use of a switched fuzzy ISS-
Lyapunov function. Simulations based on experimental data
demonstrate the effectivenesses of the proposed approach.

I. INTRODUCTION

Advanced vehicle stability control and active safety systems

require an accurate knowledge of vehicle state variables.

However, there are variables related to vehicle dynamics that

are not measurable in an ordinary car for both technical and

economic reasons. As a consequence, dynamic variables must

be estimated.

In the literature, several studies have addressed the design of

classic observers to estimate the vehicle lateral dynamic states

using different approaches. For example, Luenberger observer

[7], unknown input proportional-integral observer [8], sliding

mode observer [9], Kalman Filter and Extended Kalman filter

[10]. Most of these studies have been based on the assumptions

that the tires are operating in the linear region and the corner-

ing stiffness parameters are constant. The resulting observers

only function correctly when the vehicle is operating in the

linear region of lateral forces. The vehicle lateral dynamics

models often used in the literature rely on a two degree of

freedom linear model (or bicycle model, see [1] for details).

However, such a simple model becomes inadequate when the

longitudinal velocity and cornering stiffness are allowed to

vary rapidly because of changes in tire/road conditions or

driving maneuvers. Thus, a particular attention has been drawn

to the Linear Parameter Varying (LPV) modeling approach,

mainly due to the linear model structure in the states and the

non linear behavior in the parameters. In this paper the model

for observer design is constructed using a linear parameter

varying (LPV) structure, in which longitudinal velocity and

cornering stiffness varying variables are selected as scheduling

parameters. However, when the system has a large range of

parameters variation, a single LPV estimator often leads to

conservative performance and the problem of finding the ob-

server gains may becomes infeasible. To solve this infeasibility

issue, one approach is to use the switched observer. In this

approach, the parameters domain is splitted into subregions

and one local observer is designed for each subsystem. The

vehicle lateral dynamics is then described by a switched LPV

model with measurable and unmeasurable premise variables

[11].

As a matter of fact, the estimation under measurable premise

variables is easy to address than the one with unmeasurable

premises. The main particularity of this work is that the

front and rear cornering stiffness treated as the unmeasurable

premise variables are assumed to be bounded with a priori

known bounds. Therefore, a Switched Takagi-Sugeno structure

[17] is derived using the switched LPV system with parameters

depending only on measured signals whereas the unmeasured

one is treated as bounded uncertainties. Thereafter, an interval

observer is designed to estimate upper and lower bounds of the

state vector under consideration of suitable intervals in which

the true but unknown cornering stiffness parameters values are

definitely included.

It is recalled that, the interval observer is a pair of estimators

whose dynamics are defined such that their trajectories charac-

terize at any given instant upper and lower bounds of the state

values. They are appeared in the last decade as an alternative

approach for robust estimation and they were originally devel-

oped in [5] for the estimation of biological systems subject to

unknown uncertainties. These observers require, in addition

to stability, the cooperativity and positivity of observation

error [12]. There are various approaches to design interval

observers for continuous times systems satisfying properties of

monotone differential systems. See for instance [13] and [16],

where interval observers for linear uncertain systems have

been presented. The necessary and sufficient conditions have

been formulated in terms of linear programming approach.

In [15], the interval observers for LPV systems based on

Lyapunov theory and linear matrix inequalities (LMIs) have

been designed.

In this work, the sufficient conditions for proving the stability

and cooperativity of the interval observer error are provided

in terms of single parameter minimization problem subject



to LMI constraints obtained using combination of switched

fuzzy Lyapunov function with Input to State Stability concept

[18]. A bound on the interval error is guaranteed and opti-

mized for more estimation precision. The proposed method

is experimentally tested using real data. The experimental

results confirm the accuracy and robustness of the interval

estimator. Furthermore, to the best of the authors knowledge,

the T-S fuzzy interval observer for switched LPV systems

with both measured and unmeasured time-varying parameters

has never been studied in the literature. This paper constitutes

perhaps the first literature investigating switched fuzzy interval

observers for such systems.

The paper is organized as follows: In section 2, some pre-

liminary definitions and lemmas are presented. The main

theorems on existing of the interval observer and stability of

the interval error based on switched fuzzy Lyapunov function

are presented in section 3. In section 4, experimental results

are given to present the superiority and the effectiveness of

the proposed approach. Finally, some conclusions are drawn

in the last section.

II. PRELIMINARIES

The objective of this section is to provide some notations,

basic definitions and lemmas that are used throughout the

paper.

We will adopt the convention of denoting a left and right

endpoints of an interval [x] respectively by x− and x+ such

as [x] = [x−, x+]. For any two vectors x1, x2 or matrices

A1, A2 the inequalities x1 ≤ x2, x1 ≥ x2, A1 ≤ A2 and

A1 ≥ A2 must be interpreted element-wise. aîĵ denotes the

element on the îth line and ĵth column of the matrix A. A > 0
(resp. A < 0) denotes a matrix with positive (resp. negative)

components and A ≻ 0 (resp. A ≺ 0) means that the matrix

is positive (resp. negative) definite. AT means the transpose

of matrix A and λ(A) denote the eigenvalues of the matrix A.

R (R+) is the set of all real (positive) numbers. Rn (Rn
+) is

n-dimensional real (positive) vector space. We denote by In
an identity matrix of dimension n×n. The absolute value and

euclidean norm of a vector x ∈ R
n is denoted respectively by

|x| and ‖x‖.

Definition 1. K is a class consisting of all functions α :
R+ → R+ which are continuous, strictly increasing, and

satisfy α(0) = 0.

Definition 2. K∞ is a class of functions of class K and

α(s) → +∞ as s → +∞.

Definition 3. A real matrix A is called Hurwitz if all its

eigenvalues have strictly negative real part (Re(λ) < 0).

Definition 4. A real matrix A is called Metzler if all its ele-

ments outside the main diagonal are positive (aîĵ ≥ 0, ∀î 6=

ĵ).

Definition 5. A continuous-time linear system is cooperative

if its state matrix A is a Metzler matrix.

Lemma 1. [13] A matrix A is Metzler if and only if there

exists ǫ ∈ R+ such that A+ ǫIn ≥ 0.

Lemma 2. [5] For a Metzler matrix A, the cooperative system:

ẋ(t) = Ax(t) + δ(t) (1)

with x ∈ R
n is said to be positive, i.e. x(t) ≥ 0, ∀t ≥ 0 if

and only if x(0) ≥ 0 and δ(t) ≥ 0.

III. VEHICLE LATERAL DYNAMICS AND FUZZY MODELING

In this section the fundamental aspects of vehicle lateral

dynamics are briefly reviewed. Then, the adequate scheduling

parameters are selected in order to describe the associated T-S

fuzzy model. The system using for the estimation method is

based on a bicycle vehicle model, which describes the lateral

and yaw motions of a 2-axle, 1-rigid body ground vehicle [1].

Dynamic equations can be represented as follows:
{

mv̇y +mvxr = Fyf + Fyr

Iz ṙ = lfFyf − lrFyr
(2)

where m, Iz , lr, lf , vy , vx, Fyf and Fyr denote respectively

the mass of the vehicle, the yaw moment, the distances from

the rear and the front axle to the center of gravity, lateral and

longitudinal velocities, front and rear lateral forces. The lateral

forces Fyf and Fyr are highly nonlinear and usually functions

of the wheel sideslip angle and wheel longitudinal slip ([3],

[2]). In this paper, lateral forces are taken to be linear and

expressed as follows:
{

Fyf = cf (δf −
vy
vx

−
lf
vx
r)

Fyr = cr(−
vy

vx
+ lr

vx
r)

(3)

where cf and cr represent the front and rear cornering stiffness

parameters while δf represents the front steering angle. Note

that the stiffness parameters cf and cr are not measurable and

vary according to the road adhesion. To take into account these

variations, we assume that these coefficients vary as follows:

cf = cf0 + ∆cf and cr = cr0 + ∆cr, where cf0 and cr0
represents nominal values which assumed to be known a priori.

In the proposed model, it is assumed that the available mea-

surements are yaw rate r, longitudinal velocity vx and front

steering angle δf . Gathering equations (2) and (3) leads to the

following LPV model:

[

v̇y
ṙ

]

=

[

−
cf+cr
mvx

crlr−cf lf
mvx

− vx
crlr−cf lf

Izvx
−

crl
2
r+cf l

2
f

Izvx

]

[

vy
r

]

+

[ cf
m

cf lf
Iz

]

δf (4)

where the longitudinal velocity vx and the cornering stiffness

are treated respectively as the measurable and unmeasurable

scheduling parameters.

The system (4) can be also written in a typical form of LPV

state-space model
{

ẋ(t) = A(ρ(t), ξ(t))x(t) +B(ξ(t))u(t)
y(t) = Cx(t)

(5)

where x(t) =
[

vy r
]T

is the state vector, ρ(t) =
[

1
vx

vx
]T

and ξ(t) =
[

cr cf
]T

represents respectively the measurable

and unmeasurable scheduling parameters. The output y(t) is

the measurement of the yaw rate and the input signal u(t)
is the steering angle. We denote Aρ,ξ and Bξ as a shorthand



of matrices A(ρ(t), ξ(t)) and B(ξ(t)). It is assumed that the

vector ρ(t) evolves continuously and its range is limited to

a compact subset ∇ ∈ R
2. The unmeasurable parameter ξ(t)

is assumed to belong to some a priori known compact set

Ξ ∈ R
2.

As previously mentioned, the vehicle lateral dynamics has

relatively large uncertainties because of the parameters values

cf and cr and their variations over time. The main idea

consists to manage aforementioned uncertainties using interval

methods employing the subset Ξ assumed to be known a priori.

Moreover, with regards to the measurable parameter ρ(t), the

choice of a single Lyapunov function over the entire parameter

set is challenging to find the desired requirements specially

when the set ∇ is relatively large. The purpose of this paper

is to use multiple LPV models, to divide the large uncertainty

into smaller uncertainties and analyze the performance of LPV

uncertain model over different parameter range.

Let ∇i, i ∈ {1, . . . , N} be a partition of the parameter set ∇
i.e. ∇ is the union of N sub-regions ∇1, ∇2 . . .∇N . Corre-

spondingly, a switching law σ(t) : R+ → I = {1, 2, ..., N}
is employed to select the active subsystem according to the

online measurement of the parameter ρ(t). Then, a switched

linear parameter-varying model for the vehicle lateral dynam-

ics is derived and given as follows:
{

ẋ(t) = Aσ(t)(ρ(t), ξ(t))x(t) +B(ξ(t))u(t)
y(t) = Cx(t)

(6)

where Aσ(t),ρ,ξ ∈ {A1,ρ,ξ, A2,ρ,ξ, ..., AN,ρ,ξ} with Aσ(t),ρ,ξ is

a shorthand of Aσ(t)(ρ(t), ξ(t)). In order to take into account

the variation of the longitudinal velocity, we use the Takagi-

Sugeno multi-model approach and the switched TS model

corresponding to the system (6) is described by


















ẋ(t) =
4
∑

j=1

h
j

σ(t)(ρ(t))A
j

σ(t)(ρ(t), ξ(t))x(t)+

B(ξ(t))u(t)
y(t) = Cx(t)

(7)

The functions h
j

σ(t)(ρ(t)) are the switched weighting functions

depending on the measurable variable ρ(t). These functions

satisfy the convex sum property:

4
∑

j=1

h
j

σ(t)(ρ(t)) = 1, 0 ≤ h
j

σ(t)(ρ(t)) ≤ 1 (8)

Let ρ(t) ∈ ∇σ(t), ρ1
σ(t) = 1

vx
and ρ2

σ(t) = vx. Employing

the sector nonlinearity approach [4], a switched T-S model

is obtained with N subsystems and 4 sub models for each

subsystem. Under the assumptions

ρ1min
σ(t) ≤ ρ1

σ(t)(t) ≤ ρ1max
σ(t)

ρ2min
σ(t) ≤ ρ2

σ(t)(t) ≤ ρ2max
σ(t)

(9)

the weighting functions h
j

σ(t)(ρ(t)) can be given by:

h1
σ(t)(t) = F 10

σ(t)F
20
σ(t), h2

σ(t)(t) = F 10
σ(t)F

21
σ(t)

h3
σ(t)(t) = F 11

σ(t)F
20
σ(t), h4

σ(t)(t) = F 11
σ(t)F

21
σ(t)

(10)

with

F 10
σ(t) =

ρ1
σ(t)(t)−ρ1min

σ(t)

ρ1max
σ(t)

−ρ1min
σ(t)

, F 11
σ(t) =

ρ1max
σ(t) −ρ1

σ(t)(t)

ρ1max
σ(t)

−ρ1min
σ(t)

F 20
σ(t) =

ρ2
σ(t)(t)−ρ2min

σ(t)

ρ2max
σ(t)

−ρ2min
σ(t)

, F 21
σ(t) =

ρ2max
σ(t) −ρ2

σ(t)(t)

ρ2max
σ(t)

−ρ2min
σ(t)

(11)

Due to the space limitation, the matrices of the T-S model are

omitted.

Using the proposed switched Takagi-Sugeno fuzzy model (7)

for interval observer synthesis will enhance estimation and

maintain more accurate and consistent performance even under

a large model uncertainties.

IV. SWITCHED INTERVAL OBSERVER DESIGN

This section is devoted to interval observer design for

the switched TS model (7). The following assumptions are

required for the design of the switched interval observer.

Assumption 1. There exist known functions u−(t), u+(t) ∈
R

m such that

u−(t) ≤ u(t) ≤ u+(t), ∀t ≥ t0 (12)

Assumption 2. There exist known constants matrices A
j+
i ,

A
j−
i , B+

i , B−

i ∀i ∈ I, ∀j ∈ {1, 2, 3, 4}, ∀ρ(t) ∈ ∇i and

∀ξ(t) ∈ Ξ =
[

[c−r , c
+
r ] [c−f , c

+
f ]
]T

such that:

A
j−
i ≤ Ai(ρ(t), ξ(t)) ≤ A

j+
i

B− ≤ B(ξ(t)) ≤ B+

The matrices A
j−
i , A

j+
i , B+ and B− can be directly calculated

using the known subset Ξ.

Remark 1. To reduce conservatism and enhance the estimation

accuracy, we propose to introduce the time varying matrices

Aiρ,ξ in the observer structure. But since the vector ξ(t) is

not measurable, we will only use the nominal value ξ0 that is

assumed to be known a priori.

Theorem 1. Assuming that the trajectory of system (7) is

bounded

‖x‖ ≤ X , ∀t ≥ t0 (13)

Then, for all initial conditions x0 such that x−

0 ≤ x0 ≤ x+
0 ,

there exists a convergent switched interval observer of the TS

model (7) of the form:










































ẋ+(t) =
4
∑

j=1

h
j

σ(t)(ρ(t))(A
j+
σ(t)x

+(t) + L
j

σ(t)(y − Cx+(t))

+B+u+(t) + (Aj+
σ(t) −Aσ(t),ρ,ξ0)(|x

+(t)| − x+(t)))

ẋ−(t) =
4
∑

j=1

h
j

σ(t)(ρ(t))(A
j+
σ(t)x

−(t) + L
j

σ(t)(y − Cx−(t))

+B−u−(t)− (Aj+
σ(t) −Aσ(t),ρ,ξ0)(|x

−(t)|+ x−(t)))
(14)

if the matrix

4
∑

j=1

h
j

σ(t)(ρ(t))(A
j−

σ(t) − L
j

σ(t)C) is Metzler

and the matrix

4
∑

j=1

h
j

σ(t)(ρ(t))(A
j+
σ(t) − L

j

σ(t)C) is Hurwitz

∀ρ(t) ∈ ∇σ(t) and ∀ξ(t) ∈ Ξ.



Proof. The upper and lower estimation error dynamics

can be expressed as follows:

ė+(t) = ẋ+(t)− ẋ(t)

=
4
∑

j=1

h
j

σ(t)(ρ(t))((Aσ(t),ρ,ξ0 − L
j

σ(t)C)e+(t) + (B+u+(t)−

Bu(t)) + (Aj+
σ(t) −Aσ(t),ρ,ξ0)|x

+|)

ė−(t) = ẋ(t)− ẋ−(t)

=
4
∑

j=1

h
j

σ(t)(ρ(t))((Aσ(t),ρ,ξ0 − L
j

σ(t)C)e−(t) + (Bu(t)−

B−u(t)−) + (Aj+
σ(t) −Aσ(t),ρ,ξ0)|x

−|)

It’s clear that if

4
∑

j=1

h
j

σ(t)(ρ(t))(A
j−

σ(t) − L
j

σ(t)C) is Metzler

then

4
∑

j=1

h
j

σ(t)(ρ(t))((Aσ(t),ρ,ξ0 − L
j

σ(t)C) is also Metzler for

any Aσ(t),ρ,ξ0 in the interval:

A
j−
i ≤ Ai,ρ,ξ0 ≤ A

j+
i ∀i ∈ I, ∀j ∈ {1, 2, 3, 4}

then, it suffices to show the positivity of the following terms:

δ+
σ(t)(t) =

4
∑

j=1

h
j

σ(t)(ρ(t))((B
+u+(t)−Bu(t))+

(Aj+
σ(t) −Aσ(t),ρ,ξ0)|x

+|)

δ−
σ(t)(t) =

4
∑

j=1

h
j

σ(t)(ρ(t))((Bu(t)−B−u(t)−)+

(Aj+
σ(t) −Aσ(t),ρ,ξ0)|x

−|)

Since |x−(t)| ≥ 0, |x+(t)| ≥ 0, and (Aj+
σ(t) − Aσ(t),ρ,ξ0) ≥ 0

∀σ(t), ∀j, then, according to property (8), assumptions 1 and

2, it can be concluded that δ+
σ(t)(t) ≥ 0 and δ−

σ(t)(t) ≥ 0.
Finally, using Lemma 2, the upper and lower erros are positive

and thus ensuring that x(t) is bounded by x−(t) and x+(t).
To study the stability of the proposed switched observer, we

compute the dynamics of the total error e(t) = x+(t)−x−(t):

ė(t) =
4
∑

j=1

h
j

σ(t)(ρ(t))((A
j+
σ(t) − L

j

σ(t)C)e(t) + (B+u+(t)−

B−u−(t)) + (Aj+
σ(t) −A

j−

σ(t))(|x
+| − |x−|))

then

ė(t) =
4
∑

j=1

h
j

σ(t)(ρ(t))
(

(Aj+
σ(t) − L

j

σ(t)C)e(t) + δ
j

σ(t)(t)
)

(15)

with

δ
j

σ(t)(t) = (B+u+(t)−B−u−(t)) + (Aj+
σ(t) −A

j−

σ(t))

(|x+| − |x−|)
(16)

Since the matrix

4
∑

j=1

h
j

σ(t)(ρ(t))((A
j+
σ(t) −L

j

σ(t)C) is Hurwitz,

we conclude that the interval error is stable but bounded due

to the presence of the additive term δ
j

σ(t)(t). �

According to previous result, the switched interval observer

design reduces to the computation of the gain matrices L
j

σ(t),

j ∈ {1, . . . , 4}, ensuring,

4
∑

j=1

h
j

σ(t)(ρ(t))(A
j−

σ(t) − L
j

σ(t)C) to

be Metzler and

4
∑

j=1

h
j

σ(t)(ρ(t))(A
j+
σ(t)−L

j

σ(t)C) to be Hurwitz.

Furthermore, regarding to the fact that the total error e(t) is

affected by the additive term δ
j

σ(t)(t) and in the order to obtain

more accurate result and tight interval error, an ISS property

from the disturbance δσ(t)(t) to the observer error e(t) is

guaranteed under arbitrary switching signal. The next theorem

gives sufficient conditions to guarantee the ISS stability and

cooperativity of the proposed interval observer by using the

switched fuzzy Lyapunov function of the form:

V (e(t)) =
4
∑

j=1

h
j

σ(t)(ρ(t))e
T (t)P j

σ(t)e(t) (17)

Definition 6. The Lyapunov function V (e(t)) : Rn → R is

said to be a switched fuzzy ISS-Lyapunov function for (15) if

there exist a K∞-functions ε1, ε2 and ε and a K-function γ

such that

ε1(‖e(t)‖) ≤ V (e(t)) ≤ ε2(‖e(t)‖) (18)

V̇ (e(t)) < −εV (e(t)) + γ(‖δσ(t)‖) (19)

By defining the following indicator function

λ(t) =
[

λ1(t), λ2(t), . . . , λN (t)
]T

(20)

(17) can be written as

V (e(t)) =
N
∑

i=1

4
∑

j=1

λi(t)h
j
i (ρ(t))e

T (t)P j
i e(t) (21)

with

λi(t) ≥ 0, ∀i ∈ I,
N
∑

i=1

λi(t) = 1,
N
∑

i=1

λ̇i(t) = 0 (22)

Remark 2. The indicator function λi(t) is defined as follows

λi(t) =

{

1 when the ith switched system is active

0 otherwise
(23)

Thus, the switched systems (15) with respect to switching

law σ(t) can be described as polytopic systems with the

particularity that the active dynamical matrices are those

corresponding to the vertices of the polytope. Moreover,

the functions h
j
i (ρ(t)) take values in the interval [0, 1], i.e.

dynamical matrices vary within the polytope defined by its

vertices.

The conditions are based on the assumption that an upper



bound to the time derivative of the membership functions is

known. In addition, from the properties given in (8), we have

N
∑

i=1

4
∑

k=1

λi(t)ḣ
k
i (ρ(t)) = 0 (24)

Theorem 2. Assuming that

N
∑

i=1

λi(t)|ḣ
k
i (ρ(t))| ≤

N
∑

i=1

λi(t)φ
k
i (25)

where φk
i ≥ 0 (k = 1, .., 4) are given scalars, if there exist,

diagonal positive definite matrices P
j
i , matrices W

j
i and Mi,

∀i ∈ I, j = {1, . . . , 4}, k = {1, . . . , 4}, γ > 0 for given

positive scalars ε and ǫ such that the following conditions

hold

min
P

j
i
,Mi,W

j
i

γ

P
j
i ≻ 0 (26)

P k
i +Mi ≻ 0 (27)







Λj
i + εP

j
i +

4
∑

k=1

(φk
i P

k
i +Mi) P

j
i

P
j
i −γIn






≺ 0 (28)

P
j
i A

j−
i −W

j
i C + ǫP

j
i ≥ 0 (29)

where

Λj
i = A

j+
i

T
P

j
i − CTW

j
i

T
+ P

j
i A

j+
i −W

j
i C (30)

Then the proposed observer can estimate the lower and upper

bounds of the state vector x(t) for any switching signal, where

L
j
i = P

j
i

−1
W

j
i .

Proof. Let us consider the switched fuzzy Lyapunov function

(18), its derivative with respect to t is given as follows

V̇ (e(t)) =
N
∑

i=1

4
∑

j=1

λi(t)h
j
i (ρ(t))

(

4
∑

k=1

ḣ
ρ
i (ρ(t))e

T (t)P k
i e(t)+

ėT (t)P j
i e(t) + eT (t)P j

i ė(t)
)

(31)

If (27) holds, then from (25) it follows that

N
∑

i=1

4
∑

k=1

λi(t)ḣ
k
i (ρ(t))(P

k
i +Mi) ≤

N
∑

i=1

λi(t)φ
k
i (P

k
i +Mi)

(32)

Also, according to (25),

N
∑

i=1

4
∑

k=1

λi(t)ḣ
k
σ(t)(ρ(t))Mi = 0 is

satisfied. Thus, one can prove that

V̇ (e(t)) <
N
∑

i=1

4
∑

j=1

λi(t)h
j
i (ρ(t))

(

4
∑

k=1

(φk
i P

k
i +Mi) + eT (t)

(

(Aj+
i − L

j
iC)TP j

i + P
j
i (A

j+
i − L

j
iC))

)

e(t)+

δ
j
i

T
(t)P j

i e(t) + eT (t)P j
i δ

j
i (t)

)

(33)

By adding and subtracting the terms

ε

N
∑

i=1

4
∑

j=1

λi(t)h
j
i (ρ(t)) e

T (t)P j
i e(t) and −γ

N
∑

i=1

4
∑

j=1

λi(t)

h
j
i (ρ(t))δ

j
i

T
(t)δji (t), (33) becomes

V̇ (e(t)) <
N
∑

i=1

4
∑

j=1

λi(t)h
j
i (ρ(t))

(

[

eT (t) δTi (t)
]T

Θj
i

[

e(t) δi(t)
]T
)

− εV (e(t)) + γ

N
∑

i=1

4
∑

j=1

λi(t)

h
j
i (ρ(t))δ

j
i

T
(t)δji (t)

(34)

where Θj
i =







Λj
i + εP

j
i +

4
∑

k=1

(φk
i P

k
i +Mi) P

j
i

P
j
i −γIn







with L
j
i = P

j
i

−1
W

j
i and Λj

i is given in (30). Then, satisfying

(28) leads to

V̇i(e(t)) < −εVi(e(t)) + γ

N
∑

i=1

4
∑

j=1

λi(t)h
j
i (ρ(t))δ

j
i

T
(t)δji (t)

(35)

Let ∆(t) =
N
∑

i=1

4
∑

j=1

λi(t)h
j
i (ρ(t))δ

j
i

T
(t)δji (t), integrating the

differential equality (22) over the interval [tk̄, tk̄+1), we obtain

that

V (e(tk̄+1)) < µV (e(tk̄)) + γ

∫ tk̄+1

tk̄

e−ε(τ−s)‖∆(s)‖22 ds

(36)

where τ = tk̄+1 − tk̄ and µ = e−ετ . Defining ∆max as the

upper bound of the additive term ∆(t), it follows that

V (e(tk̄+1)) < µV (e(tk̄)) + γ∆2
max (37)

Knowing that τ > 0, then it is straightforward to conclude

that ∀ε ≥ 0, µ ∈ [0, 1]. Thus, the switched fuzzy Lyapunov

function is strictly decreasing when ∆(t) = 0 and bounded

by γ∆2
max when ∆(t) 6= 0. Note that in the switching instant

t = tk̄+1 the decrease of the Lyapunov function is constrained

by the ISS bound in (38) which must be minimized by

choosing the smallest scalar γ.

On the other side, according to lemma 1,
4
∑

j=1

h
j

σ(t)(ρ(t))(A
j−

σ(t) − L
j

σ(t)C) is Metzler if

N
∑

i=1

4
∑

j=1

λi(t)h
j
i (ρ(t))(A

j−
i − L

j
iC) + ǫIn) ≥ 0 (38)

multiplying in the left side by P
j
i and using the properties (8)

and (22) together with the change of coordinates W
j
i = P

j
i L

j
i ,

then (29) is obtained and the proof is complete. �

V. EXPERIMENTAL RESULTS

In this section, the switched fuzzy interval observers are

applied to experimental data acquired using a prototype ve-

hicle. Several sensors are implemented on the vehicle: The



yaw rate r is measured using an inertial unit, the steering

angle δf is measured by an absolute optical encoder while

an odometer provides the vehicle longitudinal speed. Finally,

a high precision Correvit sensor provides a measure of the

sideslip angle. This measure is not used for observer design. It

serves only for estimation evaluation. The steering angle and

the vehicle longitudinal speed profiles are shown in figures

2 and 3. One can see that the speed should be treated as a

time-varying parameter. For our purpose, we assume that the

cornering stiffness parameters are affected by 10% uncertainty

in their nominal value.

As mentioned above, the switching law σ(t) depends on the

varying parameter vx which is accessible in real time, such

that:

σ(t) =







1 if 0 < vx ≤ 6m.s−1

2 if 6m.s−1 < vx ≤ 11m.s−1

3 if 11m.s−1 < vx ≤ 16.6m.s−1
(39)

The numerical simulation was carried out by using Matlab

YALMIP toolbox. The numerical results corresponding to

a stability margin ε = 5, ǫ = 1 and φ
j
i = 80 ∀i ∈

I, ∀j ∈ {1, . . . , 4}. The results for the switched interval

observer are shown in figure 2. As shown, the inclusion

property x−(t) ≤ x(t) ≤ x+(t) is verified. The variation

of the estimated envelopes follows the variation of the real

state vector ensuring a tighter bounds, which depends on the

range of the uncertainties and the calculated ISS gain γ. The

simulation proves clearly the effectiveness of such observer

to estimate guaranteed bounds in the presence of uncertain

parameters.

Fig. 1. a) Steering angle δf - (b) Longitudinal velocity vx.

Fig. 2. Interval observer for lateral velocity (a) and yaw rate (b).

VI. CONCLUSION

In this work, we provided a new methodology for robust

estimation of vehicle lateral dynamics. The approach is based

on switched T-S fuzzy modeling invoking the input to state

stability concept and switched fuzzy Lyapunov function. First,

the LPV model of the system is transformed to a switched

LPV system in order to cope with large uncertainties. After-

ward, a switched T-S fuzzy representation with measurable

premise variable and uncertain but bounded parameters is

presented. Secondly, an interval observer for this type of

systems is proposed. The stability and cooperativity conditions

are formalized in terms of linear matrix inequality (LMI)

constraints. Simulations with experimental data demonstrate

the effectiveness of the proposed algorithm.
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