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Underdetermined Reverberant Blind Source
Separation: Sparse Approaches for Multiplicative

and Convolutive Narrowband Approximation
Fangchen Feng and Matthieu Kowalski

Abstract—We consider the problem of blind source separa-
tion for underdetermined convolutive mixtures. Based on the
multiplicative narrowband approximation in the time-frequency
domain with the help of Short-Time-Fourier-Transform (STFT)
and the sparse representation of the source signals, we formulate
the separation problem into an optimization framework. This
framework is then generalized based on the recently investigated
convolutive narrowband approximation and the statistics of the
room impulse response. Algorithms with convergence proof are
then employed to solve the proposed optimization problems.
The evaluation of the proposed frameworks and algorithms
for synthesized and live recorded mixtures are illustrated. The
proposed approaches are also tested for mixtures with input
noise. Numerical evaluations show the advantages of the proposed
methods.

I. INTRODUCTION

A. Time model

Blind source separation (BSS) recovers source signals from
a number of observed mixtures without knowing the mixing
system. Separation of the mixed sounds has several appli-
cations in the analysis, editing, and manipulation of audio
data [1]. In the real-world scenario, convolutive mixture model
is considered to take the room echo and the reverberation effect
into account:

xm(t) =

N∑
n=1

amn(t) ∗ sn(t) + nm(t), (1)

where sn is the n-th source and xm is the m-th mixture. N and
M are the number of sources and microphones respectively.
amn(t) is the room impulse response (RIR) from the n-
th source to the m-th microphone. nm(t) is the additive
white Gaussian noise at the m-th microphone. We denote also
simg
mn(t) = amn(t) ∗ sn(t) the image of the n-th source at the
m-th microphone.

B. Multiplicative narrowband approximation

The source separation for convolutive mixtures is usually
tackled in the time-frequency domain with the help of STFT
(Short-Time-Fourier-Transform) [2], [3], [4]. With the narrow-
band assumption, the separation can be performed in each
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frequency band [5]. Because of the permutation ambiguity
in each frequency band, the separation is then followed by a
permutation alignment step to regroup the estimated frequency
components that belong to the same source [6]. In this paper,
we concentrate on the separation step.

The multiplicative narrowband approximation [2], [3] deals
with the convolutive mixtures in each frequency using the
complex-valued multiplication in the following vector form:

x̃(f, τ) =

N∑
n=1

ãn(f)s̃n(f, τ) + ñ(f, τ), (2)

where x̃(f, τ) = [x̃1(f, τ), . . . , x̃M (f, τ)]
T and s̃n(f, τ) are

respectively the analysis STFT coeffcients of the observations
and the n-th source signal. ãn(f) = [ã1n(f), . . . , ãMn(f)]

T

is a vector that contains the Fourier transform of
the RIR associated with the n-th source. ñ(f, τ) =
[ñ1(f, τ), . . . , ñM (f, τ)]

T consistes not only the analysis
STFT coefficients of the noise, but also the error term due
to the approximation. The formulation (2) approximates the
convolutive mixtures by using instantaneous mixture in each
frequency. This approximation therefore largely reduces the
complexity of the problem and is valid when the RIR length
is less than the STFT window length.

The sparsity assumption is largely utilized for source sepa-
ration problem [2], [3], [7], [8]. Based on the model (2) and
by supposing that only one source is active or dominant in
each time-frequency bin (f, τ), the authors of [2] proposed
to estimate the mixing matrix in each frequency by clustering,
and then estimate the source in a maximum a posteriori (MAP)
sense. This method is further improved by [3] where the
authors proposed to use a soft masking technique to perform
the separation. The idea is to classify each time-frequency
bin of the observation x̃(f, τ) into N class, where N is
the number of sources. Based on a complex-valued Gaussian
generative model for source signals, they inferred a bin-wise
a posteriori probability P (Cn|x̃(f, τ)) which represents the
probability that the vector x̃(f, τ) belongs to the n-th class
Cn. This method obtains good separation results for speech
signals, however only in low reverberation scenario [3]. The
performance of these methods is limited by the multiplicative
approximation whose approximation error increases rapidely
as the reverberation time becomes long [9]. Moreover, the
disjointness of the soures in the time-frequency domain is not
realistic [8].
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C. Beyond the multiplicative narrowband model

A generalization of the multiplicative approximation is pro-
posed in [4] by considering the spatial covariance matrix of the
source signals. By modeling the sources STFT coefficients as
a phase-invariant multivariate distribution, the authors inferred
that the covariance matrix of the STFT coefficients of the n-th
source images simg

n =
[
simg
1n , s

img
2n , . . . , s

img
Mn

]T
can be factorized

as:
Rs̃img

n
(f, τ) = vn(f, τ)Rn(f), (3)

where vn(f, τ) are scalar time-varying variances of the n-th
source at different frequencies and Rn(f) are time-invariant
spatial covariance matrices encoding the source spatial posi-
tion and spatial spread [4]. The multiplicative approximation
forces the spatial covariance matrix to be of rank-1 and the
authors of [4] exploited a generalization by assuming that the
spatial covariance matrix is of full-rank and showed that the
new assumption models better the mixing process because of
the increased flexibility. However, as we show in this paper
by experiments, the separation performance of this full-rank
model is still limited in strong reverberation scenarios.

Moreover, as both the bin-wise method [3] and the full-rank
approach [4] do not take the error term ñ into consideration,
they are therefore sensitive to additional noise.

Recently, the authors of [10] investigated the convolutive
narrowband approximation for oracle source separation of
convolutive mixtures (the mixing systems is known). They
showed that the convolutive approximation suits better the
original mixing process especially in strong reverberation
scenarios. In this paper, we investigate the convolutive narrow-
band approximation as the generalization of the multiplicative
approximation in the full blind setting (the mixing system if
unknown).

The contribution of the paper is three-folds: first based on
the multiplicative narrowband approximation, we formulate
the separation in each frequency as an optimization prob-
lem with `1 norm penalty to exploit sparsity. The proposed
optimization formulation is then generalized based on the
statistics of the RIR [11] and the convolutive narrowband
approximation model [10]. At last, we propose to solve the
obtained optimizations with PALM (Proximal alternating lin-
earized minimization) [12] and BC-VMFB (Block coordinate-
variable metric forward backward) [13] algorithms which have
convergence guarantee.

The rest of the article is organized as follows. We propose
the optimization framework based on multiplicative approxi-
mation with `1 norm penalty and present the corresponding
algorithm in Section II. The optimization framework is then
generalized in Section III based on the statistics of the RIR
and the convolutive approximation. The associated algorithm
is also presented. We compare the separation performance
achieved by the proposed approaches to that of the state-of-
the-art in various experimental settings in Section IV. Finally,
Section V concludes the paper.

II. THE MULTIPLICATIVE NARROWBAND APPROXIMATION

We first rewrite the formulation (2) with matrix notations
by concatenating the time samples and source indexes. In each

frequency f , we have:

X̃f = Ãf S̃f + Ñf , (4)

where X̃f ∈ CM×LT is the matrix of the analysis STFT
coefficients of the observations at the given frequency f . Ãf ∈
CM×N is the mixing matrix at frequency f . S̃f ∈ CN×LT is
the matrix of the analysis STFT coefficients of the sources
at frequency f . Ñf ∈ CM×LT is the noise term which also
contains the approximation error. In the above notations, LT
is the number of time samples in the time-frequency domain.

The target of the separation is to estimate Ãf and S̃f from
the observations X̃f . However, according to the definition of
the analysis STFT coefficients , the estimated S̃f has to be
in the image of the STFT operator (see in [14] for more
details). To avoid this additional constraint, we propose to
replace the analysis STFT coefficients S̃f by the synthesis
STFT coefficients αf ∈ CN×LT , which leads to:

X̃f = Ãfαf + Ñf . (5)

In the following, we denote also αf,n the n-th source compo-
nant (row) of αf and αf,n(τ) the scalar element at position
τ in αf,n.

A. Formulation of the optimization

Based on the model (5), we propose to formulate the
separation as an optimization problem as follow:

min
Ãf ,αf

1

2
‖X̃f − Ãfα‖2F + λ‖αf‖1 + ıC(Ãf ), (6)

where ‖ · ‖F denotes the Frobenius norm and ‖ · ‖1 is the `1
norm of the matrix which is the sum of the absolute value of
all the elements. ıC(Ãf ) is an indicator function to avoid the
trivial solution caused by the scaling ambiguity between Ãf

and αf :

ıC(Ãf ) =

{
0, if ‖ãf,n‖ = 1, n = 1, 2, . . . , N

+∞, otherwise
(7)

with ãf,n the n-th column of Ãf . λ is the hyperparameter
which balances between the data term 1

2‖X̃f − Ãfαf‖2F and
the penalty term ‖αf‖1.

For instantaneous mixtures, the formulation (6) has been
firstly proposed in [7] and recently investigated in [15].
Compared to the masking technique of separation [3], the `1
norm term exploits only sparsity which is more realistic than
the disjointness assumption for speech signals. Moreover, the
Lagrangian form with the data term 1

2‖X̃f − Ãfαf‖2F allows
us to take the noise/approximation error into consideration.

B. Algorithm: N-Regu

The optimization problem (6) is non-convex with a non-
differentiable term. In this paper, we propose to solve the
problem by applying the BC-VMFB (block coordinate variable
metric forward-backward) [16] algorithm. This algorithm re-
lies on the proximal operator [17] given in the next definition.



3

Definition 1. Let ψ be a proper lower semicontinuous func-
tion, the proximal operator associated with ψ is defined as:

proxψ := argmin
y

ψ(y) +
1

2
‖y − x‖2F . (8)

When the function ψ(y) = λ‖y‖1, the proximal operator
becomes the entry-wise soft thresholding presented in the next
proposition.

Proposition 2. Let α ∈ CN×LT . Then, α̂ = proxλ‖·‖1(α) :=
Sλ(α) is given entrywise by soft-thresholding:

α̂i =
αi
|αi|

(|αi| − λ)+ , (9)

where (α)+ = max(0, α).

When the function ψ in Definition 1 is the indicator function
ıC , the proximal operator reduces to the projection operator
presented in Proposition 3.

Proposition 3. Let Ã ∈ CM×N . Then Â = proxıC (Ã) :=

PC(Ã) is given by the column-wise normalization projection:

ân =
ãn
‖ãn‖

, n = 1, 2, . . . , N (10)

With the above proximal operators, we present the al-
gorithm derived from BC-VMFB in Algorithm 1. We de-
note the data term by Q(αf ,Af ) = 1

2‖X̃f − Ãfαf‖2F .

L(j) = ‖Ã(j+1)H

f Ã
(j+1)
f ‖2 is the Lipschitz constant of

∇αf
Q(α

(j)
f , Ã

(j)
f ) with ‖ · ‖2 denoting the spectral norm

of matrix. Details of the derivation of this algorithm and
the convergence study are given in Appendix VI-A. In the
following, this algorithm is referred as N-Regu (Narrowband
optimization with regularization).

Algorithm 1: N-Regu

Initialisation : α(1)
f ∈ CN×LT , Ã

(1)
f ∈ CM×N ,

L(1) = ‖Ã(1)H

f Ã
(1)
f ‖2, j = 1;

repeat
∇αf

Q
(
α

(j)
f , Ã

(j)
f

)
= −Ã

(j)H

f

(
X̃f − Ã

(j)
f α

(j)
f

)
;

α
(j+1)
f = Sλ/L(j)(α

(j)
f −

1
L(j)∇αf

Q(α
(j)
f , Ã

(j)
f );

Ã
(j+1)
f = PC(X̃fα

(j+1)H

f );

L(j+1) = ‖Ã(j+1)H

f Ã
(j+1)
f ‖2;

j = j + 1;
until convergence;

III. THE CONVOLUTIVE NARROWBAND APPROXIMATION

A. Convolutive approximation

Theoretically, the multiplicative narrowband approxima-
tion (2) is valid only when the RIR length is less than the STFT
window length. In practice, this condition is rarely varified
because the STFT window length is limited to ensure the local
stationarity of audio signals [10]. To avoid such limitation, the

convolutive narrowband approximation was proposed in [18],
[19]:

x̃(f, τ) =

N∑
n=1

L∑
l=1

h̃n(f, l)s̃n(f, τ − l), (11)

where h̃n =
[
h̃1n, . . . , h̃Mn

]T
is the vector that contains the

impulse responses in the time-frequency domain associated
with the n-th source. L is the length of the convolution kernel
in the time-frequency domain.

The convolutive approximation (11) is a generalization of
the multiplicative approximation (2) as it considers the infor-
mation diffusion along the time index. When the kernel length
L = 1, it reduces to the multiplicative approximation. The
convolution kernel in the time-frequency domain h̃mn(f, τ) is
linked to the RIR in the time domain amn(t) by [10]:

h̃mn(f, τ) = [amn(t) ∗ ζf (t)] |t=τk0 , (12)

which represents the convolution with respect to the time index
t evaluated with a resolution of the STFT frame step k0 with:

ζf (t) = e2πift/LF

∑
j

ϕ(j)ϕ̃(t+ j), (13)

where LF is the number of frequency bands. ϕ(j) et ϕ̃(j)
denote respectively the analysis and synthesis STFT window.

With matrix notations, for each frequency f , the convolutive
approximation (11) can be written as:

X̃f = H̃f ? S̃f + Ñf , (14)

where H̃f ∈ CM×N×L is the mixing system formed by
concatenating the impulse responses of length L. In the
following, we denote also h̃f,mn the vector that represents the
impulse response at position (m,n) in H̃f and h̃f,mn(τ) the
scalar element at position (m,n, τ). The operator ? denotes
the convolutive mixing process (11).

Compared to the original mixing process in the time do-
main (1), the convolutive approximation (14) largely reduces
the length of the convolution kernel, thus makes the estimation
of both the mixing system and the source signals practically
possible.

B. Proposed optimization approach

a) Basic extension of the multiplicative model: Once
again, to circumvent the additional constraint brought by the
analysis coefficients of the sources, we replace the analysis
STFT coefficients S̃f by the synthesis coefficients αf , which
leads to:

X̃f = H̃f ?αf + Ñf . (15)

Based on (15), we generalize (6) by replacing the multplicative
operator by the convolutive mixing operator:

min
H̃f ,αf

1

2
‖X̃f − H̃f ?αf‖2F + λ‖αf‖1 + ıConv

C (H̃f ), (16)
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where ıConv
C (H̃f ) is the normalisation constraint to avoid trivial

solutions:

ıConv
C (H̃f ) =


0, if

√∑
m,τ

|h̃f,mn(τ)|2 = 1, n = 1, . . . , N

+∞, otherwise.
(17)

b) Regularization for the convolution kernel: In [11], the
authors consider the problem of estimating the RIR supposing
that the mixtures and the sources are known. They formulated
the estimation problem as an optimization problem and pro-
posed a differentiable penalty for the mixing system in the
time domain: ∑

m,n,t

|amn(t)|2

2ρ2(t)
, (18)

where ρ(t) denotes the amplitude envelope of RIR which
depends on the reverberation time RT60:

ρ(t) = σ10−3t/RT60 , (19)

with σ being a scaling factor. The penalty (18) is designed to
force an exponential decrease of the RIR which satisfaits the
acoustic statistics of the RIR [20].

As the convolutive kernel in the time-frequency domain is
linked to the RIR in time domain by (12), in this paper, we
consider the penalty in the time-frequency domain in the same
form:

P(H̃f ) =
∑
m,n,τ

|h̃f,mn(τ)|2

2ρ̃2(τ)
, (20)

where ρ̃(τ) is the decreasing coefficients in the time-frequency
domain which depends on ρ(t) and the STFT transform.

Other forms of penalty are also proposed in [11]. However,
their adaption in the time-frequency domain is not straightfor-
ward.

c) Final optimization problem: With the above penalty
term, the formulation (16) can be improved as:

min
H̃f ,αf

1

2
‖X̃f − H̃f ?αf‖2F + λ‖αf‖1 +P(H̃f ) + ıConv

C (H̃f ).

(21)

C. Algorithm: C-PALM

We propose to use the Proximal Alternating Linearized
Minimization (PALM) algorithm [12] to solve the problem.
The derived algorithm is presented in Algorithm 2, and one
can refer to Appendix VI-C for details on the derivation and
the convergence study. We refer to this algorithm as C-PALM
(Convolutive PALM) in the following. We denote:

Q(α̃f , H̃f ) =
1

2
‖X̃− H̃f ?αf‖2F + P(H̃f )

and the gradient of P(H̃f ) is given coordinate-wise by:[
∇H̃f

P(H̃f )
]
f,mnτ

=
h̃f,mn(τ)

ρ̃4(τ)
. (22)

In Algorithm 2, H̃H
f and αHf are respectively the adjoint

operators of the convolutive mixtures with respect to the con-
volution kernel and the sources. Details of derivation of these

adjoint operators are given in Appendix VI-B. L(j)
αf and L(j)

H̃f

are respectively the Lipschitz constant of ∇αf
Q(α

(j)
f , H̃

(j)
f )

and ∇H̃f
Q(α

(j+1)
f , H̃

(j)
f ). L(j)

αf can be calculated with the

power iteration algorithm [9] shown in Algorithm 3. L(j)

H̃f
can

be approximately estimated thanks to the next proposition.

Algorithm 2: C-PALM

Initialisation : α(1)
f ∈ CN×LT , H̃

(1)
f ∈ CM×N , j = 1;

repeat
∇αf

Q
(
α

(j)
f , H̃

(j)
f

)
=

−H̃
(j)H

f ?
(
X̃f − H̃

(j)
f ?α(j)

)
;

α
(j+1)
f = S

λ/L
(j)
αf

(
α

(j)
f −

1

L
(j)
αf

∇αf
Q(α

(j)
f , H̃

(j)
f )

)
;

∇H̃f
Q(α

(j+1)
f , H̃

(j)
f ) =

−(X̃f − H̃
(j)
f ?α

(j+1)
f ) ?α

(j+1)H

f +∇H̃f
P(H̃(j)

f );

H̃
(j+1)
f =

PConv
ıC

(
H̃

(j)
f −

1

L
(j)

H̃f

∇H̃f
Q(α

(j+1)
f , H̃

(j)
f )

)
;

Update L(j)
αf et L(j)

H̃f
; j = j + 1;

until convergence;

Algorithm 3: Power iteration for the calculation of Lαf

Initialisation : vf ∈ CN×LT ;
repeat

W = H̃H
f ? H̃f ? vf ;

Lαf
= ‖W‖∞;

vf = W
Lαf

;

until convergence;

Proposition 4. If we suppose that the source componants
αf,1,αf,2, . . . ,αf,N are mutually independant and L � LT ,
then LH̃f

, the Lipschitz constant of ∇H̃f
Q(αf , H̃f ) can be

calculated as:

LH̃f
= max

n
(Lf,n) +

√
max
τ

(
1

ρ̃8(τ)
), (23)

where Lf,n = ‖Γf,n‖, with

Γf,n =


γf,n(0) γf,n(1) . . . γf,n(L − 1)
γf,n(−1) γf,n(0) . . . γf,n(L − 2)

...
...

. . .
...

γf,n(1− L) γf,n(2− L) . . . γf,n(0)

 ,

(24)
and γf,n(τ) is the empirical autocorrelation function of αf,n:

γf,n =

LT−1∑
`=1

αf,n(`+ τ)α∗f,n(`). (25)

Proof. The proof is postponed in Appendix VI-D.
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If the independance assumption mentioned in Proposition 4
appears to be strong, it is well adapted for audio signals as it
is the basic hypothesis of the FDICA (frequency domain inde-
pendant component analysis) [21] used for source separation
of determined convolutive mixtures. Although we do not have
any guarantee of independence in the proposed algorithm, the
experiments show that good performances are obtained.

Finally, we must stress that the BC-VMFB algorithm is
not suitable for (21) as it relies on the second derivative of
Q(α̃f , H̃f ) w.r.t H̃f , which does not necessarily simplify the
algorithm.

IV. EXPERIMENTS

A. Permutation alignment methods

For the proposed approaches, we use the existing per-
mutation alignment methods. For N-Regu, we compare the
approach based on TDOA (Time Difference Of Arrival) used
in Full-rank method [4] and the approach based on inter-
frequency correlation used in the Bin-wise approach [3]. For
the inter-frequency correlation permutation, we use the power
ratio [6] of the estimated source to present the source activity.
For C-PALM, as the TDOA permutation is not adapted, we
use only the correlation permutation.

For the proposed approaches (N-Regu and C-PALM) and
the reference algorithms (Bin-wise and Full-rank), we also
designed an oracle permuation alignment method. In each
frequency, we look for the permutation that maximizes the
correlation between the estimated and the original sources.
Such permutation alignment is designed to show the best
permutation possible in order to have a fair comparison of the
separation approaches instead of the choice made for solving
the permutation problem.

B. Experimental setting

We first evaluated the proposed approaches with 10 sets of
synthesized stereo mixtures (M = 2) containing three speech
sources (N = 3) of male/female with different nationalities.
The mixtures are sampled at 11 kHz and truncated to 6 s. The
room impulse response were simulated via the toolbox [22].
The distance between the two microphone is 4 cm. The
reverberation time is defined as 50 ms, 130 ms, 250 ms and
400 ms. The Fig. 1 illustrates the room configuration. For each
mixing situation, the mean values of the evaluation results over
the 10 sets of mixtures are shown.

We then evaluated the algorithm C-PALM with the live
recorded speech mixtures from the dataset SiSEC2011 [23].
Music mixtures are avoided because the instrumental sources
are often synchronized to each other and this situation is diffi-
cult for the permutation alignment based on inter-frequency
correlation [3]. An effective alternative way is to employ
nonnegative matrix factorization [24]. The parameters of STFT
for the synthesized and live recorded mixtures are summarized
in Table I. The STFT window length (and window shift) for
synthesized mixtures are chosen to preserve local stationarity
of audio sources without bringing too much computational
costs. The parameters for the live recorded mixtures are the
same as the reported reference algorithm Bin-wise [3].

Room size:
4.45m 

×3.55m×2.5m

Microphones sources 
distance 1.2m

Height of microphones and 
speakers: 1.2m

Fig. 1. Room configuration for synthesized mixtures

TABLE I
EXPERIMENTAL CONDITIONS

synthesized live recorded
Number of microphones M = 2 M = 2

Number of sources N = 3 N = 3, 4
Duration of signals 6 s 10 s

Reverberation time (RT60) 50, 130, 250, 400 ms 130, 250 ms
Sample rate 11 KHz 16 kHz

Microphone distance 4 cm 5 cm, 1 m
STFT window type Hann Hann

STFT window length 512 (46.5 ms) 2048 (128 ms)
STFT window shift 256 (23.3 ms) 512 (32 ms)

The separation performance is evaluated with the signal
to distortion ratio (SDR), signal to interference ratio (SIR),
source image to spatial distortion ratio (ISR) and signal to
artifact ratio (SAR) [25]. The SDR reveals the overall quality
of each estimated source. SIR indicates the crosstalk from
other sources. ISR measures the amount of spatial distortion
and SAR is related to the amount of musical noise.

N-Regu is initialized with Gaussian random signals. C-
PALM is initialized with the results of N-Regu with 1000
iterations. This choice of initialization for C-PALM compen-
sates the flexibility of the convolutive model (and then the
number of local minima in (21)) without bringing too much
computational cost. We use the stopping criteria ‖α(j+1)

f −
αjf‖F < 10−4 for both algorithms.

C. Tuning the parameters

For the proposed methods, we chose several pre-defined
hyperparameter λ and select the λ which corresponds to
the best SDR. Even though such a way of choosing this
hyper-parameter is not possible for real applications, such
evaluation offers a "fair" comparison with the state-of-the-art
approaches and gives some empirical suggestions of choosing
this parameter in practice. We implement the continuation
trick, also known as warm start or fixed point continuation [26]
for a fixed value of λ: we start the algorithms with a large value
of λ and iteratively decrease λ to the desired value.

It is also important to mention that the hyperparameter
λ should be theoretically different for each frequency since
the sparsity level of the source signals in each frequency
can be very different (for speech signals, the high frequency
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componants are usually sparser than the low frequency com-
ponants). Therefore, different λ should be determined for
each frequency. However, in this paper, we used a single λ
for all the frequencies and the experiments show that this
simplified choice can achieve acceptable results if we perform
a whitening pre-processing for each frequency.

For C-PALM, as the reverberation time is unknown in the
blind setting, we pre-define the length of the convolution
kernel in the time-frequency domain L = 3 as well as the
penalty parameter ρ̃(τ) = [1.75, 1.73, 1.72]

T . Although these
parameters should vary with the reverberation time, we show
in the following that the proposed pre-defined parameters work
well in different strong reverberation conditions.

D. Synthesized mixtures without noise

We first evaluate the algorithms with synthesized mixtures
in the noiseless case as a function of the reverberation time
RT60. The results are shown in Fig. 2.

For RT60 = 50 ms, it is clear that the Full-rank method
performs the best in terms of all four indicators. Its good
performance is due to the fact that the full-rank spatial
covariance model suits better the convolutive mixtures than
the multiplicative approximation and the fact that the TDOA
permutation alignement has relatively good performance in
low reverberation scenario. N-Regu outperforms Bin-wise only
in SDR and SAR. It is because that N-Regu has better
data fit than the masking-based Bin-wise method while Bin-
wise obtains time-frequency domain disjoint sources which
have lower inter-source interference. C-PALM is dominated
by other methods in SDR, SIR and ISR. We believe it is
because that the pre-defined penalty parameter ρ̃(τ) does not
fit the low reverberation scenario. The advantages of C-PALM
can be seen in relatively stronger reverberation scenarios
(especially RT60 = 130, 250 ms) where C-PALM outperforms
other methods in SDR and SIR. For RT60 = 400 ms, all
the presented algorithms have similar performance while C-
PALM performs slightly better in SIR. To compare the two
permutation methods used for N-Regu, TDOA permutation
performs better than inter-frequency correlation permutation
in SDR, SIR and SAR.

Fig. 3 compares the presented algorithms with oracle per-
mutation alignment. For RT60 = 50 ms, once again, Full-rank
has the best performance in all four indicators. This confirms
the advantages of the full rank spatial covariance model. In
high reverberation conditions, C-PALM performs better than
others in SDR and SIR. In particular, for RT60 = 130, 250 ms,
C-PALM outperforms Full-rank by more than 1 dB in SDR
and outperforms Bin-wise by about 1.2 dB in SIR. N-Regu
performs slightly better than Bin-wise in SDR for all rever-
beration conditions.

The above observations show the better data fit brought by
the optimization framework used in N-Regu (and C-PALM)
and confirm the advantages of convolutive narrowband ap-
proximation used in C-PALM for high reverberation conditions
(especially RT60 = 130, 250 ms).

Fig. 4 illustrates the performance of the presented algorithm
as a function of the sparsity level 1 of the estimated synthesis
coeffcients of the sources for RT60 = 130 ms. As the
sparsity level is directly linked to the hyperparameter λ in the
proposed algorithms, this comparison offers some suggestions
of choosing this hyperparameter. Full-rank method does not
exploits sparsity, thus has 0% as sparsity level. As the number
of sources N = 3, the sparsity level of the masking-based
Bin-wise method is 66.6%.

C-PALM performs better than N-Regu in terms of SDR,
SIR and SAR when the sparsity level is less than 60% and its
best performance is achieved when the sparsity level is around
40%. For N-Regu, in terms of SDR, SAR and ISR, the best
performance is achieved with the least sparse result.

E. Synthesized mixtures with noise

In this subsection, we evaluate the proposed methods with
synthesized mixtures with additive white Gaussian noise. The
noise of different energy is added which leads to different
input SNR. Fig. 5 reports the separation performance as a
function of input SNR with the reverberation time fixed to
RT60 = 130 ms.

It is clear that N-Regu with TDOA permutation outperforms
other methods in terms of SDR and SIR. In particular, it
performs better than others by about 1 dB in SIR for all the
input SNR tested. C-PALM outperforms the state-of-the-art
approaches only in SDR. We believe that it is due to the
fact that the freedom degree of the convolutive narrowband
approximation used in C-PALM could be sensitive to input
noise. Another reason is that the inter-frequency correlation
based permutation could be sensitive to input noise. The latter
conjecture is supported by the observation that, in terms of
SDR and SIR, the gap between N-Regu with TDOA permu-
tation and with correlation permutation increases as the input
noise becomes stronger. Further evidence can be found by
the comparisons between the presented algorithm with oracle
permutation alignment in Fig. 6.

In Fig. 6, in terms of SDR and SIR, it is clear that the gap
between N-Regu and C-PALM decreases as the input noise
gets stronger. This remark confirms that the separation step of
C-PALM is sensitive to input noise. Moreover, in terms of SIR,
C-PALM with oracle permutation performs consistently better
than N-Regu with oracle permutation, while C-PALM with
correlation permutation is dominated by N-Regu with TDOA
permutation by about 1 dB (Fig. 5). This observation shows
that the performance of C-PALM can be largely improved
for noisy mixtures if better permutation alignment method is
developped.

Fig. 7 reports the separation performance as a function of
the sparsity level of the estimated synthesis coefficients of the
sources. RT60 = 130 ms and the input SNR is 15 dB. The
results of Full-rank and Bin-wise method are also shown.

In terms of SDR and SIR, N-Regu with TDOA permuta-
tion consistently outperforms the other methods and achieves
its best performance when the sparsity level is about 78%.

1In this paper, the sparsity level is the percentage of zero elements in a
vector or matrix. A higher sparsity level means a sparser vector or matrix.
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Fig. 2. Separation performance as a function of the reverberation time RT60 in noiseless case

RT60 (ms)
50 100 150 200 250 300 350 400

SD
R

 (d
B)

0

2

4

6

8

10

RT60 (ms)
50 100 150 200 250 300 350 400

SI
R

 (d
B)

0

5

10

15

RT60 (ms)
50 100 150 200 250 300 350 400

IS
R

 (d
B)

4

6

8

10

12

14

16

RT60 (ms)
50 100 150 200 250 300 350 400

SA
R

 (d
B)

2

4

6

8

10

12

14

N-Regu with oracle permutation
C-PALM with oracle permutation
Bin-wise with oracle permutation
Full-rank with oracle permutation

Fig. 3. Separation performance of different algorithms with oracle permutation alignment as a function of the reverberation time RT60 in noiseless case

Compared to Bin-wise method, this observation coincides with
the intuition that, for noisy mixtures, the coefficients of the
noise in the observations should be discarded to achieve better
separation. C-PALM achieves its best performance in terms of
SDR and SIR when the sparsity level is about 75%.

Fig. 8 illustrates the results of separation as a function of
the reverberation time for a fixed input SNR (SNR=15 dB).

We can see that N-Regu with TDOA permutation has the best
performance in terms of SDR.

F. Synthesized mixtures with different sources positions

In this subsection, we tested the robusteness of the proposed
algorithms w.r.t the sources positions. The same room setting
as shown in Fig. 1 is used. Fig. 9 illustrates the four tested
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Fig. 4. Separation performance of different algorithms as a function of the sparsity level in noiseless case. RT60 = 130 ms
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Fig. 5. Separation performance of different algorithms as a function of the input SNR for RT60 = 130 ms

sources positions. The same sources positions configuration as
in Fig. 1 is also shown as setting 1 . In these experiments,
the reverberation time is fixed to RT60 = 130 ms and no
noise is added to the mixtures. Fig. 10 shows the separation
performance.

It is clear that in terms of SDR, SIR and ISR, all the
presented algorithms have the worst performance in setting 3.

This remark shows that having two sources close to each other
and one source relatively far (setting 3) could be a more
difficult situation for blind source separation than having three
sources close to each other (setting 4). For C-PALM, it has
the best performance in terms of SDR, SIR and ISR for all
the settings. This observation shows that C-PALM (and the
pre-defined penalty parameter) is robust to sources positions,
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Fig. 7. Separation performance of different algorithms as a function of the sparsity level. RT60 = 130 ms. SNR = 15 dB

even with difficult configuration (setting 3).

G. Live recorded mixtures without noise

This subsection reports the separation results of C-PALM
for publicly avaiable benchmark data in SiSEC2011 [23].
We used the speech signals (male3, female3, male4 and
female4) from the first development data (dev1.zip) in "Under-

determined speech and music mixtures" data sets. Table II
shows the separation results. For C-PALM, we chose the
hyperparameter λ such that the sparsity level of the estimated
coefficients of the sources is about 20%, 60% for RT60 =
130, 250 ms respectively. Compared to the performances re-
ported in [23], C-PALM obtains relatively good separation
results epsecially when the number of sources N = 3.
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Fig. 8. Separation performance of different algorithms as a function of the reverberation time RT60 with input SNR=15 dB

TABLE II
SEPARATION RESULTS OF C-PALM FOR LIVE RECORDED MIXTURES FROM SISEC2011 (SDR/SIR/ISR/SAR IN DB)

RT60 = 130 ms RT60 = 250 ms
microphone space 5 cm 1 m 5 cm 1 m

male3 7.65 / 11.38 / 12.10 / 10.65 7.53 / 11.27 / 11.77 / 10.58 5.20 / 7.67 / 9.01 / 8.62 4.98 / 10.62 / 6.67 / 7.04
female3 6.69 / 9.81 / 10.90 / 10.52 9.77 / 14.49 / 14.13 / 13.02 5.29 / 9.16 / 7.77 / 8.75 7.34 / 11.22 / 10.97 / 11.02
male4 3.25 / 4.65 / 6.09 / 6.01 2.34 / 2.15 / 5.16 / 5.47 2.10 / 1.79 / 4.63 / 5.49 3.08 / 4.22 / 6.00 / 6.11

female4 2.36 / 2.05 / 5.37 / 6.53 3.66/ 6.05 / 6.80 / 7.15 2.39 / 2.20 / 5.27 / 6.51 3.12 / 4.51 / 6.07 / 6.84
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Fig. 9. Different settings of source positions for synthesized mixtures without
input noise

H. Computational time

We terminate the expriment section by presenting the com-
putational time of the presented algorithm for the synthesized

mixtures in Table III.

TABLE III
COMPUTATIONAL TIME OF DIFFERENT ALGORITHMS FOR ONE

SYNTHESIZED MIXTURE

C-PALM N-Regu Bin-wise Full Rank
4960.7 s 1388.8 s 152.9 s 3415.4 s

C-PALM is of relative big computational cost mainly be-
cause of the convolution operator in each iteration of the
algorithm.

V. CONCLUSION

In this paper, we have developped several approaches for
blind source separation with underdetermined convolutive
mixtures. Based on the sparsity assumption for the source
signals and the statistics of the room impulse response, we
developed the N-Regu with multiplicative narrowband approx-
imation and C-PALM with convolutive narrowband approxi-
mation. The numerical evaluations show the advantages of C-
PALM for noiseless mixtures in strong reverberation scenarios.
The experiments also show the good performance of N-Regu
for noisy mixtures.
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Fig. 10. Separation performance of different algorithms for different sources positions in noiseless case. RT60 = 130 ms.

The penalty parameter ρ̃(τ) in C-PALM has to be pre-
defined, which makes C-PALM not suitable for low reverbera-
tion condition. Future work will concentrate on the estimation
of ρ̃(τ). In this paper, we used inter-frequency correlation
permutation alignment for C-PALM. It would be interesting
to exploit TDOA based permutaiton method for convolutive
narrowband approximation to improve C-PALM.

VI. APPENDIX

A. Derivation of N-Regu

We consider the following optimization problem:

min
Ãf ,αf

1

2
‖X̃f − Ãfαf‖2F +

µ

2
‖Ãf‖2F + λ‖αf‖1 + ıC(Ãf ).

(26)
This optimization is equivalent to the problem (6): the indica-
tor function ıC(Ãf ) forces the normalization on each column
of Ãf , therefore the term µ

2 ‖Ãf‖2F is a constant and does
not change the minimizer. The reason of adding this term is
purely algorithmic. We then solve the optimization (26) with
BC-VMFB [13].

Let the general optimization

min
x,y

F (x) +Q(x,y) +G(y) , (27)

where F (x) and G(y) are lower semicontinuous functions,
Q(x,y) is a smooth function with Lipschitz gradient on any
bounded set. BC-VMFB uses the following update rules to
solve (27):

x(j+1) =argmin
x

F (x) + 〈x− x(j),∇xQ(x(j),y(j))〉

+
t1,(j)

2
‖x− x(j)‖2U2,(j) ,

(28)

y(j+1) =argmin
y

G(y) + 〈y − y(j),∇yQ(x(j+1),y(j))〉

+
t2,(j)

2
‖y − y(j)‖2U2,j ,

(29)

where U1,(j) and U2,(j) are positive definite matrices. ‖x‖2U
denotes the variable metric norm:

‖x‖2U = 〈x,Ux〉. (30)

With the variable metric norm, the proximal operator (8) can
be generalized as:

proxU,ψ := argmin
y

ψ(y) +
1

2
‖y − x‖2U. (31)

Then (28) and (29) can be rewritten as follow:

x(j+1) =proxU1,(j),F/t1,(j)

(
x(j)

− 1

t1,(j)
U1,(j)−1

∇xQ(x(j),y(j))

)
,

(32)

y(j+1) =proxU2,(j),G/t2,(j)

(
y(j)

− 1

t2,(j)
U2,(j)−1

∇yQ(x(j+1),y(j))

)
.

(33)

It is shown in [13] that the sequence generated by the above
update rules converges to a critical point of the problem (27).

For the problem (26), we make the following substitutions:

F (αf ) = λ‖αf‖1,

Q(αf , Ãf ) =
1

2
‖X̃f − Ãfαf‖2F +

µ

2
‖Ãf‖2F ,

G(Ãf ) = ıC(Ãf ),

(34)
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Denoting by L(j) the Lipschitz constant of∇αf
Q(α

(j)
f , Ã

(j)
f ),

we have chosen:

U1,(j) = L(j)I,

U2,(j) =
∂Q(Ãf ,α

(j+1)
f )2

∂2Ãf

= α
(j+1)
f α

(j+1)H

f + µI,

t1,(j) = t2,(j) = 1.

(35)

The update step of the mixing matrix can be written as:

Ã
(j+1/2)
f = X̃fα

(j+1)H

f (α
(j+1)
f α

(j+1)H

f + µI)−1,

Ã
(j+1)
f ∈ proxU2,(j),ıC (Ã

(j+1/2)
f ).

(36)

As the choice of the parameter µ does not change the mini-
mizer of (26), by choosing µ sufficiently large, the update step
of Ãf becomes:

Ã
(j+1/2)
f = PC

(
X̃fα

(j+1)H

f

)
. (37)

We obtain the N-Regu as shown in Algorithm 1.

B. Convolutive mixing operator and its adjoint operators

Given a signal s ∈ CT , and a convolution kernel h ∈ CL,
the convolution can be written under the matrix form:

x = Hs = Sh , (38)

H ∈ CT×T and S ∈ CT×L being the corresponding circulant
matrices.

The convolutive mixing operator can then be represented by
x1

x2

...
xM

 =


H11 H12 . . . H1N

H21 H22 . . . H2N

...
...

. . .
...

HM1 HM2 . . . HMN




s1
s2
...

sN

 , (39)

where s1, s2, . . . , sN ∈ CT are N source signals and
x1,x2, . . . ,xM ∈ CT are M observations. Hmn is the con-
volution matrix from the n-th source to the m-th microphone.

Thanks to these notations, the adjoint operator of convo-
lutive mixing with respect to the mixing system is a linear
operator CM×T → CN×T and can be represented by the
following matrix multiplication:

s1
s2
...

sN

 =


HH11 HH21 . . . HHN1

HH12 HH22 . . . HHN2
...

...
. . .

...
HH1M HH2M . . . HHNM




x1

x2

...
xM

 . (40)

In order to coincide with the previous notations in (14), we
denote the above formulation as:

S = HH ?X. (41)

The adjoint operator of the convolutive mixture with respect
to the sources can then be written as:

H = X ? SH , (42)

with
hmn = SHn xm. (43)

C. Derivation of C-PALM

The PALM algorithm [12] is designed to solve the non-
convex optimization problem in the general form (27) by the
following update rules:

x(j+1) = argmin
x

F (x) + 〈x− x(j),∇xQ(x(j),y(j))〉

+
t1,(j)

2
‖x− x(j)‖22,

(44)

y(j+1) = argmin
y

G(y) + 〈y − y(j),∇yQ(x(j+1),y(j))〉

+
t2,(j)

2
‖y − y(j)‖22,

(45)

where j is the iteration index and t1,(j) et t2,(j) are two step
parameters.

It is shown in [12] that the sequence generated by the above
update rules converges to a critical point of the problem (27).

From the general optimization (27), we do the following
substitutions:

F (αf ) = λ‖αf‖1,

Q(αf , H̃f ) =
1

2
‖X̃f − H̃f ?αf‖2F + P(H̃f ),

G(H̃f ) = ıConv
C (H̃f ),

(46)

and the particular choices:

t1,(j) = L1,(j), t2,(j) = L2,(j),

where L1,(j) and L2,(j) are respectively the Lipschitz constant
of ∇αf

Q(α
(j)
f , H̃

(j)
f ) and ∇H̃f

Q(α
(j+1)
f , H̃

(j)
f ). We obtain

the C-PALM algorithm presented in Algorithm 2.

D. Calculation of the Lipschitz constant in C-PALM

We present the calculation of the Lipschitz constant of the
function

I(H̃f ) := H̃f ?αf ?α
H
f +∇H̃f

P(H̃f )

= Ĥf +∇H̃f
P(H̃f ).

(47)

Let Ψn denotes the circulant matrix associated with αn. If
the synthesis coefficients of different sources are independent,
we have

E [ΨiΨj ] = 0, for i 6= j.

Then, using similar notations as in Appendix VI-B, one can
write Ĥ as:

ĥmn = ΨH
n Ψnh̃m, (48)

Finally, Proposition 4 comes from the definition of the
Lipschitz constant.
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