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Abstract. Over the last decade, dual-energy CT scanners have gone from prototypes to clinically

available machines, and spectral photon counting CT scanners are following. They require a specific

reconstruction process, consisting of two steps: material decomposition and tomographic reconstruction.

Image-based methods perform reconstruction, then decomposition, while projection-based methods

perform decomposition first, and then reconstruction. As an alternative, “one-step inversion” methods

have been proposed, which perform decomposition and reconstruction simultaneously. Unfortunately,

one-step methods are typically slower than their two-step counterparts, and in most CT applications,

reconstruction time is critical. This paper therefore proposes to compare the convergence speeds of five

one-step algorithms. We adapted all these algorithms to solve the same problem: spectral photon-

counting CT reconstruction from five energy bins, using a three materials decomposition basis and

spatial regularization. The paper compares a Bayesian method which uses non-linear conjugate gradient

for minimization [5], three methods based on quadratic surrogates [19, 37, 22], and a primal-dual

method based on MOCCA, a modified Chambolle-Pock algorithm [3]. Some of these methods have been

accelerated by using µ-preconditioning, i.e. by performing all internal computations not with the actual

materials the object is made of, but with carefully chosen linear combinations of those. In this paper,

we also evaluated the impact of three different µ-preconditioners on convergence speed. Our experiments

on simulated data revealed vast differences in the number of iterations required to reach a common

image quality objective: Mechlem2018 [22] needed 10 iterations, Cai2013, Long2014 and Weidinger2016

[5, 19, 37] several hundreds, and Barber2016 [3] several thousands. We also sum up other practical aspects,

like memory footprint and the need to tune extra parameters.

1. Introduction

1.1. Data acquisition

Dual energy computed tomography (CT) systems are now commercially available, and spectral photon

counting CT systems already exist as research prototypes. These new types of scanners provide

information on the energy distribution of the X-ray photons that reach the detector: dual energy systems

acquire two sets of projections (for low and high energies), while spectral photon counting systems group

the incoming photons into so-called “energy bins”, which form a partition of the incident spectrum’s

bandwidth. For each projection’s pixel, the “raw” measurements acquired by a spectral photon counting

CT scanner are therefore the number of photons in each energy bin, which are commonly referred to as

“photon counts”.

1.2. Attenuation model

Assuming that the object’s attenuation can be obtained by linear combination of the attenuations of

only a few materials, this energy-resolved information allows to reconstruct multiple volumes, each one

representing a different material’s concentration map. Alternatively, one can assume that the attenuation

stems from only a few physical phenomena, e.g. Compton scattering, photo-electric effect and K-edge

[1, 26], and reconstruct maps of the characteristic quantities of each of these physical phenomena. For

the sake of readability, we present the case of spectral photon-counting CT, and decompose on a basis

of materials, but all calculations are also valid for dual-energy CT, and with photo-electric effect and

Compton scattering as decomposition basis. It is assumed that the linear attenuation coefficient µ̃je of

the imaged object in voxel j and at energy e can be separated into a function of space and a function

of energy, i.e.

µ̃je =
Nm∑
m=1

µme xjm (1)
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where Nm is the number of materials, µme the mass-attenuation coefficient of material m at energy e,

and xjm the concentration of material m in voxel j. The attenuation profiles (µme)e=1..150keV are known,

and the aim is to find the concentration maps xm.

1.3. Reconstruction methods

The most widespread methods to reconstruct material-specific volumes from photon counts can be

divided into two categories: image-based and projection-based. In two-step image-based methods, each

energy bin of the photon counts is log-transformed and reconstructed, just like the projections dataset

of a standard CT. This process yields one volume per energy bin and these intermediate volumes

are then decomposed into material-specific volumes [20, 25]. Unfortunately, the intermediate volumes

are corrupted by beam hardening artefacts [36], because the energy dependence of the attenuation

coefficients is still averaged in each energy bin. Image-based methods often integrate some form

of empirical beam-hardening correction [20], but perfect beam-hardening correction would require

knowledge of the material volumes. In two-step projection-based methods, on the other hand, multi-

channel projections are first decomposed into material-specific projections, and then reconstructed,

independently [1, 31] or jointly [30, 24]. It turns out that for typical choices of materials (e.g. water, bone,

and a high-Z contrast agent), the normalized attenuation profiles of the materials do not differ enough to

yield a robust decomposition: the inevitable statistical noise on photon counts is often sufficient to cause

aberrant material line integrals, which result in strong streak artefacts in the reconstructed volumes.

Some methods were proposed to regularize the decomposition process [4, 9], but how to regularize in

the projection domain is a difficult problem: there are conditions for projections to be consistent, i.e.

to be those of an actual object, called Data-Consistency Conditions (DCC) [8, 18], and regularization

with priors used routinely for volumes (e.g. total variation) can generate inconsistent projections. In

addition, projection-based methods require the spectral projections to have the same geometry (same

source and detector positions), it cannot be applied to fast kV switching [34] or dual source dual-energy

systems [11] easily: corresponding projections must be interpolated, which is a potential source of errors.

Two-step methods also have a structural drawback: unless the first step provides a one-to-one

mapping between inputs and outputs, it implies a loss of information, for which the second step cannot

compensate. The aberrant pixels observed after projection-based decomposition illustrate that loss of

information: the reconstruction step cannot go back to the photon counts, and therefore must rely

on aberrant decomposition results. Recently, several methods have been proposed which reconstruct

material-specific volumes directly from the photon counts [5, 19, 37, 3, 22, 7]. They are commonly

referred to as “one-step inversion”, or simply “one-step” methods. All of these methods are iterative:

there is currently no analytical inversion formula for the material decomposition problem, let alone for

one-step inversion. They consist in combining the forward models of the tomographic reconstruction and

the material separation inverse problems, yielding a single (but more complex) forward model, which

takes as input a set of material volumes, and yields photon counts as output. In discrete form, the

forward model reads

ȳ ib =
∑
e

sbe exp

(
−
∑
j

aij
∑
m

µme xjm

)
(2)

where ȳib is the expected photon count in pixel i and bin b, sbe is the effective spectrum, i.e. the number

of photons of actual energy e that are expected to be detected in bin b if there was no attenuating

object and aij is the coefficient of the forward projection matrix A at row i and column j. One-step
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inversion then means finding the volumes xm for which the forward model yields photon counts y as

similar as possible to those measured by the scanner. By construction, the drawbacks of two-step

methods are circumvented, and there is no risk of losing information. One-step methods have been

reported to yield improved image quality [29] and reduced noise-induced bias [22] with respect to their

two-step counterparts, but they are also slower to converge. This is likely to prevent their use in many

applications, as it happened for regularized iterative reconstruction techniques on standard CT [27].

Since in the multi-energy CT case the amount of data contained in a single acquisition is multiplied by

the number of energy bins, and the one-step problem is more complex than the reconstruction problem

alone, the need for fast methods is even more acute than for standard CT.

Among the methods studied in this paper [5, 19, 37, 22, 3], only Cai et al. [5] reported a comparison

with another one-step method [35] and an advanced image-based two-step method [21]. Barber et al. [3]

showed many results, but only with the proposed method, and the other ones [19, 37, 22] are compared

to two-step methods, either projection-based or image-based [23], with the exception that Mechlem

et al. [22] contains a comparison with the method of Weidinger et al. [37] in terms of convergence

speed. An independent comparison between many one-step methods is therefore still missing, although

it would certainly benefit the spectral CT scanner manufacturers, saving them the hassle of investigating

many methods to implement only one. We provide such a comparison in this paper, with experiments

conducted on simulated data on a single slice. Since we provide the code we used, it will also help the

research community: ranking a new one-step method against the ones studied in this paper will only

require to implement the new method in the open source framework we provide.

All methods were first adapted to solve the same one-step problem: spectral photon-counting

CT reconstruction from five energy bins using a three materials decomposition basis and spatial

regularization. Since the five methods we studied use different data-attachment and regularization

terms, as well as different optimization techniques, we defined an image quality objective, independant

of the cost functions, and measured the number of iterations required to reach it with each method.

These results constitute the main contribution of the present paper. For each method, we also study

its memory footprint, state whether it requires to tune additional parameters, and whether or not the

derivation of the algorithm uses simplifying assumptions/approximations.

In [3, 10], it is proposed to perform internal computations not with the actual materials into which

one wishes to decompose the object, but with carefully chosen linear combinations of these materials.

Since the materials are characterized only by their attenuation coefficient µ as a function of the incident

energy, Barber et al. call this step µ-preconditioning. In this paper, we present three different ways

to perform µ-preconditioning and evaluate their impact on convergence speed. Since most methods

were not explicitly designed for µ-preconditioning, a small adaptation is required (and described in the

present paper) for the regularization step.

2. Material and methods

2.1. Compared methods

We have studied five one-step reconstruction methods, adapted them to solve the 3-material, 5-bin,

unconstrained and regularized one-step spectral reconstruction problem, and compared their behavior.

These methods are:

• Cai2013 [5], which uses non-linear conjugate gradient with a heuristical step size,
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• Long2014, Weidinger2016 and Mechlem2018 [19, 37, 22], which use Separable Quadratic Surrogates

(SQS) to minimize cost functions,

• Barber2016 [3], which relies on a generalization of the Chambolle-Pock algorithm [6].

All methods use the polychromatic Beer-Lambert law as forward model (the way to estimate the expected

photon counts y from material maps xm) which is reminded in its discrete form in equation 2. They

slightly differ by the cost functions they attempt to minimize, which are summarized in Table 1. The

data-attachment terms differ because they model the noise differently: Cai2013 optimizes a Gaussian

observation model in a Bayesian framework where all the others minimize the Poisson negative log-

likelihood. All regularization terms are different but share some similarities, involving the `1-norm (or

a twice-differentiable approximation of it) of the spatial gradient of each reconstructed volume.

Since three methods out of five use them, it is useful to remind the definition of Separable Quadratic

Surrogates (SQS) and how they are used. Surrogates are defined as follows: let Ψ : RN → R and

x0 ∈ RN . The function Φx0 : RN → R is a surrogate of Ψ at x0 if and only if{
∀x ∈ RN ,Φx0(x) ≥ Ψ(x)

Φx0(x0) = Ψ(x0),Φ′x0(x0) = Ψ′(x0)
(3)

i.e. if Φx0 is above Ψ on RN , and tangent to Ψ at x0. Note that we have used RN as domain for simplicity,

but in Long2014 the domain actually used is R+N . The algorithms based on surrogates consist in finding

a surrogate Φx0 to the cost function Ψ at the current iterate x0, minimizing the surrogate instead of the

original cost function, adopting that minimizer as the new iterate x1, and starting over. Obviously, the

surrogates must be chosen carefully in order to be easier to minimize than the original cost function.

In [19, 37, 22], surrogates are derived one after the other: first a convex one, then a quadratic one, and

finally a separable quadratic one, each new one being a surrogate of all the previous ones, and therefore

of the original cost function.

2.2. Preliminary comments

We have tried to stick as much as possible to the original algorithms, but some modifications were

required. In this section, we briefly introduce each method, and describe the modifications we had to

perform. Though we have tried to make the present paper as self-contained as possible, it is impossible

to explain all the methods in details without ending up duplicating large passages of the original papers.

The detailed maths can be found in our notes (see section 2.7), in which we guide the reader through

the equations and re-do most calculations, for all methods but Barber2016. For Barber2016, our notes

only provide implementation suggestions, because the original paper is already written in a very didactic

way. However, since we had to adapt the five studied methods to deal with a common problem, we

provide the pseudo-code of all methods in Appendix. In these pseudo-codes, as much as possible, we

used common notations for all methods, in particular for the matrices that describe detector response,

incident spectrum and material attenuations. A drawback of this approach is that the pseudo-code

notations no longer correspond to those of the original papers. Throughout the paper, when referring

to variable names, we use the ones from the pseudo-code. We use a contraction of the first author’s

name and publication year (e.g. “Cai2013”) to refer to each method. When the distinction is relevant,

it should be clear from the context whether we mean the method implemented and modified by us, or

the one described in the original papers.
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2.2.1. Cai2013 Cai2013 [5] was originally published for dual energy CT. The cost function is built with

a variable y that is the ratios between photon counts with object and photon counts without object

(instead of just the photon counts with object, in the other methods). The variance of these ratios y is

assumed to be proportional to y, with a factor kd that has to be estimated. We generalized Cai2013 [5]

to 3 materials, which is straightforward, and kd is determined by a simulation with the same spectrum,

detector response and geometry as in the experiments, but without object. It yields kd = 1.59 × 10−4.

The regularization term is the Huber function of the spatial gradient of the volumes, with the Huber

function defined as

φHuber(x, δ) =

{
x2 if |x| < δ,

2δ|x| − δ2 else.
(4)

The cost function is minimized by a non-linear conjugate gradient, with a heuristically determined

step size. Given the descent direction, the step size is computed as the one that would minimize the

cost function’s second-order Taylor expansion. Then the cost function is computed at the candidate

destination point, and the step size divided by 2 if it causes an increase of the cost instead of a decrease.

According to the authors, the case where the step length had to be divided by 2 never occurred in the

experiments they conducted (which were limited to dual-energy CT). In ours, it did occur, and we had

to implement a reset mechanism: if, after 10 attempts to divide the step length by 2, we still obtain an

increase of the cost function, we assume that the descent direction yielded by non-linear CG is erroneous,

and try using the opposite gradient instead, as in an ordinary gradient descent. Since it is an ad hoc

adaptation, and only for a special case, we have not included it into the pseudo-code in the Appendix.

2.2.2. Long2014 Long2014 [19] defines the following hyperbola for approximating the absolute value

function in the regularization:

φLong(x, δ) =
δ2

3

(√
1 + 3

(x
δ

)2

− 1

)
. (5)

The authors sequentially derive the surrogates of the cost function to minimize it: first a convex

one, then a quadratic one, and finally a separable quadratic one. Deriving the quadratic surrogate

requires to assume that the material maps are non-negative. It was originally published as a method for

reconstructing three or more materials from dual energy CT scans. To that end, it adds a lot of a priori

information, in the form of equality and inequality constraints on the reconstructed volumes. Performing

minimization while complying with all constraints requires an inner loop of quadratic programming using

the Generalized Sequential Minimal Optimization (GSMO) algorithm [16]. Since in our case, there are

more bins than the number of materials, we have removed all constraints in our implementation of

Long2014, which allowed to replace the quadratic programming inner loop by a single iteration of

Newton’s method. Long2014 uses Ordered Subsets (OS) to speed up convergence. See section 2.4 for a

quick reminder on OS.

2.2.3. Weidinger2016 Weidinger2016 [37] uses the Green potential [12] for approximating the absolute

value function in the regularization:

φGreen(x) =
27

128
log cosh

(
16

3
√

3
x

)
. (6)
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In Weidinger2016, as in Long2014, surrogates are derived sequentially. However, contrary to Long2014,

Weidinger2016 does not assume that the material maps are non-negative, and therefore cannot find a

rigorous quadratic surrogate. The quadratic function is actually not a surrogate of the convex surrogate,

but its second-order Taylor approximation. This means that, if its derivative is negative, that quadratic

function violates the conditions for being a surrogate. Such a choice simplifies the calculations, but the

method is no longer guaranteed to converge. In our experiments, though, it did converge.

2.2.4. Mechlem2018 Mechlem2018 [22] builds upon Weidinger2016 using the Huber function for the

regularization (Equation 4), meaning it also uses the second-order Taylor approximation of the convex

surrogate as if it were an actual quadratic surrogate, which implies the same risk on convergence as in

Weidinger2016. Still, it adds three features with respect to Weidinger2016: calibration, Ordered Subsets

and Nesterov acceleration. The calibration part allows to estimate the product of the incident spectrum

and detector response, in cases where it is either not known at all, or known with insufficient accuracy.

In this study, we have assumed perfect knowledge of these system characteristics, and therefore dropped

the calibration part. In addition to that, Mechlem2018 [22] suggests to compute the Hessian (and its

inverse) only once, thus updating only the gradient at each iteration. This approach is only valid if

the Hessian is near-constant, i.e. if the estimated volumes undergo little changes over the course of the

iterations. Therefore, the paper proposes to start the iterations from a previously known approximate

result, like a set of two-step reconstructed volumes. Since we start from zero-filled estimates, we do not

use this acceleration.

2.2.5. Barber2016 Barber2016 [3] provides the calculations to minimize either a transmission Poisson

likelihood or a least-squares data-attachment term. We chose to focus on the transmission Poisson

likelihood term. As suggested by [33], we have replaced the exponential function in Equation 2 with the

soft exponential defined by

softexp(x) =

{
exp(x) if x ≤ 0,

x+ 1 else.
(7)

Regularization is handled with a Total Variation (TV) term, and the cost function is minimized using

the mirrored convex/concave (MOCCA) algorithm [2]. MOCCA is a primal-dual algorithm designed

to minimize non-convex functions that can be expressed as the difference of two convex functions. As

explained in section 3.1 of [3], the algorithm should have an outer and an inner loop, but the inner loop

is set to perform only a single iteration to speed up convergence. Unfortunately, that modification can

cause the algorithm to diverge, so an additional parameter λ has been introduced and tuned to avoid

that. Roughly, λ is tuned to the largest value that does not cause divergence. We also adapted the

parameter θ of the Chambolle-Pock algorithm (see the last line of equation 7 in [6]), which must lie

in [0; 1], and in [3] is implicitly set to 1. With θ = 1, examining the sequence of iterates, we observed

fast and ample oscillations, and artifacts constantly appearing and disappearing. These oscillations and

artifacts did not significantly decrease in intensity over the course of the iterations. Setting θ = 0.5

got rid of them, yielding a more stable sequence of iterates. Computing the primal and dual step sizes

Σ and T involves the element-wise absolute value of products of matrices, which is not trivial if both

matrices have positive and negative values and are too large to be actually stored. The computation of

the step sizes proved particularly tedious to implement, so we restricted our study to a µ-preconditioning

method (see section 2.3) that does not generate negative attenuation values (i.e. simply normalizing the

attenuation coefficient vectors), which makes simplifications possible. This µ-preconditioning is different
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from the one presented in the original paper [3] (i.e. orthonormalizing the attenuation coefficient vectors),

but our study on Cai2013 in section 3.4 shows a better convergence speed for normalization than for

orthonormalization, so it is unlikely that switching to orthonormalization for Barber2016 would greatly

improve its convergence speed.

Method

Cost function

D(x) +
∑
m

R(xm, wm)

Parameters of Data attachment Regularization

the cost function D R

Cai2013 kd, wm, δm
‖W (y − ȳ)‖2

2 + log(ȳ)

with W = diag[kdȳ]−1/2 wmφ
Huber(∇x, δm)

Long2014 wm, δm

ȳ − y log ȳ

wm

Nv∑
v=1

∑
ṽ∈N

φLong (zk−1,v − zk−1,ṽ, δm)

Weidinger2016 wm wm

Nv∑
v=1

∑
ṽ∈N

φGreen (zk−1,v − zk−1,ṽ)

Mechlem2018 wm, δm wm

Nv∑
v=1

∑
ṽ∈N

φHuber (zk−1,v − zk−1,ṽ, δm)

Barber2016 wm χ(x,wm) =

{
0 if ‖(|∇x|)‖1 ≤ wm,

+∞ else.

Table 1: Summary of the cost functions minimized by the studied methods. φHuber, φLong and φGreen are twice-

differentiable approximations of the absolute value function, defined in Equation 4, Equation 5 and Equation 6, respectively.

∇ is the 3-components spatial gradient, and the neighborhood N is arbitrary, but always set to all 26 immediate neighbors

of the voxel v. The regularization of Barber2016 uses the convex indicator function χ to enforce an upper bound on the total

variation ‖(|∇x|)‖1 of x. The numerical values of the parameters of the cost function used for the simulated experiment

are listed in Table 2.

2.3. Mu-preconditioning

We form the matrix M as follows:

M =

 µI,1keV µGd,1keV µH2O,1keV

...
...

...

µI,150keV µGd,150keV µH2O,150keV

 (8)

where µme is the mass-attenuation coefficient of material m for incident X-ray photons of energy e, I

stands for iodine, Gd for gadolinium and H2O for water. For e ≤ 150 keV, µH2O,e and µGd,e typically differ

by 2 orders of magnitude, which causes conditioning issues in the resolution of the one-step inversion

problem, and slows down convergence. Section 3.4 of [3] proposes to modify the material attenuation

matrix M to speed up and stabilize the internal computations. They call this step “µ-preconditioning”.

It can be interpreted as creating synthetic materials, which are linear combinations of the original ones,

possibly with negative coefficients. We present three different µ-preconditioning methods. Each one

yields a synthetic material attenuation matrix M̃ and a matrix P such that MP = M̃ :
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• Normalization: M̃ is obtained by dividing each column of M by its norm. This has the advantage

of not introducing negative attenuations. The added complexity associated with the use of negative

attenuation coefficients, like the use of absolute values in the calculation of Σ and T in [3], can be

avoided with this synthetic materials basis.

• Orthonormalization: M̃ is obtained either using the Gram-Schmidt algorithm on M , or

diagonalizing MTM (as proposed in [3]). This will generate negative attenuation coefficients (for

the dot products between columns to be zero).

• Fessler’s method:

K =
SM

S1
i.e. (K)b,m =

∑
e sbe µme∑
e sbe

(9)

with sbe the effective spectrum at energy e in bin b, and µme the attenuation of material m at

energy e. Each value (K)b,m is a weighted mean of the attenuation coefficients of material m over

the whole energy spectrum, the weights being the number of photons seen by the detector in bin

b. Roughly, it evaluates how much the material m attenuates the photons that will end up being

detected in bin b. Now, the problem of determining which linear combination of materials causes

the observed attenuation would be much easier if each material attenuated the photons of only one

bin, i.e. if K was diagonal. Therefore, we define M̃ = MK−1, i.e. P = K−1. When K is not

square, e.g. when there are more bins that materials, K cannot be inverted, but P can be defined

as the Moore-Penrose pseudo inverse of K, i.e. P = (KTK)−1KT . This approach was proposed in

[10] for dual energy CT, but its extension to more materials and more bins is straightforward.

When the algorithm is fed a matrix M̃ = MP of the attenuations of synthetic materials, it reconstructs

synthetic material volumes x̃. No change is required for the data-attachment term, but the regularization

must be perfomed on the original materials volumes x = Px̃, since we want the original material volumes

to be regular, not the synthetic ones. The changes in algorithms implied by µ-preconditioning appear

in the pseudo code of Cai2013 and Barber2016 (not in the SQS methods, since they are insensitive to

µ-preconditioning) in section 5.

2.4. Ordered subsets

In some methods, iterations are divided into sub-iterations, and during each sub-iteration, only a subset

of the projections through the current volume is computed, compared to the measured ones, and back-

projected to obtain an update for the current volume [15]. The subsets form a partition of the full

projections dataset. After one iteration, i.e. one cycle through all subsets, each projection has been

forward and back projected once and only once. At each iteration, OS-methods therefore perform as

many updates of the reconstructed volume as the number of subsets, which results in faster convergence

per iteration (or equivalently, per forward/back projection), at the cost of longer iterations, and potential

instabilities if the measured data contains inconsistencies, e.g. noise or motion.

2.5. Simulation setup

We have designed a simple two-dimensional 3-materials phantom (see Figure 3), consisting of a large

square of water at 1 g/ml, a small square of iodine at 10 mg/ml, and a small square of gadolinium at

10 mg/ml. The iodine and gadolinium squares are inside the water square, but do not overlap. Note

that the K-edge of iodine is at 33.2 keV, which is too low to reliably use it as a K-edge contrast agent.

On the other hand, the basis water/iodine can be used to represent biological samples [32], just like
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the Compton/photoelectric basis, with the bones appearing in the iodine material map. Therefore, we

emphasize that water/iodine/gadolinium is a ”two materials for biological tissues, one K-edge contrast

agent” situation, and not a dual contrast agent one. The phantom consists of a single slice, which has

2562 voxels, of size 1 mm × 1 mm. Through this phantom, 725 parallel projections were simulated, with

362 pixels per projection, using the sparse forward projection matrix generated by the AIR toolbox [14].

Detector pixels too have a size of 1 mm. The line integrals obtained were then converted to photon

counts, following the classical polychromatic Beer-Lambert attenuation law. For the incident spectrum,

we used the same one as in Ducros et al. 2017 [9] which, quoting the paper, “was simulated using the

SpekCalc software [28], considering a tube voltage of 120 kV, a 12◦ anode angle, and a filter of 1.2 mm

of Al”. Figure 1 shows the number of incident photons per keV on each pixel.

Figure 1: Incident spectrum on each pixel.

The detector response was simulated according to the model presented in appendix A.2 of [31], and

is shown in Figure 2. Following the design of the Philips spectral CT scanner prototype installed in

Lyon, France, 5 bins were simulated. The thresholds were set to 30, 51, 62, 72 and 83 keV.

Figure 2: Spectral response of each detector bin.
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In the end, the photon counts were corrupted with Poisson noise. This model therefore neglects

pile-up, scatter, charge sharing and probably many other complex effects. Since the problem is non-

convex, initialization matters. It is unclear what should be the starting point of the iterations: in the

original papers, Cai2013 and Barber2016 use zero-filled material slices as a starting point, while the

SQS-based methods are intialized with a pre-existing reconstruction (e.g. one obtained from a two-step

method). In this study, we have adopted a zero initialization for all methods.

Iodine Gadolinium Water

Figure 3: Ground truth of the phantom

2.6. Comparison method

In any iterative reconstruction method, the convergence speed, image quality at convergence and

regularization parameters depend on each other. Therefore, in order to obtain meaningful comparison

results on convergence speed, one must first set the regularization parameters to values that yield

comparable image quality at convergence for all methods. Only then can one measure how fast a

given convergence criterion is reached. To set the regularization parameters, we ran many simulations,

exploring the space of parameters with multiplicative steps of 3 or 10. We then selected parameters

yielding similar standard deviations in the iodine, gadolinium and water ROIs, as shown in Table 3. The

regularization parameters are summarized in Table 2. Finally, the criterion we used for the convergence

speeds comparison is the number of iterations each method required for all materials to reach their

target concentration in their ROI, within either 20% or 10% tolerance. Besides that, we also provide:

• the concentrations of iodine and gadolinium in their respective ROIs over the course of the iterations,

• the time per iteration with our implementation. Measurements were performed on a machine

equipped with an Intel Xeon E5-2620 v4 CPU running at 2.10GHz and an Nvidia GeForce GTX

Titan X, and running OpenSuse Leap 42.2 and Matlab R2017b,

• the mean and standard deviation (std) in each ROI at the last iteration, which were used to adjust

regularization parameters,

• the theoretical memory footprint, since the actual memory footprint depends too much on the

implementation.

Since storing all iterates is impractical, for all methods except Mechlem2018 we stored one iterate every

ten, which is why Table 4 contains mostly multiples of ten.

2.7. Software

For this study, we re-implemented all of the five methods compared here in a lightweight

Matlab framework. That code is open source, available at https://github.com/SimonRit/

OneStepSpectralCT, and we appreciate any relevant contribution to it. In particular, we encourage

the authors of the five methods we have studied to check that code against their own implementation.

https://github.com/SimonRit/OneStepSpectralCT
https://github.com/SimonRit/OneStepSpectralCT
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Method δiodine δgadolinium δwater wiodine wgadolinium wwater

Cai2013 0.001 0.001 0.1 100000 100000 30

Long2014 0.001 0.001 0.1 100000 100000 10

Weidinger2016 N/A N/A N/A 30000 30000 3

Barber2016 N/A N/A N/A 100 100 5000

Mechlem2018 0.001 0.001 0.1 30000 30000 3

Table 2: Regularization parameters of the five methods used to obtain the reconstructions (Table 1). For Barber2016, the

“regularization” parameters are actually the TV limits for iodine, gadolinium and water. The δ parameter is used in the

Huber function or its equivalent, in the regularization terms of the methods.

Together with the code, we provide detailed notes on how to re-do most of the calculations of the original

papers.



13

3. Results

Figure 4 shows the last iterate computed for each of the methods presented here. For Cai2013, we

used Fessler’s method for µ-preconditioning. A video of the iterates, on which it is easy to evaluate the

relative convergence rates of the various methods, is available as supplementary material. It has the

same grayscale and is arranged the same way as Figure 4.

Iodine Gadolinium Water
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Figure 4: Reconstructed slices with the five methods, with grayscale ranges equal to [0; 15] mg/ml for iodine and

gadolinium, and [0; 1.5] g/ml for water.

3.1. Algorithm parameters

In addition to the quantitative criteria on convergence speed and memory footprint, a few other

important aspects of the algorithms deserve to be mentioned here. All methods require parameters

for regularization and Cai2013 needs a parameter kd characterizing the detector for its data attachment

term (see Table 1). The rest of the parameters are free parameters for optimizing the cost function.

Our implementation of Cai2013 requires a threshold on how many times one tries to halve the step

size before resetting the descent direction (see section 2.2.1). Barber2016 has a parameter λ = 10−4,

and a parameter θ = 0.5 (see section 2.2.5). Long2014 splits the projections into 20 subsets, and

Mechlem2018 into 4 subsets, in order to speed up convergence. Mechlem2018 also uses Nesterov’s
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momentum technique, which speeds up convergence even more, but makes it a bit unstable: when

splitting the projections into too many subsets (typically more than 6), Mechlem2018 sometimes diverges:

the iterates accumulate strong streak artefacts, then they reach a point where the Hessian of the SQS

is not invertible, which stops the algorithm.

3.2. Quantitative criteria

We show in Figure 5 the evolution of the concentrations of iodine and gadolinium over the course of

iterations, for all five methods, with a logarithmic scale only on the x-axis. The concentrations are

measured in the square where iodine or gadolinium is expected, eroded by 2 pixels in order to avoid

partial volume effects. In all methods, the pixels at the border of the region of interest (ROI) have

significantly lower concentrations. The full line is the ground truth concentration value in the ROI.

Since tracking the mean concentration in a ROI can only capture information on how well the low

Figure 5: Concentration of iodine (left), gadolinium (middle) and water (right) over the course of the iterations for the

five methods, in the ROI where it is expected eroded by 2 pixels.

frequencies are reconstructed, Figure 6 shows, for each method, the normalized `2 difference with the

last iterate, computed as follows:

Normalized `2(xk) =
Nm∑
m

∑Nv

v=1 (xk,v,m − xNiterations,v,m)2

Nm

∑Nv

v=1 GroundTruth2
v,m

(10)

where k, v and m are respectively the indices for iteration, voxel and material, Nv is the number of

voxels of one reconstructed material map and Nm the number of materials.

Table 3 contains the mean and standard deviation of iodine, gadolinium and water concentrations

in the ROI where they are expected eroded by 2 pixels, on the final iterate. Standard deviations of each

material are roughly the same between all algorithms, yet there are some outliers: the stds of Cai2013

in gadolinium and of Barber2016 in iodine. This is a consequence of the fact that those two methods

are the slowest ones, and consequently we were not able to sample the parameter space for them with

a fine enough grid. While it is unfortunate, it highlights the fact that slowly converging methods are

hard to tune, and that additional parameters (λ in Barber2016) imply a longer tuning time.

Table 4 shows the total number of iterations performed, the time per iteration, and the number of

iterations it took for all materials to reach target concentration in their respective ROIs, within 20%

or 10% tolerance. On our test case, Mechlem2018 converges 1 to 3 orders of magnitude faster than its

competitors.
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Figure 6: Normalized `2 difference with the last iterate.

Iodine

(mg/ml)

Gadolinium

(mg/ml)

Water

(g/ml)

mean std mean std mean std

Cai2013 10.4 2.14 10.1 3.75 0.999 0.0518

Long2014 9.98 1.79 9.93 2.50 1 0.0402

Weidinger2016 9.92 1.86 9.92 2.44 1 0.0425

Barber2016 9.85 3.34 9.65 2.19 1.002 0.064

Mechlem2018 9.97 1.94 9.94 2.70 1 0.0431

Table 3: Mean and standard deviation of iodine, gadolinium and water concentrations in the ROI where they are expected

eroded by 2 pixels on the final iterate.

Method
Iterations

performed

Time per

iter (s)

Within

20% tolerance

Within

10% tolerance

Cai2013 5000 5.2 270 430

Long2014 5000 1.33 140 280

Weidinger2016 5000 0.48 190 390

Barber2016 20000 1.02 3850 8300

Mechlem2018 200 0.62 5 10

Table 4: Number of iterations performed and required to reach target concentrations within 20% and 10% tolerance.

3.3. Memory footprint of each method

We provide here a simple analysis of the memory footprint of each method, by listing the variables

that have to be stored and recalling their size. The results are summarized in Table 5, and the detailed

calculations for each method are presented in this section. The measured photon counts, which constitute

the main input of these reconstruction algorithms, are assumed to be available on disk, so they never

have to be fully loaded in memory and are not mentioned in this section. Obviously, re-reading them

from disk at each iteration is highly inefficient, and one should load them in memory if possible. We

used the notations of the pseudo codes in the Appendix for the names of the variables, and the following

notations for various quantities: Nv is the number of voxels of one reconstructed material map, Nm the

number of materials, Np the number of pixels of all projections for one bin, Nb the number of energy bins
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in photon counts measurements and Ne the number of energies used in internal calculations. Despite the

fact that we performed 2D simulations, we assume for these calculations that the reconstructed volumes

are 3D (which matters for the computation of the spatial gradient). Note that the code we provide

keeps many intermediate variables in memory, for convenience and speed considerations, and therefore

uses much more memory than the minimum required.

Method
Minimal memory footprint

(in number of floating point values)

Cai2013
4NvNb with Fessler’s preconditioning

4NvNm otherwise

Long2014 (
4 + Nm+1

2

)
NvNm

Weidinger2016

Mechlem2018
(
6 + Nm+1

2

)
NvNm

Barber2016 17NvNm + 3NpNb

Table 5: Summary of the minimal memory footprints of the five studied methods.

3.3.1. Cai2013 The following variables must be stored and updated at each iteration: xk, dk, gk and

gk−1, which each contain a set of material volumes. Since all computations can be performed pixel-wise,

the expected photon counts ȳ do not have to be fully stored in memory, and neither does any of the

intermediate variables in the calculation of the gradient and Hessian of the data-attachement term, so

we do not count them. Lastly, the spatial gradient of xk, which is 3 times as large as xk, is used in the

calculation of g and of dTHd. More precisely, it is the divergence of the first and second derivative of

the Huber function of the gradient that is used. These calculations can be computed piecewise, with

overlapping pieces since the gradient and divergence require neighboring voxels. In total, at least 4NvNm

floating point values must be kept in memory, and storing 3NvNm additional values for the gradient of

xk avoids redundant computations, and the problem of having to divide the volumes into overlapping

pieces.

3.3.2. Long2014, Weidinger2016 and Mechlem2018 In all three SQS-based methods we have

implemented, the following variables must be stored and updated at each iteration: the current iterate

(xk as in [19]), of size NvNm, and the gradient and Hessian of the surrogate at xk, of size NvNm and

NvN
2
m, respectively. Since the Hessian is known to be symmetric, it can be stored in NvNm(Nm + 1)/2

floating point values. The gradient and the Hessian of the surrogate of the data-attachment term both

result from one forward and one back projection. By performing these one angle at a time, they can

be computed with negligible amounts of memory. The gradient and Hessian of the surrogate of the

regularization term both require a memory size of NvNm (the Hessian has NvN
2
m elements, but is known

to be diagonal), and internal computations can be done in place. Since typically they are calculated

separately, and then added to those of the regularization terms, their requirements in memory add up.

In total, the memory footprint is at least
(
4 + Nm+1

2

)
NvNm floating point values for Long2014 and

Weidinger2016. For Mechlem2018, two additional Nesterov variables must be stored (zk and uk), taking

the memory footprint to a minimum of
(
6 + Nm+1

2

)
NvNm floating point values.
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3.3.3. Barber2016 This method makes use of more intermediate variables than the other four. Table 6

lists the variables used in the pseudo code given in Appendix, whether they must be stored or not, why,

and how many floating point values are therefore required. In total, it uses at least 17NvNm + 3NpNb

floating point values.

Variable Stored ?
Size in memory

(in floating point values)

x0 yes NvNm

x(k−1)

x(k)

x(k+1)

only x(k−1) NvNm

Σsino yes NpNb

Σgrad

w
only one of both 3NvNm

T

yes: used only once,

but computed as the sum

of two very different

calculations, unlikely to occur

voxelwise in parallel

NvNm

z
no: used only once,

pixelwise
0

u
(k−1)
sino

u
(k)
sino

u
(k+1)
sino

not u
(k+1)
sino ,

because it replaces u
(k)
sino

2NpNb

ȳ

b

E

no: used only to compute

u
(k+1)
sino , pixelwise

0

y+
grad yes 3NvNm

y
(k)
grad

y
(k+1)
grad

only one of both 3NvNm

g+ yes: to be projected

onto L1 ball
3NvNm

ĝ+ no: used only once,

voxelwise
0

x(k)

x(k+1) yes 2NvNm

Table 6: Memory footprint of Barber2016, for each variable used in appendix C.6 of [3]. Nv, Nm, Np and Nb are defined

in section 3.3 of the present paper. The words “pixelwise” and “voxelwise” mean that the variable can be computed one

pixel (or voxel) at a time, thus its computation requires negligible amounts of memory.
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3.4. Impact of mu-preconditioning

None of the SQS-based methods is impacted by µ-preconditioning: once mapped back to the original

materials, the iterates are almost identical to the ones obtained without µ-preconditioning, with

difference maps two orders of magnitude less intense than the reconstructed slices. The only impact is

with Fessler’s method [10]: since in our case (three materials, five energy bins) it artificially increases

the number of materials to that of the number of bins, the Hessians of the SQS are no longer invertible,

so this µ-preconditioning cannot be used at all with SQS-based methods. On Cai2013, however, µ-

preconditioning has a strong impact. Figure 7 shows the evolution of the cost function over the course

of the iterations minus its minimum, using Cai2013 without µ-preconditioning, with normalization,

orthonormalization and Fessler’s method. Since all four of these experiments aim to minimize the same

cost function, the minimum we subtracted is the minimum over all iterations and all four experiments

(reached, as can be seen on the graph, with µ-preconditioning by normalization). It clearly shows that

Fessler’s method has the fastest initial convergence, which is confirmed by looking at the iterates (not

shown here). After more than 1000 iterations, the experiment using normalization reached a lower value

of the cost function than the one using Fessler’s method.

Figure 7: Cost function of Cai2013 over the course of the iterations minus its mininum, depending on the µ-preconditioning

method used.

4. Discussion

We have presented a comparison of five one-step inversion methods for spectral CT, focused on two

aspects important for implementation into a real scanner: convergence speed and memory footprint. This

choice of criteria is in part due to the initial aim of our study, which was to determine which algorithm

should be implemented to process large real datasets in reasonable time. But more importantly, it was

dictated by the behavior of the algorithms themselves: while it seemed impossible to make a convincing

case on which method performed best in terms of image quality, the differences in convergence speed

were striking. We provide the complete Matlab code we have used for this study (see section 2.7), so

that readers interested in conducting comparisons on other aspects have the means to do so.
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All algorithms were adapted to find the three material maps that minimized a cost function

composed of a data attachment term for five energy bins and a spatial regularization minimizing the

`1-norm (or a twice-differentiable approximation of it) of the spatial gradient of each reconstructed

volume. The original algorithms were generally designed for other problems and our conclusions hold

only for our specific problem. For examples, the following modifications of the problem would require

another comparison: reconstructing two maps from dual-energy measurements as in [5] or constraining

the solutions with positivity as in [19].

There are other one-step inversion methods in the literature than the ones we selected, e.g. [7, 35],

and it is likely that more will be proposed in the future. We hope that others will be interested in

implementing their method in the Matlab framework we provide, to extend the comparison.

A limitation of the present study is the small size of the data used in the experiments, which was

dictated by our implementation using a sparse system matrix stored in computer memory. It is therefore

possible that on larger datasets, e.g. on a full real helical acquisition, the relative convergence speeds

of the studied methods would be different. However, the other observations made in the paper would

remain valid.

Another limitation is that since one-step inversion is a non-convex problem, the results may strongly

depend on the initialization. Mechlem et al. recommend to initialize the algorithms with reconstruction

results from a two-step method. We have not tried that approach, and have instead initialized all

reconstructions with zero-filled slices. Different initialization strategies may lead to different conclusions

on relative convergence speeds.

In several ways, the simulation we have studied is simplistic: in a real acquisition, the spectrum

is usually filtered to remove most low-energy photons, made pixel-dependent by a bow tie filter, and

the pixels and voxels are much finer than the ones we used (around 0.2 mm instead of 1 mm). Since

the same sparse system matrix was used both for simulation and reconstruction, this work adopts an

inverse-crime setup [38], with statistical noise. It does not take into account any advanced physical

effect like scatter, pile-up or charge sharing. However, these observations hold for all methods, so the

comparison remains valid.

Sidky et al. have recently proposed a more efficient µ-preconditioning method [33], better-suited to

three-materials reconstructions than the one described in Barber2016. In the experiment they present,

this new µ-preconditioning method speeds up convergence by a factor 10. The slow convergence of

Barber2016 in our experiments must therefore be mitigated by the fact that we did not implement that

method. However, a factor 10 would only make its convergence speed similar to Cai2013, Long2014 and

Weidinger2016, and our other observations on Barber2016 (mostly its high memory footprint) remain

valid.

Our implementation of Mechlem2018 differs from that of Weidinger2016 only by the use of

Nesterov’s momentum technique and a small number of ordered subsets, and yet greatly outperforms

Weidinger2016. Therefore, we confirm the observation made in the discussion of Mechlem2018, and in

several other papers [17, 13]: Nesterov’s momentum technique combined with ordered subsets highly

accelerates the convergence speed per iteration. This acceleration might cause numerical instabilities

which would make Mechlem2018 more difficult to use with real data.
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5. Conclusion

We have adapted five one-step methods for spectral CT (Cai2013 [5], Long2014 [19], Weidinger2016 [37],

Barber2016 [3], Mechlem2018 [22]) to reconstruct three material maps from five energy bins with spatial

regularization in each material map. We have compared them in terms of practical aspects: convergence

speed to reach a fixed image quality threshold, and memory footprint. They are obviously not the only

criteria for the choice of a method, and many other parameters should probably be considered such as

image quality at convergence or numerical stability. Yet, Mechlem2018 solved this one-step problem in 1

to 3 orders of magnitude faster than its competitors, and such a vast difference should not be overlooked.

Alternative optimizations or modifications of the problem would require reinvestigating this conclusion,

and we provide the source code of the software used in this study to facilitate such investigations.
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Appendix

Since we performed some modifications on almost all methods, we provide in this section the complete

pseudo code of our implementations. This pseudo code makes extensive use of matrix notation, so we

define some matrices and their size, in format [lines, columns] (see section 3.3 for the definitions of the

N values): M is the (preconditioned) material mass-attenuation matrix, and P the µ-preconditioning

matrix, defined in section 2.3. P and M are [Nm, Nb] and [Ne, Nb] in the case of Fessler’s µ-

preconditioning, and [Nm, Nm] and [Ne, Nm] otherwise. A[Np, Nv] is the forward projection matrix

for one material, and S[Nb, Ne] the effective spectrum, as used in equation 2. In some algorithms, those

matrices are redefined using Kronecker products (noted ⊗). They still perform the same operation, only

extended to several materials, bins, pixels or voxels. When the original matrix is needed, it is indexed

by the pixel or voxel. Some calculations cannot be easily translated into Kronecker products, therefore

we sometimes use the symbol ∗, which ∗ stands for element-wise product with implicit extension, e.g.(
1

2

)
∗

(
0 1 2

3 4 5

)
=

(
0 1 2

6 8 10

)
(11)

Of course, it would have been highly inefficient to actually implement the presented methods using

Kronecker products, so the pseudo code does not reflect the way things are actually implemented in the

Matlab code we provide. In vectors storing volumes, the order of the dimensions is “x, y, z, material”. In

vectors storing photon counts, it is “x, y, projection, energy bin”. If µ-preconditioning is used, the initial

guess, which we denote X, must be multiplied by P−1 to obtain x0. In all methods except Barber2016,

regularization involves the use of a twice-differentiable approximation of the `1 norm. Cai2013 and

Mechlem2018 use the Huber function, Weidinger2016 uses the Green prior, and Long2014 a custom

hyperbola. We denote all of these functions with a unique symbol φ which, as for Cai2013 (see section
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5.1), already contains the regularization weights (one per material) and, if applicable, the thresholds (one

per material). For SQS-based methods, the regularization is computed by examining, for each voxel,

the surrounding voxels that belong to a neighborhood N . For Long2014 and Mechlem2018, which

use subsets, we define As = sub(A, s) which selects rows in the projection matrix A corresponding to

the projections in subset s. Which projection goes into which subset is determined by the following

procedure: we compute a random permutation of [1, 2, . . . , Nprojections], and divide the result into Nsubsets

equal parts.

5.1. Pseudo-code of Cai2013

Contrary to the other four methods, Cai2013 defines S as the normalized spectrum instead of the

absolute one, and y as transmission ratios instead of photon counts. Let us define ~w = (w1, . . . , wNm)

and ~δ the vectors of regularization weights, and of Huber function thresholds, each holding one value

per material. In Cai2013, the regularization term is the sum over all voxels of the Huber function of the

spatial gradient of the material volumes, i.e.

Φ :R3NvNm × RNm × RNm → R

(t, ~w,~δ)→
Nm∑
m=1

wm

3Nv∑
i=1

φ(ti, δm)
(12)

where in practice, t is always the spatial gradient of the material volumes. The gradient and Hessian of

Φ are denoted Φ′ and Φ′′, respectively, and are of size [3NvNm, 1] and [3NvNm, 3NvNm].

5.2. Pseudo-code of Long2014

It uses the optimal curvature function, which is defined on R+as follows:

optimal curvature(x) = 2
1− e−x − xe−x

x2
if x > 0, 1 if x = 0 (13)

When the input to optimal curvature is a vector, it is applied element-wise.
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1 P = P ⊗ INv

2 A = INm ⊗ A
3 M = M ⊗ INp

4 S = S ⊗ INp

5 x0 ← P−1X

6 g0 ← 0

7 d0 ← 0

8 Q← exp (−MAx0)

9 ȳ ← SQ

10 for k ← 1 to Niterations do

11 z ←
(
y2−ȳ2
kdȳ2

− 1
ȳ

)
12 xreal ← Pxk−1

13 gk ← ATMTQST z + P T∇TΦ′
(
∇xreal, ~W,~δ

)
14 β ← <gk−gk−1,gk−1>

‖gk−1‖22
15 if β < 0 or k = 1 then β ← 0

16 dk ← −gk + βdk

17 v ← diag[ 2y2

kdȳ3
− 1

ȳ2
]

18 dreal ← Pdk
19 dTkHdk ← dTkA

TMTQ(STvSQ− diag[ST z])MAdk

20 +dTrealP
T∇TΦ′′

(
∇xreal, ~W,~δ

)
∇Pdreal

21 α← −<gk,dk>
dTkHdk

22 xk ← xk−1 + αdk
23 while cost(xk) >cost(xk−1) do

24 α← α/2

25 xk ← xk−1 + αdk;

26 end

27 Q← exp (−MAxk)

28 ȳ ← SQ

29 end

30 return Pxk
Algorithm 1: Cai2013 pseudo code
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1 π = A ∗ (A1Nv ,1)

2 A = INm ⊗ A
3 L = (M ⊗ 11,Nm) ∗ (11,Nm ⊗M)

4 M = M ⊗ INp

5 S = S ⊗ INp

6 x0 ← X

7 for k ← 1 to Niterations do

8 for s← 1 to Nsubsets do

9 As = sub(A, s)

10 πs = sub(π, s)

11 Q← exp (−MAsxk−1)

12 ȳ ← SQ

13 gdata ← ATs

(
(y
ȳ
− 1) ∗ SQM

)
14 c = optimal curvature(MRxk−1)

15 for p← 1 to Npixels in subset s do

16 Cp =
∑Nb

b=1 (Sp(cp ∗ L))

17 end

18 Hdata ← reshape(πTs C, [Nv, Nm, Nm])

19 for v ← 1 to Nv do

20 gregul,v ← 2
Nsubsets

∑
ṽ∈N φ

′ (xk−1,v − xk−1,ṽ)

21 Hregul,v ← 4 diag
[∑

ṽ∈N φ
′′ (xk−1,v − xk−1,ṽ)

]
22 gv ← gdata,v + gregul
23 Hv ← Hdata,v +Hregul

24 xk,v ← xk−1,v −H−1
v gv

25 end

26 end

27 end

28 return xk
Algorithm 2: Long2014 pseudo code
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5.3. Pseudo-code of Weidinger2016

1 A = INm ⊗ A
2 L = (M ⊗ 11,Nm) ∗ (11,Nm ⊗M)

3 M = M ⊗ INp

4 S = S ⊗ INp

5 x0 ← X

6 for k ← 1 to Niterations do

7 Q← exp (−MAxk−1)

8 ȳ ← SQ

9 gdata ← AT
(

(y
ȳ
− 1) ∗ (SQM)

)
10 Hdata ← AT ((A1Nv ,1) ∗ (SQL))

11 for v ← 1 to Nv do

12 gregul,v ← 2
∑

ṽ∈N φ
′ (xk−1,v − xk−1,ṽ)

13 Hregul,v ← 4 diag
[∑

ṽ∈N φ
′′ (xk−1,v − xk−1,ṽ)

]
14 gv ← gdata,v + gregul
15 Hv ← Hdata,v +Hregul

16 xk,v ← xk−1,v −H−1
v gv

17 end

18 end

19 return xk
Algorithm 3: Weidinger2016 pseudo code

5.4. Pseudo-code of Mechlem2018

It differs of that of Weidinger2016 only by the use of subsets and Nesterov’s momentum technique.
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1 A = INm ⊗ A
2 L = (M ⊗ 11,Nm) ∗ (11,Nm ⊗M)

3 M = M ⊗ INp

4 S = S ⊗ INp

5 z0 ← X

6 for k ← 1 to Niterations do

7 for s← 1 to Nsubsets do

8 As = sub(A, s)

9 Q← exp (−MAszk−1)

10 ȳ ← SQ

11 gdata ← ATs

(
(y
ȳ
− 1) ∗ (SQM)

)
12 Hdata ← ATs ((As1Nv ,1) ∗ (SQL))

13 for v ← 1 to Nv do

14 gregul,v ← 2
Nsubsets

∑
ṽ∈N φ

′ (zk−1,v − zk−1,ṽ)

15 Hregul,v ← 4 diag
[∑

ṽ∈N φ
′′ (zk−1,v − zk−1,ṽ)

]
16 gv ← gdata,v + gregul
17 Hv ← Hdata,v +Hregul

18 dk,v ← zk−1,v −H−1
v gv

19 end

20 tk ← 1
2

(
1 +

√
1 + 4t2k−1

)
21 αk ← zk − dk
22 uk ← uk − tk−1dk
23 zk ← αk + tk∑k

l=0 tl
(uk − αk);

24 end

25 end

26 return zk
Algorithm 4: Mechlem2018 pseudo code

5.5. Pseudo-code of Barber2016

All other four methods use a weighted regularization term, with weights controlling the strength of the

regularization: the larger the weight, the stronger the regularization. Barber2016 works differently: it

enforces a constraint, stating that the TV on each material must not exceed a threshold γm (one per

material). Therefore, the larger the γms, the looser the TV constraint.
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1 Zpe,mv ←MmeApv
2 A = INm ⊗ A
3 M = M ⊗ INp

4 S = S ⊗ INp

5 P = P ⊗ INv

6 x(0) ← P−1X

7 for k ← 1 to Niterations do

8 x0 ← x̄(k)

9 Bbp,p′e(x)← sbpe exp(−(Zx)pe)∑
e′ sbpe′ exp(−(Zx)pe′)

Ipp′

10 with Ipp′ = 1 if p = p′ and 0 otherwise

11 K ← B(x0)Z

12 ȳ ← S exp (−MAx0)

13 E ← max(ȳ − y, 0)

14 b← (ȳ − E)Kx0 + ȳ − y
15 Σsino ← 1

λ
diag [K1]−1

16 Σgrad ← 1
λ
diag [|∇|P1]−1

17 T ← λ diag
[
KT

1 (|∇|P1)T
]−1

18 ∀m,wm ← Σ
1/2
grad,m

19 z ← Σ−1
sino

(
u

(k−1)
sino − u

(k)
sino + ΣsinoKx̄

(k−1)
)

20 u
(k+1)
sino ← (ȳ + Σsino)−1

[
ȳ(u

(k)
sino + ΣsinoKx̄

(k))− Σsino(b+ Ez)
]

21 ∀m,u+
grad,m ← u

(n)
grad,m + Σgrad,m∇(Px̄(k))m

22 ∀m, g+
m ← |u+

grad,m/wm|
23 ∀m, ĝ+

m ← sign(u+
grad,m/wm)

24 ∀m,u(k+1)
grad,m ← u+

grad,m − wmĝ+
mProj(g+

m; g, ‖g/wm‖ ≤ γm)

25 x(k+1) ← x̄(k) − T

(
K

∇P

)T (
u

(k+1)
sino

u
(k+1)
grad

)
26 x̄(k+1) ← x(k+1) + θ(x(k+1) − x(k))

27 end

28 return Px(k)

Algorithm 5: Barber2016 pseudo code

References

[1] Alvarez R E and Macovski A 1976 Energy-selective reconstructions in X-ray computerized

tomography Physics in Medicine and Biology 21(5), 733–744.

[2] Barber R F and Sidky E Y 2015 MOCCA: Mirrored convex/concave optimization for nonconvex

composite functions arXiv:1510.08842 [math] .

[3] Barber R F, Sidky E Y, Schmidt T G and Pan X 2016 An algorithm for constrained one-step

inversion of spectral CT data Physics in Medicine and Biology 61(10), 3784.

[4] Brendel B, Bergner F, Brown K and Koehler T 2016 Penalized Likelihood Decomposition for



REFERENCES 27

Dual Layer Spectral CT in ‘Proceeding of the Fourth International Meeting in X-Ray Computed

Tomography’ Bamberg, Germany pp. 41–44.

[5] Cai C, Rodet T, Legoupil S and Mohammad-Djafari A 2013 A full-spectral Bayesian reconstruction

approach based on the material decomposition model applied in dual-energy computed tomography

Medical Physics 40(11), 111916–111931.

[6] Chambolle A and Pock T 2011 A First-Order Primal-Dual Algorithm for Convex Problems with

Applications to Imaging Journal of Mathematical Imaging and Vision 40(1), 120–145.

[7] Chen B, Zhang Z, Sidky E Y, Xia D and Pan X 2017 Image reconstruction and scan configurations

enabled by optimization-based algorithms in multispectral CT Physics in Medicine & Biology

62(22), 8763.

[8] Clackdoyle R, Desbat L, Lesaint J and Rit S 2016 Data Consistency Conditions for Cone-Beam

Projections on a Circular Trajectory IEEE Signal Processing Letters 23(12), 1746–1750.

[9] Ducros N, Abascal J F P J, Sixou B, Rit S and Peyrin F 2017 Regularization of Nonlinear

Decomposition of Spectral X-ray Projection Images Medical Physics .

[10] Fessler J A 2003 ‘Method for statistically reconstructing images from a plurality of transmission

measurements having energy diversity and image reconstructor apparatus utilizing the method’.

International Classification G06T5/00; Cooperative Classification G06T2207/10081, G06T5/002,

G06T11/006, A61B6/482, A61B6/4241, A61B6/405, A61B6/032, A61B6/4035, G06T2211/408,

G06T2211/424; European Classification A61B6/48D, G06T11/00T3, A61B6/03B, A61B6/40H,

A61B6/40F, A61B6/42B8, G06T5/00D.

[11] Flohr T G, McCollough C H, Bruder H, Petersilka M, Gruber K, Süβ C, Grasruck M, Stierstorfer
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