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Abstract—The flatness-based approach is presented in this
paper in order to estimate the motorcycle lateral dynamics such
as the roll angle, the lateral tire forces or the steering torque
from basic measurements. The model of the motorcycle associated
with the flatness theory are used to express the unknown states
and input in terms of nonlinear functions depending only on
the measures and their time derivatives up to a given finite
order. These time derivatives are estimated via a non-asymptotic
differentiator. Finally, the ability of the proposed observer to
estimate the motorcycle dynamics is illustrated through two
simulation scenarios performed with the well-known motorcycle
simulator ”BikeSim”.

I. INTRODUCTION AND MOTIVATIONS

For many years ago active and semi-active safety systems
widely equipped four-wheeled vehicles but motorcycles do not
follow the same dynamic of safety systems growing due to
the complexity and the instability of this type of vehicles.
Nevertheless, such systems have been recently developed for
powered two-wheeled vehicles (PTW), one can cite: the anti-
lock braking system (ABS), the electronic stability control
(ESC), the traction control system (TCS) [1] or the motorcycle
stability control (MSC) [2] developed by Bosch. Obviously
these kind of systems are based on a mathematical model
of the vehicle. Their efficiency depends primarily on the
faithfulness and the reliability of the model describing the
motion and the instantaneous evolution of the dynamics states.

For safety applications, the control of the motorcycle mo-
tions requires a truthful assessment of its dynamic states and
unknown inputs. These quantities help in the detection and the
avoidance of critic situations like a sliding when cornering or
braking. Several previous investigations about motorcycle rider
fatalities have shown a large part of accidents involving PWT
riders without any road user occurs in turn. Hence nowadays
develop safety systems for lateral motorcycle riding scenario
is a real challenge and the present work aims to contribute
to the development of such systems. All the recent literature
about lateral motorcycle modeling and observation shows the
high degree of interest for this topic.

During the last years lot of works have addressed mo-
torcycle modeling and for most of them longitudinal (in-
plane) dynamics and lateral (out-of-plane) dynamics model
are clearly separated. Lateral PWT models have been largely
studied in [3], [4], [5], [6] and many others. In the presented
approach the Sharp’s 71 lateral model [3] has been considered
because of its compromise between simplicity and ability to

catch the lateral dynamics. Moreover even if this model aims to
simulate the lateral dynamics it takes into account the variation
of the forward speed vx. With the Sharp’s 71 model lateral
PWT motion is described with 6 dynamics states: the roll
angle, the steering angle, the yaw rate, the roll rate, the steering
rate and the lateral velocity. The dynamics of the front and rear
tires are included by taking into account the tire’s relaxation.
Hence it allows 4 degrees of freedom (DOF): the yaw, the
roll, the steering and the lateral slip. In these work two non-
linearities have been considered for the roll and steering angle
as in [7].

In several countries PWT are becoming the most common
mean of transportation and are often dedicated to urban use.
Currently there is a real competition between manufacturers
which try to sold new vehicles as cheap as possible to widen
motorcycle user community. Emphasis on safety without sig-
nificantly increase the selling price is a real challenge. That is
why estimation and observation became major tools to make
easier and cheaper the development of safety systems. They
allow a reduction of the sensors’ number and hence the cost is
not so impact. Plenty of researches have addressed longitudinal
and lateral PWT dynamics estimation during the last years. In
the next section some of these works are introduced and the
benefits of the proposed observer is discussed.

This paper is organized as follows. Section 2 presents
motivations and states the problem. The lateral model of the
motorcycle is introduced in section 3 whereas in section 4,
we recall theoretical preliminaries about flatness and numerical
differentiation. A flatness-based estimation and unknown input
reconstruction approach is detailed. Simulation results are
discussed in section 6 and finally conclusion remarks will be
found in section 7.

II. MOTIVATION AND PROBLEM STATEMENT

The precursor work on the state estimation for motorcycles
was published in 2008 [8]. In a first time, researches have
commonly addressed the estimation of the lean angle and
rapidly the aim was to estimate the whole of dynamics states.

In many works focus on lateral PWT estimation authors
have consider restrictive assumptions and their proposed ap-
proaches are valid for limited riding conditions. In [9], the
time variation of the longitudinal velocity is taken into account
but the observer ensures only bounded error state estimation



(Input-to-State Stability). Also in [10] where the author con-
siders longitudinal velocity vx constant before decoupling the
model and construct the observer, then a restrictive speed
range is defined to guarantee reliable estimation. In [11] the
variation of the forward speed is considered using an extended
Kalman filter but simulations are performed for a maximum
speed range around 15 m/s. In addition, to estimate dynamic
states including rider’s torque, authors often use complex
structures of observer sometimes associated with differentiator
as in [10]. More recently in [7], [12] or [13] authors have
proposed observers free from restrictive conditions on the
longitudinal speed but the design is based on the non-trivial
resolution of linear matrix inequalities (LMI). The simulation
results are very interesting but these observers are not easily
implementable in the vehicle for real-time applications be-
cause they need important hardware resources. Moreover in
all these papers a model of the lateral forces is needed in
order to estimate them. A linear model of the lateral forces is
commonly considered and leads inevitably to approximation
errors. Indeed tire forces are linear on a definite range and
saturation effect occurs outside of this range for more details
please refer to [14]. In [15] a method is proposed considering
the tire forces as two unknown inputs. For observability
reasons the author considers that a lateral speed estimation is
available from a high speed camera which is a very expansive
sensor.

This work aims to propose an instantaneous estimator of
the motorcycle roll angle, the rider’s torque and the lateral
tire forces without needing any tire’s model. The estimated
states are computed from the Sharp’s 71 model combined
with a strategic choice of sensor outputs and appropriate
methodology in numerical differentiation [16]. Since 1980s
and pioneering works of [17], nonlinear flatness-based theory
has been quite effective in many concrete and industrial
applications and especially in automotive one [18]. On other
hand, numerical differentiation is an important such approach.
These last require the generation of auxiliary outputs in
order to overcome some restrictive conditions (unknown input
observers, etc.) [19], [20]. To do so, many differentiators
have been proposed (HOSM [21], HGD [22], Algebraic [16]).
In order to obtain those auxiliary outputs, a not asymptotic
differentiators is used as exact differentiator and do not use
require any statistical knowledge of the corrupting noises [16].
The proposed approach supposes a prior work on a closed loop
parametric estimation. In this field, various approaches exist.

In this paper, we adopt the approach of flatness observer
by generating auxiliary outputs in order to reconstruct the
dynamic states of the motorcycle and the external actions as
the lateral tire forces or the steering torque acting on the
vehicle. The main contribution of this paper is a straight
and simple application of algebraic relations to reconstruct
the lateral dynamics of the motorcycle. In addition, no force
model is needed in this strategy and no restrictive assumption
has to be considered to design the observer especially on
the forward speed. Moreover the observer is able to instantly
estimate the dynamics and there is no time of convergence.

In the section 6 some simulations are carried out on the
well-known motorcycle’s simulator BikeSim which is based
on the nonlinear multibody Sharp’s 2004 model [4]. This
simulator use a complex and highly nonlinear model where
the motorcycle is divided into 8 different bodies allowing 16
DOF.

III. MOTORCYCLE NONLINEAR LATERAL MODEL

The Sharp’s 71 motorcycle model is expressed as a set of
equations which correspond respectively to the lateral v̇y , yaw
ψ̈, roll φ̈ and steering δ̈ dynamics:



m11v̇y +m12ψ̈ +m13φ̈+m14δ̈ − r13vxψ̇ =
∑
Fy

m12v̇y +m22ψ̈ +m23φ̈+m24δ̈ − r23vxψ̇
−r24vxφ̇− r25vxδ̇ =

∑
Mz

m13v̇y +m23ψ̈ +m33φ̈+m34δ̈ − r33vxψ̇
−r35vxδ̇ =

∑
Mx

m14v̇y +m24ψ̈ +m34φ̈+m44δ̈ − r43vxψ̇
−r44vxφ̇− r45δ̇ =

∑
Ms

(1)
where:

∑
Fy = Fyf + Fyr∑
Mz = r26Fyf + r27Fyr∑
Mx = r31 sin(φ) + r32 sin(δ)∑
Ms = r41 sin(φ) + r42 sin(δ) + r46Fyf + τ

(2)

Notice that τ is the rider’s torque; φ, δ are the roll and steering
angle whereas ψ̇ φ̇ δ̇ and ψ̈ φ̈ δ̈ are respectively the yaw,
roll and steering rates and accelerations. Fyf and Fyr are the
lateral tire forces. All the other terms mij and rij are given
in the appendix. One can remark the introduced nonlinearities
sin(δ) and sin(φ) for more details please refer to [7].

Then by introducing the cardinal sine function defined as
follows:

sinc(x) =

{
1 if x = 0

sin(x)
x if x 6= 0

(3)

The problem can be easily transformed under matrix formal-
ism:

M [v̇y, ψ̈, φ̈, δ̈]
T = R(vx)[φ, δ, ψ̇, φ̇, δ̇, Fyf , Fyr, τ ]

T (4)

with M and R(vx) two matrices provided in the appendix.
Let us consider the motorcycle is equipped with an optical

encoder installed on the steering mechanism and an inertial
measurement unit (IMU) located near the gravity center. These
sensors provide the measurements of the following variables
named yi(t):

y1(t) = ay, y2(t) = ψ̇, y3(t) = φ̇, y4(t) = δ (5)

with ay the lateral acceleration.

IV. PRELIMINARIES AND TOOLS

In this section, some tools and notations are recalled which
will be used in the proposed cascaded estimation of the
motorcycle dynamics.



A. Flatness-based approach

Consider the nonlinear system:

ẋ(t) = f(x(t), u(t)) (6)

The system (6) is said to be differentially flat if and only
if,

1) there exists a vector-valued function h(x) such that

y(t) = h(x(t), u(t), u̇(t), ..., u(r)(t)) (7)

where y(t) =
(
y1, ..., yny

)T ∈ Rny , r ∈ N, y(t) is
called a flat output;

2) the state x(t) and the input u(t) can be expressed by

x(t) = A(y(t), ẏ(t), ..., y(rx)(t)), rx ∈ N (8)
u(t) = B(y(t), ẏ(t), ..., y(ru)(t)), ru ∈ N (9)

B. Numerical differentiation

Let us consider the signal x(t) ∈ R with 0 ≤ t < ρ. Its
truncated Taylor expansion of order N in the interval (0, ε)
where 0 < ε ≤ ρ, is given by:

xN (t) =

N∑
i=1

x(i)(0)
ti

i!
(10)

which is an approximation of x(t) in the interval (0, ε). By
using the operational calculus and with simple mathematical
computation the time derivative of order i i.e.

[
x(i)(0)

]
e
, 0 ≤

i ≤ N is obtained. For more details and theoretical foundation
of this differentiation approach the reader can refer to [16]. A
simple version of time derivative of order one is given by:

˙̂x(t) = − 3!

T 3

t∫
t−T

(2T (t− τ)− T )x(τ)dτ (11)

which can be easily implemented by a simple digital filter with
a sliding time window of dimension T .

In the case of signal denoising, the same approach is
exploited to estimate the denoised signal which corresponds
to the time derivative of order 0 given by:

x̂(t) =
2!

T 2

t∫
t−T

(3(t− τ)− T )x(τ)dτ (12)

V. FLATNESS-BASED STATE AND UNKNOWN INPUT
ESTIMATION APPROACH

Firstly, let us consider the dynamic equation of the lateral
motion:

m11ay = Fyf + Fyr (13)

where ay is the lateral acceleration of the vehicle provided by
the IMU and m11 =Mf +Mr the global mass of the whole
vehicle and rider. Fyf and Fyr are the forces acting respec-
tively on the front and rear wheel contact points. It is very
complex to measure the tire forces especially on motorcycle
that is why an empirical model, often linear is considered for
observation purposes. However, consider linear forces reduces

the validity of the simulated dynamics compared to the real
dynamics of the motorcycle. In addition, to be as faithful as
possible the model has to take into account some parameters
related to the tire properties and the environmental conditions
(road adhesion, tire stiffness coefficient,...). In this work, no
model is needed for the lateral forces and hence no parameters
to identify. The adopted approach will provide insensitive
estimations with respect to tire and road features.

In order to estimate the forces, a combination of the two
first equations in (1) allows to obtain the following expression
free from the variable v̇y which is not measured:

(m2
12 −m11m22)ψ̈ + (m12m13 −m11m23)φ̈+ (m12m14

−m11m24)δ̈ + (m11r23 −m12r13)vxψ̇ +m11r24vxφ̇

+m11r25vxδ̇ = (m12 −m11r26)Fyf + (m12 −m11r27)Fyr

(14)
Combining the above equation and (13), the forces are

expressed as it follows:

Fyf =
1

m11(r27 − r26)
[(m11r27 −m12)m11ay + (m2

12

− m11m22)ψ̈ + (m12m13 −m11m23)φ̈+ (m12m14

− m11m24)δ̈ + (m11r23 −m12r13)vxψ̇ +m11r24vxφ̇

+ m11r25vxδ̇]

(15)

and it comes:

Fyr = m11ay − Fyf (16)

After estimating the lateral forces, the term v̇y is estimated
with the equation of the lateral dynamics as it follows:

v̇y =
1

m11
[Fyf+Fyr−m12ψ̈−m13φ̈−m14δ̈+r13vxψ̇] (17)

The roll angle is obtained by:

φ = asin( 1
r31

[m13v̇y +m23ψ̈ +m33φ̈+m34δ̈ − r33vxψ̇
−r35vxδ̇ − r32sin(δ)])

(18)
From the last equation, the steering torque applied by the

rider on the handlebar is obtain with the following equation:

τ = m14v̇y +m24ψ̈ +m34φ̈+m44δ̈ − r43vxψ̇ − r44vxφ̇
−r45vxδ̇ − r41 sin(φ)− r42 sin(δ)− r46Fyf

(19)
Finally, one can express the estimated variables as follows:

Fyf = ϕ1 (y1, y2, ẏ2, y3, ẏ3, ẏ4, ÿ4) (20)
Fyr = ϕ2 (Fyf , y1) (21)
v̇y = ϕ3 (Fyf , Fyr, y2, ẏ2, ẏ3, ÿ4) (22)
φ = ϕ4 (v̇y, y2, ẏ2, ẏ3, y4, ẏ4, ÿ4) (23)
τ = ϕ5 (v̇y, φ, Fyf , y2, ẏ2, y3, ẏ3, y4, ẏ4, ÿ4) (24)

with ϕi, i = 1, ..., 5 the corresponding non-linear functions.
Note that in order to have all the unmeasured variables, the
equations (20)-(24) should be computed in this order.

Knowing that the sensors provides only the measurements
given in (5) the time derivatives are needed. In order to



recover the first and the second time derivatives the numerical
differentiator proposed in [16] is exploited. Let us adopt the
notation [ẏi]e and [ÿi]e, i = 1, ..., 4 corresponding to the first
and the second time derivative estimations of the outputs.
The estimation of the unknown variables is then given by the
following set of equation:

F̂yf = ϕ1 (y1, y2, [ẏ2]e, y3, [ẏ3]e, [ẏ4]e, [ÿ4]e) (25)

F̂yr = ϕ2 (Fyf , y1) (26)
˙̂vy = ϕ3

(
F̂yf , F̂yr, y2, [ẏ2]e, [ẏ3]e, [ÿ4]e

)
(27)

φ̂ = ϕ4

(
ˆ̇vy, y2, [ẏ2]e, [ẏ3]e, y4, [ẏ4]e, [ÿ4]e

)
(28)

τ̂ = ϕ5

(
ˆ̇vy, φ̂, F̂yf , y2, [ẏ2]e, y3, [ẏ3]e, y4, [ẏ4]e, [ÿ4]e

)
(29)

Remark 1: If the measured signals are noisy, for more
accurate estimations, the measurements should be denoised
before computing the time derivatives of them.

VI. SIMULATION RESULTS

In this sections results of simulations are provided to vali-
date the proposed observer. Two scenarios are simulated with
BikeSim: a first one representing a double lane change (DLC)
also called overtaking in road user language and a second
simulating one lap of a circuit composed of straight lines,
narrow and large curves. As discussed in section IV we need
to measure the lateral acceleration ay , the yaw rate ψ̇, the roll
rate φ̇ and the steering angle δ which are respectively given by
the IMU and the optical encoder. Notice that these measures
allow to estimate the whole of the dynamic states including
the lateral tire forces and the rider’s torque applied on the
handlebar. The estimation of the the lateral speed derivative
ˆ̇vy is not presented below because it is not a consistent state to
detect critic riding situation or to act on the vehicle dynamics.
Indeed ˆ̇vy doesn’t match up to the lateral acceleration ay
because of the roll and yaw motions. According to equation
(13) and (17) it comes:

v̇y = ay −
m12

m11
ψ̈ − m13

m11
φ̈− m14

m11
δ̈ +

r13
m11

vxψ̇ (30)

A. Double lane change simulation

This scenario aims to simulate a DLC at 100km/h constant
forward speed. This maneuver is a well-known reference to
study lateral motion of motorcycles by allowing to excite
the whole of lateral dynamics states. The figure 1 shows the
vehicle’s trajectory especially the lateral displacement which is
around 3.5m whereas the figure 2 depicts the measured states
while the DLC scenario.

The figure 3 presents the actual states in blue and their
estimation in red. It clearly shows that the roll angle φ and
the front and rear lateral forces acting on the tires respectively
Fyf and Fyr are instantly and perfectly estimated. One can
remark a small error about the estimation of rider’s torque
peaks.
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Fig. 2. Measured states

B. Circuit simulation

As discussed in motivation section, one of the main contri-
bution of this work is that the proposed observer is free from
tire’s model and restrictive assumption especially on forward
speed. This track scenario of 2.3 km aims to validate the
observer on different trajectories with variable forward speed.
The velocity is included in a range from around 30 to 100 km/h
representing urban and extra-urban riding speed behavior. The
figure 4 illustrates the vehicle’s trajectory and the forward
speed during the simulation.

The figure 5 presents the measured states while the track
riding. One can remark the small variation range [−2, 3] deg
of the steering angle for a such scenario. The motorcycle
dynamics is far away from the one for four-wheeled vehicles
where the steering angle is really more significant. When
cornering the rider has to control the motorcycle with lot of
parameters such as obviously the steering angle but also the
lean angle, the engine torque, etc.

Finally, the figure 6 shows the actual states in blue and their
estimation in red along the track. As for the DLC, the roll
angle and the lateral tire’s forces are successfully estimated.
But there is a significant estimation error on the steering torque
and not only for peak value. These error is probably due to the
approximation of the Sharp’s 71 model used to compute the
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observer. Even if the two nonlinearities sin(φ) and sin(δ)
are considered the model omits the product of dynamics
states and is linearized around straight running. Moreover it is
valid for slow variation of the longitudinal dynamic which is
not a valid assumption in this scenario. The steering torque
is only a pertinent state for specific application like self-
driving motorcycle where an electric motor control the steering
mechanism but it doesn’t give useful information to quantify
the risk. In addition, it is quite impossible to measure the
steering torque because even if it exists some systems allowing
to measure the forces applied on the handlebar it is not possible
to separate the torque generated by the road reaction from the
one generated by the rider action.

VII. CONCLUSION

In this paper a cascaded flatness-based observation approach
is proposed in order to instantly estimate the lateral motorcycle
dynamics including the roll angle, the rider’s torque and
the lateral tire forces without needing any model of these
forces which render the estimations insensitive to uncertainties
coming from tire and road characteristics such as stiffness and
adherence coefficients. The estimator is based on the flat out-
puts provided by physical sensors and a dynamic model of the
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PWT. The simple nonlinear expressions of the unknown states
and the steering torque are provided and depend only on the
measured variables and their first and second time derivatives.
These time derivatives are recovered by the recent numerical
signal differentiation algorithm which is less sensitive to
measurement noises affecting the real sensors. The efficiency
of the designed estimator has been validated on the well-
known BikeSim simulator. However the simulation results
show that error occurs in the estimation of the rider’s torque.
For specific applications where an estimation of these torque
is needed an interesting perspective could be to introduce a
fix factor in the equation (24) which does not affect the other
estimated states and allows to correct its estimation.



VIII. APPENDIX

Variables, matrices and notations
vx, vy longitudinal and lateral speeds
φ, ψ, δ roll, yaw and steer angles
φ̇, ψ, δ̇ roll, yaw and steer rates
φ̈, ψ̈, δ̈ roll, yaw and steer accelerations
ay lateral acceleration
τ rider’s torque
Fy , Fyf , Fyr lateral tire forces
Mz , Mx, Ms moments around Z, X and the steering axis
ẋ, ẍ time derivatives of the variable x
x̂, [x]e estimate of a variable x
yi measure
xT transpose of vector or matrix x
xf , xr denotes front and rear
M,R(vx) matrices

M =

 m11 m12 m13 m14

m12 m22 m23 m24

m13 m23 m33 m34

m14 m24 m34 m44


R(vx) = 0 0 r13vx 0 0 0 0 0

0 0 r23vx r24vx r25vx r26 r27 0
r31sc(φ) r32sc(δ) r33vx 0 r35vx 0 0 0
r41sc(φ) r42sc(δ) r43vx r44vx r55 r46 0 1


with sc(.) = sinc(.)

Matrix terms mij and rij
m11 = Mf + Mr , m12 = Mfk, m13 = Mf j + Mrh,
m14 = Mf e, m22 = Mfk

2 + Irz + Ifxsin
2(ε) + Ifzcos

2(ε),
m23 =Mf jk−Crxz+(Ifz−Ifx)sin(ε)cos(ε), m24 =Mf ek+
Ifzcos(ε), m33 =Mf j

2+Mrh2+Irx+Ifxcos
2(ε)+Ifzsin

2(ε),
m34 =Mf ej + Ifzsin(ε), m44 = Ifz +Mf e

2

r13 = −Mf − Mr , r23 = −Mfk, r24 = ify/Rf + iry/Rr ,
r25 = ify/Rf sin(ε), r26 = lf , r27 = −lr , r31 = (Mf j +
Mrh)g, r32 =Mf eg − ηFzf , r33 = −Mf j −Mrh− ify/Rf −
iry/Rr , r35 = −ify/Rf cos(ε), r41 = Mf eg − ηFzf , r42 =
(Mf eg − ηFzf )sin(ε), r43 = −Mf e − ify/Rf sin(ε), r44 =
ify/Rf cos(ε), r45 = −K, r46 = −η,

Motorcycle parameters
g gravity
ε caster angle
η mechanical trail
K steering damper
Fzf front vertical load
Crxz rear frame inertia product
Mf , Mr body mass
j, h geometric dimensions (*)
k, e geometric dimensions (*)
lf , lr geometric dimensions (*)
Rf , Rr wheel radius
ify , iry wheel inertia around Y
Ifx, Irx body inertia around X
Ifz , Irz body inertia around Z

(*) For more details please refer to [3].
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