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DON’T CRY TO BE THE FIRST!

SYMMETRIC FAIR DIVISION ALGORITHMS EXIST.

GUILLAUME CHÈZE

Abstract. In this article we study a cake cutting problem. More precisely, we
study symmetric fair division algorithms, that is to say we study algorithms
where the order of the players does not influence the value obtained by each
player. In the first part of the article, we give a symmetric and envy-free fair
division algorithm. More precisely, we show how to get a symmetric and envy-
free fair division algorithm from an envy-free division algorithm.
In the second part, we give a proportional and symmetric fair division algo-
rithm with a complexity in O(n3) in the Robertson-Webb model of complexity.
This algorithm is based on Kuhn’s algorithm. Furthermore, our study has led
us to study aristotelian fair division. This notion is an interpretation of Aris-
totle’s principle: give equal shares to equal people.
We conclude this article with a discussion and some questions about the
Robertson-Webb model of computation.

Introduction

In this article we study the problem of fair resource allocation. It consists to
share an heterogeneous good between different players or agents. This good can
be for example: a cake, land, time or computer memory. This problem is old. For
example, the Rhind mathematical papyrus contains problems about the division
of loaves of bread and about partition of plots of land. In the Bible we find the
famous “Cut and Choose” algorithm and in the greek mythology we find the trick
at Mecone.
The problem of fair division has been formulated in a scientific way by Steinhaus
in 1948, see [32]. Nowadays, there exists several papers, see e.g. [14, 16, 15, 4, 28,
23, 35, 25, 3, 1], and books about this topic, see e.g. [29, 5, 26, 2]. These results
appear in the mathematics, economics, political science, artificial intelligence and
computer science literature. Recently, the cake cutting problem has been studied
intensively by computer scientists for solving resource allocation problems in multi
agents systems, see e.g. [11, 10, 18, 6].

Throughout this article, the cake will be an heterogeneous good represented by
the interval [0, 1]. We consider n players and we associate to each player a non-
atomic probability measure µi on the interval X = [0, 1]. These measures represent
the utility functions of the player. The set X represents the cake and we have
µi(X) = 1 for all i. The problem in this situation is to get a fair division of
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X = X1 ⊔ . . . ⊔Xn, where the i-th player get Xi.

A practical problem is the computation of fair divisions. In order to describe
algorithms we thus need a model of computation. There exist two main classes
of cake cutting algorithms: discrete and continuous protocols (also called moving
knife methods). Here, we study discrete algorithms. These kinds of algorithms
can be described thanks to the classical model introduced by Robertson and Webb
and formalized by Woeginger and Sgall in [36]. In this model we suppose that a
mediator interacts with the agents. The mediator asks two type of queries: either
cutting a piece with a given value, or evaluating a given piece. More precisely, the
two type of queries allowed are:

(1) evali(x, y): Ask agent i to evaluate the interval [x, y]. This means return
µi([x, y]).

(2) cuti(x, a): Ask agent i to cut a piece of cake [x, y] such that µi([x, y]) = a.
This means: for given x and a, return y such that µi([x, y]) = a.

In the Robertson-Webb model the mediator can adapt the queries from the previ-
ous answers given by the players. In this model, the complexity counts the finite
number of queries necessary to get a fair division. For a rigourous description of
this model we can consult: [36, 7].

When we design a cake cutting algorithm, we have to precise what is the mean-
ing of a fair division. Indeed, there exists different notions of fair division.
We say that a division is proportional when for all i, we have µi(Xi) ≥ 1/n.
We say that a division is envy-free when for all i 6= j, we have µi(Xi) ≥ µi(Xj).
We say that a division is equitable when for all i 6= j, we have µi(Xi) = µj(Xj).

The first studied notion of fair division has been proportional fair division, [32].
Proportional fair division is a simple and well understood notion. In [32] Stein-
haus explains the Banach-Knaster algorithm, also called last diminisher algorithm,
which gives a proportional fair division. There also exists an optimal algorithm to
compute a proportional fair division in the Robertson-Webb model, see [16, 15].
The complexity of this algorithm is in O

(

n log(n)
)

. Furthermore, the portion Xi

given to the i-th player in this algorithm is an interval.

It is more difficult to get an envy-free fair division. Indeed, whereas envy-free fair
divisions where each Xi is an interval exist, there does not exist an algorithm in the
Robertson-Webb model computing such divisions. These results have been proved
by Stromquist in [33, 34]. The first envy-free algorithm has been given by Brams
and Taylor in [4]. This algorithm has been given approximatively 50 years after the
first algorithm computing a proportional fair division. The Brams-Taylor algorithm
has an unbounded complexity in the Robertson-Webb model. This means that we
cannot bound the complexity of this algorithm in terms of the number of players
only. It is only recently that a finite and unbounded algorithm has been given to

solve this problem [1]. The complexity of this algorithm is in O
(

nnnnnn
)

. A lower

bound for envy-free division algorithm has been given by Proccacia in [24]. This
lower bound is in O(n2).
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Equitable fair divisions have been less studied than proportional and envy-free
divisions. However, there exist some results showing the difficulty to get such fair
divisions. Indeed, there exist equitable fair divisions where each Xi is an interval,
see [8, 31, 12]. However, there do not exist algorithms computing an equitable fair
division, see [9, 27, 13].

In practice, a cake cutting algorithm F has in inputs a list of measures µ =
[µ1, . . . , µn], and returns a partition X = F(X,µ, 1) ⊔ . . . ⊔ F(X,µ, n), where each
F(X,µ, i) is a finite union of disjoint intervals. The set F(X,µ, i) is the part given
to the i-th player appearing in the the list µ when we apply the algorithm F to
this list of measures.

The definition of proportional or envy-free fair division is independent of the
order of the players in the list µ. However, this order is important in cake-cutting
algorithms. For example, the role of the two players in the “Cut and Choose”
algorithm are not symmetric. This leads the definition of symmetric fair division
algorithm.

Definition 1. We denote by µσ the list µσ = [µσ(1), . . . , µσ(n)], where σ belongs
to the permutation group Sn. A cake cutting algorithm F is symmetric when

∀i ∈ {1, . . . , n}, ∀σ ∈ Sn, µi

(

F(X,µ, i)
)

= µi

(

F(X,µσ, σ−1(i))
)

.

For example, if n = 3 and σ = (1 2 3) then a symmetric fair division algorithm
satisfies:

µ1

(

F(X, [µ1, µ2, µ3], 1)
)

= µ1

(

F(X, [µ2, µ3, µ1], 3)
)

.

A cake cutting algorithm is symmetric means whatever the order of the mea-
sure given in inputs, all players will receive the same value of the cake. Indeed,
F(X, [µ2, µ3, µ1], 3) is the portion given to the third player in the list [µ2, µ3, µ1].
Thus, this corresponds to the portion given to the player with measure µ1 when
the algorithm F as in input the list [µ2, µ3, µ1]. Thus, if the player with associated
measure µ1 is in the first or in the last position in the inputs he or she will get a
portion with the same measure relatively to his or her preference µ1. Therefore,
there is no advantage to be the first in the list µ. The measure of the received
portion is independent of the position of a player in the list.
This notion has been introduced by Manabe and Okamoto in [20]. They call this
kind of fair divisionmeta envy-free. In this article we call this property symmetric in
order to emphasize the role of the permutations of the players. In their paper Man-
abe and Okamoto have shown that classical algorithms such as Selfridge-Conway,
and Brams-Taylor’s algorithms are not symmetric. Then they have given a sym-
metric and envy-free algorithm for 4 players and ask if it is possible to get such a
division protocol for n ≥ 4 players. Here, we answer to this question and we prove
the following result:

Theorem 2. There exists deterministic symmetric and envy-free cake cutting al-
gorithms.

In order to prove this result we show how to construct such an algorithm from an
envy-free algorithm. The idea is to use an already existing envy-free algorithm f ,
see e.g. [4, 28, 23, 1] and to construct from it a symmetric and envy-free algorithm
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F . In order to get a symmetric algorithm we compute all f(µσ) and then we take
the “best” one. Here “best” will mean : satisfy some topological conditions, e.g.
we select a partition with the minimal number of cuts.

Our approach computes n! envy-free divisions, thus this gives an algorithm with a
huge complexity in the Robertson-Webb model. Furthermore, our algorithm gives a
proportional division since it gives an envy-free division. A natural question is then:
Can we get a symmetric and proportional division algorithm with a polynomial
complexity?
We prove in Section 2 the following result:

Theorem 3. There exists a deterministic symmetric and proportional algorithm
which uses at most O(n3) queries in the Robertson-Webb model.

The deterministic assumption is important. We do not want to get a situation
where a player could think that he is unlucky.
We can already remark that the Evan-Paz algorithm, see [16], and the last dimin-
isher procedure are not deterministic and not symmetric. Indeed, if during these
algorithms several players cut the cake at the same point, then this tie is usually
breaked with a random process. Another way to break the tie is to use the order
on the players. For example, if all the players in the first step of the Evan-Paz algo-
rithm cut the cake at the same point, then we can give to the players 1, . . . , ⌊n/2⌋
the left part of the cake and to the other players the right part of the cake. This
tie breaking method depends on the order the players and thus it does not give a
symmetric procedure.

At last, in this article we study also another fair division notion. This notion
comes from the study of symmetric fair divisions in a particular case: Suppose that
F is a symmetric fair division algorithm. Then we have

µ1

(

F(X, [µ1, µ2, µ3], 1)
)

= µ1

(

F(X, [µ2, µ1, µ3], 2)
)

.

Now, suppose that µ1 = µ2, this gives

µ1

(

F(X, [µ1, µ2, µ3], 1)
)

= µ2

(

F(X, [µ1, µ2, µ3], 2)
)

.

This means that if two players have the same measure then they consider as equal
the portions they get. We call a fair division satisfying this property an “aristotelian
fair division”.

Definition 4. We say that we have an aristotelian division when µi = µj implies
µi(Xi) = µj(Xj).

We have given the name “aristotelian fair division” to this kind of fair divisions
because in the Nicomachean Ethics by Aristotle (Book V) we find:

“. . . it is when equals possess or are allotted unequal shares, or persons not equal
equal shares, that quarrels and complaints arise.”

Therefore, aristotelian fair division is not a new notion. This notion has been
already studied, see e.g. [17, 22, 21]. In the literature this notion also appears as
“Equal Treatment of Equals”.
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We remark that symmetric fair division algorithms give aristotelian fair divi-
sions. However, the converse is not true.

As a first step towards the construction of a symmetric and proportional fair
division algorithm, we describe in Section 2 an aristotelian and proportional fair
division algorithm. This algorithm needs O(n3) queries but less arithmetic opera-
tions than the symmetric and proportional algorithm.
We remark easily that an envy-free division is always proportional and aristotelian,
but a fair division which is aristotelian and proportional is less demanding than
an envy-free division. However, to the author’s knowledge all existing aristotelian
proportional fair division algorithms were envy-free algorithms.
Thus our algorithm shows that if we just want an aristotelian proportional fair
division it is not necessary to use an envy-free algorithm which uses an exponential
number of queries.

Structure of the paper. In Section 1, we give a symmetric and envy-free fair
division algorithm. Then, we give some remarks about the complexity of this
algorithm. In this first section, we also discuss the problem of symmetric and envy-
free fair division in the approximate setting. In Section 2, we explain why the Evan-
Paz and the last diminisher algorithm do not give aristotelian fair division. Then
we give an aristotelian proportional fair division algorithm and next a symmetric
and proportional fair division algorithm. In Section 3, we conclude this article with
several questions about symmetric and aristotelian fair divisions and the Robertson-
Webb model of computation.

1. An envy-free and symmetric cake cutting algorithm

1.1. Two orders on partitions and one algorithm. In this section we intro-
duce two different orders on the partitions. These orders will be used to choose a
“good” partition among the n! possible fair divisions given by all f(µσ), where f is
a fair division procedure.

In this section, when we study a partition X = X1 ⊔ . . . ⊔ Xn, Xi will be the
part given to the i-th player.

For each partition X = X1 ⊔ . . . ⊔Xn we set

Xi =
⊔

j∈Ii

[xi,j , xi,j+1], where Ii is a finite set.

Thus

X =
n
⊔

i=1

⊔

j∈Ii

[xi,j , xi,j+1]

and

X =

M
⊔

l=0

[zl, zl+1]

where z0 = 0, zM+1 = 1, zl = xi,j and zl < zl+1. From this partition we construct
a vector (z1, . . . , zM ) ∈ RM . We say that M + 1 is the size of the partition.
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Definition 5. The graded order on ⊔∞
k=1R

k is the following:
Let (x1, . . . , xM ) ∈ RM and (y1, . . . , yN ) ∈ RN we have:

(y1, . . . , yN ) ≻gr (x1, . . . , xM ) ⇐⇒ N > M

or N = M and y1 > x1,

or N = M, ∃j > 1 such that yi = xi for i < j

and yj > xj .

The graded order gives thus an order on the partitions.

Now, we give an algorithm which computes a word over the alphabet a1, . . . , an
from a partition. The l-th letter of the word ω is denoted by ω(l).

Word from partition

Input: A partition X = X1 ⊔ . . . ⊔Xn, where Xi = ⊔j∈Ii [xi,j , xi,j+1], and
X = ⊔M

l=1[zl; zl+1] is the associated decomposition.
Output: A word ω constructed over the alphabet a1, . . . , an.

(1) If [z0, z1] ⊂ Xj then a1 is associated to Xj and α := 2.
(2) ω(1) := a1.
(3) For l from 1 to M do

If [zl, zl+1] ⊂ Xi and Xi is associated to ak where k < α
Then ω(l + 1) := ak,
Else associate aα to Xi, ω(l + 1) := aα, and α := α+ 1.

Now, we introduce a second order on the partitions.

Definition 6. Consider two partitions X = X1 ⊔ . . .⊔Xn and X = X ′
1 ⊔ . . .⊔X ′

n.
With the previous algorithm we associate a word ω to the first partition and we
associate a word ω′ to the second partition.

If ω ≻lex ω′, that is to say, if ω is bigger than ω′ with the lexicographic order with
an ≻lex an−1 ≻lex . . . ≻lex a1, then we say that the partition X = X1 ⊔ . . . ⊔Xn is
bigger than the partition X = X ′

1 ⊔ . . . ⊔X ′
n relatively to the lexicographic order.

If two partitions gives the same word then we say that the partitions are equal
relatively to the lexicographic order.

Lemma 7. Consider two partitions X = X1 ⊔ . . .⊔Xn and X = X ′
1 ⊔ . . .⊔X ′

n. If
these partitions give the same vector (z1, . . . , zM ) and if these partitions are equal
relatively to the lexicographic order, then there exists a permutation σ ∈ Sn such
that:

Xσ(i) = X ′
i.

Proof. This follows from the construction of the lexicographic order on the parti-
tions. �

The two previous orders allow us to get a symmetric and envy-free fair division.

Symmetric and Envy-free

Inputs: µ = [µ1, . . . , µn], a deterministic envy-free cake cutting algorithm f .
Outputs: X = F(X,µ, 1) ⊔ . . . ⊔ F(X,µ, n), where F(X,µ, i) is a finite union of

disjoint intervals and F(X,µ, i) is given to the i-th player.
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(1) For all σ ∈ Sn, computes the partition f(µσ) and
set S := {f(µσ) |σ ∈ Sn}.

(2) Let S1 be the subset of S of all partitions with a minimal graded order.
(3) If |S1| = 1, then Return the unique partition in S1, else go to the next step.
(4) Let S2 be the set of all the partitions in S1 with a minimal lexicographic

order.
(5) Return a partition f(µσ) ∈ S2.

Theorem 8. The algorithm Symmetric and Envy-free is deterministic symmet-
ric and envy-free.

Proof. This algorithm is envy free because we return a result coming from an envy-
free protocol.

We remark that if we apply the algorithm to the list µ or µρ where ρ ∈ Sn, then
the set S computed in the first step will always be the same. Therefore, we just
have to study the situation where S2 contains several partitions.
Consider two distinct partitions in S2, X = X1 ⊔ . . . ⊔Xn and X = X ′

1 ⊔ . . . ⊔X ′
n.

Thanks to Lemma 7, there exists a permutation σ ∈ Sn such that Xσ(i) = X ′
i.

As f is an envy-free protocol, if the i-th player receives the portion Xi then we have
µi(Xi) ≥ µi(Xσ(i)). Therefore, µi(Xi) ≥ µi(Xσ(i)) = µi(X

′
i). In the same way, we

show that µi(X
′
i) ≥ µi(Xi). This gives µi(X

′
i) = µi(Xi). Then, for all partitions in

S2 each player will evaluate in the same way his or her portion. Thus the algorithm
is symmetric.
In step 5 we have to choose a partition among all partitions in S2. We can choose
the first computed partition appearing in S2. This last step depends on the order
of the measures given in input. However, as explained before this choice does not
have en effect on how the i-th player evaluate his or her part. �

The idea of the algorithm is the following: if we have different possible partitions
coming from all the f(µσ) then we prefer the ones with the fewest number of
intervals and with the smallest leftmost part. It seems natural to prefer a partition
with few intervals. The second condition can be interpreted as follows: If the
different pieces of cake are given from left to right, thus in increasing order of the
xi,j , then our algorithm gives a first piece with small length to the first served
player. If we imagine that a mediator is used to cut the cake then our convention
means the following: if a player cooperates quickly with the mediator (the player
accepts the leftmost part of the cake) then he gets quickly a piece of cake.

1.2. Some remarks about the complexity of symmetric and envy-free al-

gorithm. Our algorithm relies on an envy-free division algorithm and needs to
compute all fair divisions for all permutation orders. Suppose that this envy-free
division algorithm has a complexity equals to T (n) in the Robertson-Webb model,
then our algorithm uses n!×T (n) queries. Indeed, our approach needs to compute
all the fair divisions for all permutation orders. A natural question is the following:
Is it necessary?

Recently Aziz and Mackenzie have proposed in [1] the first envy-free algorithm
with a complexity bounded in terms of the number of players. If we use this algo-
rithm then we get a symmetric and envy-free algorithm with a complexity bounded
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in terms of the number of players.

At last, we remark that if the envy-free algorithm f uses a continuous protocol (a
moving knife method) then our algorithm F gives a continuous protocol to compute
a symmetric and envy-free division.

1.3. Approximate symmetric and envy-free fair division algorithm. Envy-
free fair division has also been studied in an approximate setting. A division is said
to be ε-envy-free when we have for all i and j: µi(Xi) ≥ µi(Xj)− ε, where ε > 0.
There exists an algorithm which gives such fair division, see [7]. The complexity of
this algorithm is in O(n/ε) in the Robertson-Webb model.
In the approximate setting a new definition of symmetric fair division is required.
We say that an algorithm F gives an ε-symmetric fair division when we have for
all i and all permutations σ ∈ Sn:

∣

∣

∣
µi

(

F(X,µ, i)
)

− µi

(

F(X,µσ, σ−1(i))
)

∣

∣

∣
≤ ε.

This means that if we modify the order of the measures in the input of the algorithm
then the perturbation on the new value obtained by the i-th player is bounded by ε.

With these definitions it is natural to look for an ε-symmetric and ε-envy-free
fair division. In this situation we do not need to repeat n! times an ε-envy-free al-
gorithm. Indeed, contrary to the exact setting there exists an algorithm computing
an ε-perfect fair division, see [6]. This means that there exists an algorithm F such
that

∣

∣

∣
µi

(

F(X,µ, i)
)

− 1

n

∣

∣

∣
≤ ε.

The complexity of this algorithm is in O(n2/ε).
Thus the ε-perfect algorithm gives an ε-symmetric and ε-envy-free fair division
without increasing the complexity of an ε-envy-free protocol by a factor n!. Un-
fortunately, this algorithm has an exponential time complexity in n if we take into
account the number of elementary operations (arithmetic operations and inequality
tests). Indeed, in this algorithm we have to consider all subsets Y with cardinal

at most n(n − 1) in a set with cardinal nK where K = ⌈ 2n(n−1)
ε

⌉. Therefore, the

asymptotic formula
(

2n
n

)

≈ 4n√
πn

shows that we have to consider an exponential

number of subsets.

2. Aristotelian, symmetric and proportional cake cutting

algorithms

In this section we first give an aristotelian and proportional fair division algo-
rithm and then a symmetric and proportional one. These two algorithms are based
on Kuhn’s algorithm, see [19].

2.1. An aristotelian proportional cake cutting algorithm.

2.1.1. The Evan-Paz algorithm and the last diminisher procedure are not aris-
totelian. Before giving our aristotelian and proportional algorithm we show that
the classical Evan-Paz algorithm and the last diminisher procedure do not give an
aristotelian fair division.



DON’T CRY TO BE THE FIRST! SYMMETRIC FAIR DIVISION ALGORITHMS EXIST 9

In the Evan-Paz algorithm we can have the following situation: We consider
four players with associated measures µ1, µ2, µ3, µ4. Furthermore, we suppose
that µ1 = µ4 is the Lebesgue measure on [0, 1]. We also suppose that µ2([0, 0.5]) =
µ3([0, 0.5]) = 1/2 and µ3([0.5, 0.51]) = 1/4.
In the first step of the Evan-Paz algorithm we ask each player to cut the cake in
two equal parts. More precisely, we ask cuti(0, 1/2). In our situation, each player
give the same point: y = 0.5. In the second step, the algorithm consider two sets of
two players. The first part of the cake [0, 0.5] will be given to the first set of players
and the second part [0.5, 1] will be given to the second set of players. Usually,
when all players give the same answers the two sets are constructed randomly or
in function of the order of the players. Thus we can suppose that in the second
step we give [0, 0.5] to µ1 and µ2 and [0.5, 1] to µ3 and µ4. At last, the “Cut and
Choose” algorithm is used to share [0, 0.5] (respectively [0.5, 1]) between the two
players µ1, µ2 (respectively µ3, µ4). Thus µ1 cut the interval [0, 0.5] and get X1

such that µ1(X1) = 1/4, and µ3 cuts the interval [0.5, 1] and get X3 = [0.5, 0.51].
Thus X4 = [0.51, 1] and 0.49 = µ4(X4) > µ1(X1) = 0.25. As µ1 = µ4, we deduce
that the division is not aristotelian.

In the last diminisher procedure we can have the following situation:
We suppose that µ1 = µ2 is the Lebesgue measure on [0, 1]. Furthermore, we
consider a measure µ3 such that µ3([0, 0.4]) = 1/3, and µ3([1/3, 0.5]) = 1/3.
In the first step of the last diminisher procedure we ask each player the query
cuti(0, 1/3). The first and second player give µ1([0, 1/3]) = µ2([0, 1/3]) = 1/3 and
the third player gives µ3([0, 0.4]) = 1/3. In the first step of this algorithm we give
the portion [0, 1/3] to the first or to the second player. Suppose that we give this
portion to the first player. In the second step of the last diminisher algorithm
we ask cut2(1/3, 1/3) and cut3(1/3, 1/3). We get thus the following information
µ2([1/3, 2/3]) = 1/3 and µ3([1/3, 0.5]) = 1/3. After the second step the algorithm
gives [1/3, 0.5] to the third player. It follows that the second player get [0.5, 1] and
µ2([0.5, 1]) = 0.5 > 1/3 = µ1([0, 1/3]). Therefore, this is not an aristotelian division
since µ1 = µ2.

2.1.2. An aristotelian proportional fair division algorithm. In this subsection, we
recall Kuhn’s fair division algorithm, see [19], and then we show how to modify it
to get an aristotelian fair division algorithm. In order to state this algorithm we
introduce the following definition:

Definition 9. Let X = ⊔jAj be a partition of X . An allocation relatively to this
partition is a set {(µi1 , Aj1), . . . , (µil , Ajl)} such that for k = 1, . . . , l:

µik(Ajk ) ≥
µik(X)

n
and µi(Ajk ) <

µi(X)

n
if i 6= i1, . . . , il.

A maximal allocation is an allocation whose cardinal is maximal.
In the following we say that a piece of cake Ak is acceptable for the i-th player if
µi(Ak) ≥ µi(X)/n.

In the previous definition the part Ai is not necessarily given to the i-th player.
The measurable sets Ai do not play the same role than Xi in the previous section.
The partition X = ⊔iAi is just a partition of X , it is not necessarily the final result
of a proportional fair division problem.
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Lemma 10. For a given partition there always exists a maximal allocation.

Proof. With the Frobenius-König theorem, Kuhn has shown in [19] that there al-
ways exists an allocation relatively to a given partition. This gives the existence of
maximal allocations. �

Kuhn’s algorithm proceeds as follows: The first player cuts the cake in n parts
with value 1/n = µ1(X)/n for his or her own measure. This gives a partition
X = ⊔iAi. Then we compute a maximal allocation relatively to this partition.
Each player in the maximal allocation receives his or her associated portion. The
remaining part of the cake is then divided between the rest of the players with the
same method.

Now, we can describe our aristotelian algorithm. The idea is the following:
As before the first player cut the cake in n parts with value 1/n for his or her own
measure. This gives a partition X = ⊔jAj and we compute a maximal allocation
relatively to this partition. Then each player ik in the maximal allocation receives
his or her associated part if µik(Aj) = 1/n for all Aj in the maximal allocation. In
particular, all players with the same measure than the first player receive the same
value. Then it remains two subcakes X1 and X2. We associate respectively these
two subcakes to two set of players E1 and E2.

First, the set E1 corresponds to the set of players with an index ik in the maximal
allocation such that there existsAj in the maximal allocation with µik(Aj) 6= µ1(A1).
Thus a player in E1 does not evaluate all portions Aj as µ1. Then, we consider the
set L1 constructed in the following way: jk ∈ L1 if and only if ik ∈ E1. At last, we
set X1 = ⊔j∈L1

Aj .
Then we put together the players in E1 which seem to have the same measure.

More precisely, we consider a partition of E1 = ⊔d
m=1E1,m and L1 = ⊔d

m=1L1,m such
that:

(⋆)

{

∀i, i′ ∈ E1,m, ∀j, µi(Aj) = µi′(Aj),

L1,m = {jk | ik ∈ E1,m}.
This means that for all i ∈ E1,m, there exists a constant cj,m (independent of i)
such that for all j we have µi(Aj) = cj,m.
In particular, as µik(Ajk) ≥ µik(X)/n, we have the following

Remark 11. For all i ∈ E1,m and j ∈ L1,m we have µi(Aj) ≥ µi(X)/n.

Then we consider X1,m = ⊔j∈L1,m
Aj and we associate to these subcakes the

players with indices in E1,m. Therefore, it will be possible to share X1,m between
the players with indices in E1,m because by construction they evaluate all Aj in the
same way with a value bigger than 1/n.

At last, we denote by X2 the part of the cake not appearing in the maximal
allocation. Then we can share X2 between the players not appearing in the max-
imal allocation since by definition they do not find acceptable the portions in the
maximal allocation.
The algorithm will call recursively the algorithm on X1,m and X2.
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In the following we will use queries for a “subcake” X ( [0, 1]. Indeed, as in
Kuhn’s algorithm we are going to consider situations where the cake will be of the
form [0, 1] \ Y , where Y will correspond to the part of the cake already given by
the algorithm. We need thus the following notations:

(1) evalXi (x, y): Ask agent i to evaluate [x, y] ∩ X .
This means return µi([x, y] ∩ X ).

(2) cutXi (x, a): Ask agent i to give y such that µi([x, y] ∩ X ) = a.

We will see that these queries do not introduce new operations. More precisely, dur-
ing the algorithm these queries evalXi (x, y) and cutXi (x, a) can be compute thanks
to evali(x, y) and cuti(x, a).

AristoProp

Inputs: µ = [µ1, . . . , µn], X ⊂ [0; 1].
Outputs: X = F(X , µ, 1) ⊔ . . . ⊔ F(X , µ, n), where F(X , µ, i) is a finite union of
disjoint intervals and F(X , µ, i) is given to the i-th player.

(1) %Ask the first player to cut the cake in n parts with values µ1(X )/n. %
%This gives: X = ⊔iAi.%
x0 := minx∈X (x)
For j from 1 to n do

xj := cutX1
(

xj−1, µ1(X )/n
)

,
Set Aj := [xj−1;xj ] ∩ X .

(2) % Ask each player to evaluate each Aj.%
For i from 2 to n do

For j from 1 to n do
evalXi (xj−1, xj).

(3) Compute a maximal allocation A := {(µi1 , Aj1), . . . , (µil , Ajl)} relatively
to the partition X = ⊔iAi.

(4) % If for all j in {j1, . . . , jl}, we have µik(Aj) = µ1(A1) then give the por-
tion Ajk to the player with associated measure µik .%
Set E := ∅, E1 := ∅, L1 := ∅, X1 := ∅.
For ik in {i1, . . . , il} do

t:=true;
For j in {j1, . . . , jl} do

If µik(Aj) 6= µ1(A1) Then t:=false.
If t=true Then F(X,µ, ik) := Ajk , E := E ∪ {ik},

Else E1 := E1 ∪ {ik}, L1 := L1 ∪ {jk}, X1 := X1 ∪ Ajk .

(5) Construct a partition E1 = ⊔d
m=1E1,m and a partition L1 := ⊔d

m=1L1,m

sastisfying (⋆).

Set µ
1,m

as the list of measures associated to players with index in E1,m.

Set X1,m := ⊔j∈L1,m
Aj .

Set E2 := {1, . . . , n} \ {i1, . . . , il}, X2 := X \
(

⊔l
k=1 Ajk

)

.
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Set µ
2
as the list of measures associated to players with index in E2.

(6) Return
(

⊔i∈EF(X , µ, i)⊔d
m=1 AristoProp (µ1,m

,X1,m)⊔ AristoProp (µ
2
,X2)

)

.

Proposition 12. The algorithm AristoProp applied to µ = [µ1, . . . , µn] and X = [0, 1]
terminates and is aristotelian.

Proof. The algorithm terminates since after one call of the algorithm the number
of player decreases strictly since the first player always get a part of the cake.

Now, we are going to prove by induction that the algorithm is aristotelian.
We consider the following claim:
(Hn): The algorithm AristoProp applied with n measures is aristotelian.

For n = 2, H2 is true. Indeed, if µ1 = µ2 then µ2 belongs to the maximal allo-
cation computed in Step 3. Furthermore, we can suppose without loss of generality
that the maximal allocation has the following form A = {(µ1, A1), (µ2, A2)}.
By construction we have µ1(A1) = µ1(A2). Thus µ1(A1) = µ2(A1) = µ2(A2) since
µ1 = µ2. As in Step 4, µ1 gets the portion A1 and µ2 gets the portion A2, we
deduce that H2 is true.

Now, we suppose that Hk is true when k ≤ n and we are going to prove that
Hn+1 is true.

We suppose that we have n+1 measures µ1, . . . , µn+1, and that µp = µq, where
p, q ∈ {1, . . . , n+ 1}.

First, we remark that if (µp, Ajp) belongs to a maximal allocation then µq also
belongs to the same maximal allocation. Indeed, if µq does not belong to the maxi-
mal allocation then µq(Ajp) < µq(X )/n but µq(Ajp) = µp(Ajp) ≥ µp(X )/n because
µp = µq and (µp, Ajp) belongs to the maximal allocation. This gives the desired
contradiction and proves our remark.

Now two situations appear: In Step 3, µp and µq belongs to the maximal allo-
cation or they do not belong to it.

If µp and µq do not belong to the maximal allocation then µp and µq belong
to the list µ

2
. Then, µp and µq get their portions when, in Step 6, we apply

AristoProp (µ
2
,X2). As the list µ

2
have at most n measures and Hn is true we

deduce that µp and µq get the same value and then the algorithm is aristotelian in
this case.

If µp and µq belong to the maximal allocation then we have two cases:
there exists an index j0 in {j1, . . . , jl} such that µp(Aj0 ) 6= µ1(A1) or
for all jk in {j1, . . . , jl} we have µp(Ajk) = µ1(A1).

In the first case, as µp = µq then we also have µq(Aj0 ) 6= µ1(A1). Then, p and q
belong to E1. Furthermore, as µp = µq, for all j we have µp(Aj) = µq(Aj). Then µp

and µq belong to the same list µ
1,m

. As the list µ
1,m

have at most n measures and
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Hn is true we deduce that µp and µq get the same value and then the algorithm is
also aristotelian in this case.

In the second case, we have p, q ∈ E and µp(Ajk) = µq(Ajk) = µ1(A1) for all jk
in {j1, . . . , jl}. Thus the p-th and q-th player evaluate in the same way the portion
they get. Thus, the algorithm is also aristotelian in this case and this concludes
the proof. �

Proposition 13. The algorithm AristoProp applied to µ = [µ1, . . . , µn] gives a
proportional fair division of [0, 1].

Proof. We are going to prove this result by induction. We consider the following
claim:
(Hn): The algorithm AristoProp applied to n measures gives a proportional fair
division of [0, 1].

For n = 1, H1 is true.
Now, we suppose that Hk is true for k ≤ n and we are going to prove that Hn+1

is true.

We consider n+ 1 measures µ1, . . . , µn+1.
If i ∈ E then the i-th player receive a portion F(X,µ, i) that he or she consider

to have a value equal to µ1(A1). As µ1(A1) = µ1(X)/n, we get µi

(

F(X,µ, i)
)

≥
µ1(X)/n. Thus, the algorithm is proportional in this case.

If i 6∈ E then we have the following situation: µi belongs to a list µ
1,m

or to the

list µ
2
.

If µi belongs to the list µ
2
, then µi does belong to the maximal allocation consid-

ered and for all jk ∈ {j1, . . . , jl} we have µi(Ajk) < µ1(A1) = µi(X)/n. Therefore,
we have

(♯) µi(X2) = µi(X)−
l

∑

k=1

µi(Ajk ) ≥ µi(X)− lµi(X)

n
=

(n− l)µi(X)

n
,

where l is the size of the maximal allocation computed in Step 3.

Thanks to our induction hypothesis, in Step 6 the i-th player receives at least
µi(X2)/(n− l) for his or her own measure. Thus, by (♯) the i-th player gets at least
µi(X)/n. Thus, in this case, the algorithm is proportional.

If µi belongs to a list µ
1,m

, by Remark 11, we have µi(Aj) ≥ µi(X)/n, for all

j ∈ L1,m. Thus

(♯♯) µi(X1,m) = µi(⊔j∈L1,m
Aj) ≥

|L1,m|µi(X)

n
,

where |L1,m| is the number of elements in L1,m and this number is equal to E1,m
the number of measures in the list µ

1,m
.
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Thanks to our induction hypothesis, in Step 6 the i-th player receives at least
µi(X1,m)/|E1,m| for his or her own measure. Thus, by (♯♯) the i-th player gets at
least µi(X)/n and this concludes the proof. �

Proposition 14. The algorithm AristoProp applied to µ = [µ1, . . . , µn], and X =

[0, 1] uses at most O(n3) queries in the Robertson-Webb model.

Proof. In Step 1 we use n cuti queries. In Step 2 we use n(n− 1), evali queries.
During the first call of the algorithm we use the cuti and evali queries. In the next
calls the algorithm uses the cutXi and evalXi queries where X = ⊔jAj and the mea-
sures of Aj are known by the players thanks to Step 2 of the algorithm. We remark

that the situation X2 = X \
(

⊔l
k=1Ajk

)

of Step 5 corresponds to X2 = ⊔j 6∈L⊔L1
Aj .

It follows that we can write X in the following form: X = ⊔k
j=1[sj ; tj ], where

s1 < t1 < s2 < t2 < · · · < sk < tk and the measures of [sj ; tj] and [tj ; sj+1] are
known thanks to the previous calls of the algorithm.
Now, we define a function f in order to explain how we compute evalXi from evali:
If sj0 < x < tj0 then we set f(x) = j0.

If f(x) = f(y) then [x; y] ⊂ [sj0 ; tj0 ] and evalXi (x, y) = evali(x, y),
else we have

evalXi (x, y) = µi

(

[x, y] ∩ X
)

= µi

(

[x, y] ∩
(

⊔k
j=1 [sj , tj]

)

)

= evali(x, y)−
f(y)−1
∑

j=f(x)

evali(tj , sj+1).

As µi([tj , sj+1]) = evali(tj , sj+1) is known thanks to the previous calls of the algo-
rithm, the query evalXi (x, y) needs just one new query: evali(x, y).

For the cutXi query we proceed in the following way:
Suppose that we want to compute cutXi (x, a).
First, compute evali(x, tf(x)). As we know µi([sj ; tj ]) for j = 1, . . . , k then with
all these values we can deduce in which interval [s1, t1],. . . , [sk, tk] is the cutpoint
y. We denote by [α, β] this interval. Thanks to the knowledge of µi([sj ; tj ]) and
µi([x, tf(x)]) we can also get a′ = evalXi (x, α). Then we have:

cutXi (x, a) = cuti(α, a− a′).
Therefore, cutXi needs two new queries in the Robertson-Webb model: evali(x, tf(x))
and cuti(α, a− a′).

In conclusion, in Step 1 the algorithm applied with η measures uses η cutXi
queries, thus these queries can be computed with 2η queries in the Robertson-
Webb model. In Step 2, it uses η(η − 1) evalXi queries. These queries can be
computed with η(η−1) queries in the Robertson-Webb model. Therefore, each call
of the algorithm applied with η measures uses η(η + 1) queries in the Robertson-
Webb model of computation. Furthermore, in the worst case, at each call of the
algorithm only one player get a part of the cake. Thus we use at most

n2+

n−1
∑

η=1

η(η+1) = n2+

n−1
∑

η=1

η2+

n−1
∑

η=1

η = n2+
n(n− 1)(2n− 1)

6
+

n(n− 1)

2
∈ O(n3)
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queries in the Robertson-Webb model. �

From the previous propositions we get:

Theorem 15. There exists an aristotelian proportional fair division algorithm
which uses at most O(n3) queries in the Robertson-Webb model of computation.

As already mentioned in the introduction, this theorem says that if we just want
an aristotelian proportional fair division it is not necessary to use an envy-free
algorithm which uses an exponential number of queries.

2.2. A symmetric and proportional cake cutting algorithm. In Section 1,
we have proposed a symmetric and envy-free protocol, this gives then a proportional
and symmetric protocol. With this approach we need to compute n! envy-free fair
divisions. This raises the following question: Do we need to compute a proportional
fair division for all the possible permutations to get a proportional and symmetric
division algorithm?
In this subsection we are going to show that there exists a symmetric and propor-
tional algorithm which uses O(n3) queries in the Robertson-Webb model.

The idea of the algorithm is a kind of improvement of the aristotelian algorithm.
Indeed, in the aristotelian algorithm if two players get a portion at the same stage
of the algorithm then they will evaluate their portion in the same way. Here, we
construct an algorithm in order to have also the following property: a player will
always receive a portion at the same stage of the algorithm whatever his or her
position in the input list µ is.

Our algorithm works as follows: Instead of asking to the first player to divide
the cake in n equal parts, we are going to ask to all players to cut the cake in n
equal parts for their own measures. Then, we will select the “smallest partition”
relatively to the graded order. Thus, we obtain a partition X = ⊔jAj independent
of the order of the measures.
Next, we compute all maximal allocations A relatively to this partition. For all of
these allocations we consider the set EA, constructed as follows: i ∈ EA if and only
if i belongs to the maximal allocation A and for all j, we have: µi(Aj) = µi(X)/n.
These sets will play the same role as the set E in the algorithm AristoProp. How-
ever, here we have several sets EA and then we have to choose one of them. We
select then a maximal allocation A where the portions associated to the players in
EA appear in the leftmost part of the cake. Thus this choice is still independent of
the order or the players. At last, we give these portions to their associated players.
If a portion Aj belongs to the selected maximal allocation is not given to a player
then this portion is used to construct a subcake X1 as in the aristotelian case. If a
portion Aj is not in the selected allocation then this portion is used to construct
the subcake X2. Our algorithm is then constructed in a way such that we always
associate the same players to the same subcake X1 or X2. As we repeat our strategy
on X1 and X2 we get a symmetric algorithm.

SymProp

Inputs: µ = [µ1, . . . , µn], X ⊂ [0, 1].
Outputs: X = F(X , µ, 1) ⊔ . . . ⊔ F(X , µ, n), where F(X , µ, i) is a finite union of

disjoint intervals and F(X , µ, i) is given to the i-th player.
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(1) %Ask all players to cut the cake in n parts with values µi(X )/n. %
For i from 1 to n do

xi,0 := minx∈X (x)
For j from 1 to n do

xi,j := cutXi (xi,j−1, µi(X )/n).

(2) % Find the smallest partition X = ⊔n
j=1Aj for the graded order. %

Compute (x0,0, . . . , x0,n) := min≻gr
{(xi,0, . . . , xi,n) | i = 1, . . . , n}.

For j from 1 to n do
Set Aj := [x0,j−1;x0,j ] ∩ X .

(3) % Ask each player to evaluate each Aj.%
For i from 1 to n do

For j from 1 to n do
evalXi (x0,j−1, x0,j).

(4) Compute the set S of all maximal allocationsA := {(µi1 , Aj1), . . . , (µil , Ajl)}
relatively to the partition X = ⊔n

j=1Aj .

(5) % The set EA is the set of indices i ∈ {i1, . . . , il} appearing in the allocation
A such that for j = 1, . . . , n, we have µi(Aj) = µi(X )/n.%
For all A = {(µi1 , Aj1 ), . . . , (µil , Ajl)} in S do
Set EA := ∅.

For k from 1 to l do
If the vector (xik ,0, . . . , xik ,n) associated to µik satisfied
(xik ,0, . . . , xik,n) = (x0,0, . . . , x0,η)
Then EA := EA ∪ {ik}.

(6) %Find an allocation Â ∈ S such that the portions associated to the mea-
sures µi with i ∈ EÂ are on the leftmost part of X .%
For all allocations A = {(µi1 , Aj1), . . . , (µil , Ajl)} in S do

NA := 0;
For k from 1 to l do

If ik ∈ EA Then NA := NA + 2jk .

Find an allocation Â ∈ S such that NÂ is minimal.

(7) % We consider the allocation Â. If ik ∈ EÂ then we give the portion Ajk

to the ik-th player else we use Ajk to construct the subcake X1. %

Set Â := {(µi1 , Aj1), . . . , (µil , Ajl)}.
Set NÂ :=

∑

j∈J 2j,

Set E1 := ∅, L1 := ∅, X1 := ∅.
For jk in {j1, . . . , jl} do

If jk ∈ J Then F(X,µ, ik) := Ajk

Else E1 := E1 ∪ {ik}, L1 := L1 ∪ {jk}, X1 := X1 ∪ Ajk .

(8) Construct a partition E1 = ⊔d
m=1E1,m and a partition L1 := ⊔d

m=1L1,m

sastisfying (⋆).
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Set µ
1,m

as the list of measures associated to players with index in E1,m.

Set X1,m := ⊔j∈L1,m
Aj .

Set E2 := {1, . . . , n} \ {i1, . . . , il}, X2 := X \
(

⊔l
k=1 Ajk

)

.
Set µ

2
as the list of measures associated to players with index in E2.

(9) Return
(

⊔i∈EF(X , µ, i)⊔d
m=1 SymProp (µ

1,m
,X1,m)⊔ SymProp (µ

2
,X2)

)

.

Proposition 16. The algorithm SymProp applied to µ = [µ1, . . . , µn] and X = [0, 1]

terminates, is symmetric and gives a proportional fair division of [0, 1].

Proof. The algorithm terminates since after one call of the algorithm the number
of player decreases strictly since at least one player get a part of the cake.

Now, we have to prove that this algorithm is symmetric.
First, we remark that in Step 2 the partition X = ⊔jAj is independent of the order
of the players given in the input. Indeed, this partition is chosen thanks to the
graded order.

Second, we define the set A as the set of portions Ajk given in Step 7 and the
set M as the set of measures receiving a portion in Step 7.
We are going to show that these two sets are independent of the order of the players
and also independent of the choice of Â in Step 6.

Indeed, we give Ajk if jk ∈ J , where J is the set defined by the property
NÂ =

∑

j∈J 2j . As the binary expansion of NÂ is unique, the set J is inde-

pendent of the order of the players and also independent of the allocation Â chosen
in Step 6. Thus A is independent of the order of the players and is also independent
of the choice of Â.
The set M is independent of the order of the players and of the choice of Â in
Step 6.
Indeed, if µik ∈ M then (µik , Ajk) ∈ Â and jk ∈ J , whereNÂ =

∑

j∈J 2j. Therefore

as beforeM is independent of the choice of Â in Step 6. Furthermore, by contruction
in Step 5 and Step 6, ik belongs to EÂ. Thus, µik ∈ M means that the associated
vector (xik,0, . . . , xik,n) satisfies the equality (xik,0, . . . , xik,n) = (x0,0, . . . , x0,n). As
the choice of the partition X = ⊔jAj in Step 2 is independent of the order of the
players, that is to say the choice of (x0,0, . . . , x0,n) is independent of the order of
the players, we deduce that M is indepedent of the order of the players.

Now, we remark that, for all µ ∈ M and all A ∈ A we have: µ(A) = µ(X )/n.
Indeed, all players ik associated to a measure µik ∈ M belongs to E

Â
by construc-

tion in Step 5 and Step 6. Thus µ(A) is independent of the choice of Â in Step 6.

Therefore, in Step 7 the sets A and M and the value µ(A) for µ ∈ M and A ∈ A

are independent of the order of the players and independent of the choice of Â with
minimal NÂ in Step 6. Furthermore, we can deduce that:

- X1 and E1 and then X1,m and E1,m,
- X2 and E2



18 CHÈZE, G.

are also independent of the order of the players and of the choice of Â in Step 6. It
follows then that the algorithm is symmetric.

The algorithm is proportional.
Indeed, the sets X1 and X2 are constructed as in AristoProp. The strategy used
by SymProp is the same than the one used in the algorithm AristoProp. Thus
with the same approach as the one used in Proposition 12 we can deduce that the
algorithm SymProp is proportional. �

Proposition 17. The algorithm SymProp uses at most O(n3) queries in the Robertson-
Webb model.

Proof. In Step 1 we use n2 cutXi queries, in Step 3 we use n(n− 1) evalXi queries.
Thus as shown in Proposition 14 we use at most O(n3) queries in the Robertson-
Webb model. �

Remark 18. Suppose that all the measures µi are equal to the Lebesgue measure
on [0, 1]. Then in Step 2 of the algorithm we have

(x0,0, . . . , x0,n) =
(

0, 1/n, 2/n, . . . , (n− 1)/n, 1
)

,

and then S contains n! allocations.
Thus in Step 6 we compute n! times the number NA = 2 + 22 + · · ·+ 2n.
Therefore, there exists a situation where the algorithm computes at least n! sums.

This is not the only situation where we need to perform an exponential number
of arithmetic operations. Another example is the following: Consider 2n+1 players,
suppose that the measure associated to the first n players is the Lebesgue measure
on [0; 1] and the measure associated to the other players is concentrated on [ 2n

2n+1 , 1].
Then in Step 2 of SymProp we have

(x0,0, . . . , x0,n) =
(

0,
1

2n+ 1
, . . . ,

2n

2n+ 1
, 1
)

,

and S contains
(

2n
n

)

allocations. Indeed, in order to get a maximal allocation we
have to associated n intervals among the 2n first intervals to the n players with the

Lebesgue measure on [0, 1]. As
(

2n
n

)

≈ 4n√
πn

in this situation we also perform an

exponential number of operations or inequality tests.

These examples show that the algorithm SymProp needs a polynomial number
of queries in the Robertson-Webb model but needs an exponential number of el-
ementary operations. The combinatorial nature of the problem is processed with
classical arithmetic operations and inequality tests.

3. Conclusion

In this article we have given an algorithm for computing symmetric and envy-
free fair division.
The complexity in the Robertson-Webb model of this algorithm increases the com-
plexity of an envy-free fair division by a factor n!. This raises the following question:
Can we avoid or reduce this factor?
Furthermore, we know a lower bound for the number of queries for an envy-free
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division. This lower bound is Ω(n2), see [24]. What is the lower bound for the
symmetric and envy-free problem? Do we have necessarily a factorial number of
queries? In other words, does the lower bound for the symmetric and envy-free fair
division belongs to Ω(n!)? Can we get a lower bound for a symmetric and envy-free
fair division?

In the approximate setting we get an ε-symmetric and ε-envy free fair division
algorithm thanks to the ε-perfect division proposed in [6]. In this case the number
of queries is in O(n2/ε). However, this algorithm uses an exponential number in n
of arithmetic operations and inequality tests.
This problem appears also in our last algorithm which computes a symmetric and
proportional fair division with O(n3) queries in the Robertson-Webb model. In this
algorithm we solve a sub-problem (the computation of the set S) with an exponen-
tial number (in n) arithmetic operations and inequality tests.

Thus in these kinds of situations (Symmetric and Proportionnal or ǫ-perfect fair
division) an algorithm with a polynomial number of queries cannot be considered
as a fast algorithm if it uses an exponential number in n of elementary operations.
A new model of computation has been suggested in [13]. In this model the number
of elementary operations must be taken into account. Then, in this model, the
algorithm SymProp has not a polynomial complexity and cannot be considered as
a fast algorithm. However, in a recent work based on a preprint of this article,
Aigner-Horev and Segal-Halevi have shown how to modify SymProp in order to get
an algorithm with a polynomial complexity even if we take into account the number
of arithmetic operations, see [30].

We have constructed in this article an algorithm giving an aristotelian and pro-
portional algorithm. This algorithm uses less arithmetic operations than our sym-
metric and proportional algorithm but these two algorithms use the same number
of queries. Is it necessary?

At last, the aristotelian notion comes from the Nichomachean Ethics by Aristotle
and one of the contributions of this article is to prove that we can compute an
aristotelian and proportional fair division efficiently (with a polynomial number of
queries). This result is interesting since until now all aristotelian proportional fair
division algorithms were envy-free algorithms and thus have a huge complexity in
the Roberston-Webb model. However, another philosopher, Seneca, would have
given a sever conclusion about this work:

“The mathematician teaches me how to lay out the dimensions of my estates;
but I should rather be taught how to lay out what is enough for a man to own.[. . . ]
What good is there for me in knowing how to parcel out a piece of land, if I know
not how to share it with my brother? [. . . ] The mathematician teaches me how I
may lose none of my boundaries; I, however, seek to learn how to lose them all with
a light heart.”
Letters Lucilius/Letter 88; Seneca.
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[9] K. Cechlárová and E. Pillárová. On the computability of equitable divisions. Discrete Opti-

mization, 9(4):249 – 257, 2012.
[10] Y. Chen, J. Lai, D. Parkes, and A. Procaccia. Truth, justice, and cake cutting. Games and

Economic Behavior, 77(1):284 – 297, 2013.
[11] Y. Chevaleyre, P. Dunne, U. Endriss, J. Lang, M. Lematre, N. Maudet, J. Padget, S. Phelps,

J. Rodrguez-Aguilar, and P. Sousa. Issues in multiagent resource allocation. INFORMATICA,
30:3–31, 2006.
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