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Comparison of five one-step reconstruction
algorithms for spectral CT

Cyril Mory, Bruno Sixou, Salim Si-mohamed, Loı̈c Boussel and Simon Rit

Abstract—Over the last decade, dual-energy CT scanners have
gone from prototypes to clinically available machines, and spectral
photon counting CT scanners are following. They require a specific
reconstruction process, consisting of two steps: material decompo-
sition and tomographic reconstruction. The two steps can be done5

separately in either order, but in both cases, some information is
lost along the way. As an alternative, “one-step inversion” methods
have been proposed, which perform decomposition and reconstruc-
tion simultaneously. For most CT applications, reconstruction time
is critical for practical usability, and one-step methods are typically10

slower than their two-step counterparts. The goal of this paper is
to provide an independent comparison of five one-step inversion
algorithms, focused mainly on convergence speed, but also on
memory footprint, stability, and ease of use. We adapted and
implemented a Bayesian method which uses non-linear conjugate15

gradient for minimization [1], three methods based on quadratic
surrogates [2, 3, 4], and a primal-dual method based on MOCCA,
a modified Chambolle-Pock algorithm [5]. Experiments were per-
formed on both simulated and real data. Some of these methods
can be accelerated by using µ-preconditioning, i.e. by performing20

all internal computations not with the actual materials the object
is made of, but with carefully chosen linear combinations of those.
In this paper, we also evaluate the impact of three different µ-
preconditioners on convergence speed. Our results show that the
method of Mechlem et al. [4] is much faster than the others, while25

being only slightly less stable and more complex: it requires less
than 100 iterations, versus several thousands for other methods.
It seems to be the only viable candidate for implementation into
a real multi-energy scanner.

I. INTRODUCTION30

Dual energy computed tomography (CT) systems are now
commercially available, and spectral photon counting CT sys-
tems already exist as research prototypes. These new types
of scanners provide information on the energy distribution of
the X-ray photons that reach the detector: dual energy systems35

acquire two sets of projections (for low and high energies), while
spectral photon counting systems group the incoming photons
into so-called “energy bins”, which form a partition of the
incident spectrum’s bandwidth. For each projection’s pixel, the
“raw” measurements acquired by a spectral photon counting CT40

scanner are therefore the number of photons in each energy bin,
which are commonly referred to as “photon counts”. Assuming
that the object’s attenuation can be obtained by linear combi-
nation of the attenuations of only a few materials, this energy-
resolved information allows to reconstruct multiple volumes,45
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UMR5220 ; Inserm U1206 ; INSA-Lyon ; Université Lyon 1 ; Centre Léon
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each one representing a different material’s concentration map.
Alternatively, one can assume that the attenuation stems from
only a few physical phenomena, e.g. Compton scattering, photo-
electric effect and K-edge [6, 7], and reconstruct maps of
the characteristic quantities of each of these phenomena. For 50

the sake of readability, focus on spectral photon counting CT
and a basis of materials, but almost everything in the present
paper also holds for dual energy CT and phenomena, and the
other combinations of device and decomposition method. It is
assumed that the attenuation coefficient of the imaged object µ, 55

which depends on the spatial position in the object and on the
energy of the incident photons, can be separated into a function
of space and a function of energy, i.e.

µ(~s,E) =

Nm∑
m=1

µm(E)xm(~s ) (1)

where ~s is the position in space, E the energy of an inci-
dent photon, Nm the number of materials, µm(E) the mass- 60

attenuation coefficient of material m at energy E, and xm(~s )
the concentration of material m at position ~s. The attenuation
profiles µm are known, and the aim is to find the concentration
maps xm. The most widespread methods to reconstruct material-
specific volumes from photon counts can be divided into two 65

categories. First, two-step image-based methods, in which each
energy bin of the photon counts is log-transformed and recon-
structed, just like the projections dataset of a standard CT. This
process yields one volume per energy bin and these intermediate
volumes are then decomposed into material-specific volumes 70

[8, 9]. Unfortunately, the intermediate volumes are corrupted
by beam hardening artefacts, because the energy dependence
of the attenuation coefficients is still averaged in each energy
bin, and also because a vast proportion of the primary photons
reaching the detector lose energy during interactions inside the 75

detector, and are therefore detected in a lower energy bin, which
is not accounted for during the reconstruction. Second, two-step
projection-based methods, in which multi-channel projections
are first decomposed into material-specific projections, and then
reconstructed, independently [6, 10] or jointly [11]. It turns out 80

that for typical choices of materials (e.g. water, bone, and a high-
Z contrast agent), the normalized attenuation profiles of the ma-
terials do not differ enough to yield a robust decomposition: the
inevitable statistical noise on photon counts is often sufficient
to cause aberrant material line integrals, which result in strong 85

streak artefacts in the reconstructed volumes. Some methods
were proposed to regularize the decomposition process [12, 13],
but projections regularized using standard priors (e.g. total
variation) usually violate data consistency conditions [14, 15]. In
addition, projection-based methods cannot be used easily with 90

fast kV switching [16] or dual source dual-energy systems [17].
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Two-step methods also have a structural drawback: unless the
first step is a bijection, it implies a loss of information, for which
the second step cannot compensate.

Recently, several methods have been proposed which recon-
struct material-specific volumes directly from the photon counts5

[1, 2, 3, 5, 4, 18]. They are commonly referred to as “one-step
inversion”, or simply “one-step” methods. All of these methods
are iterative: there is currently no analytical inversion formula
for the material decomposition problem, let alone for one-step
inversion. They consist in combining the forward models of the10

tomographic reconstruction and the material separation inverse
problems, yielding a single (but more complex) forward model,
which takes as input a set of material volumes, and yields photon
counts as output. In discrete form, the forward model reads

y ib =
∑
E

Sb,E exp

−∑
j

aij
∑
m

µm(E)xjm

 (2)

where yib is the photon count in pixel i and bin b, Sb,E is the15

effective spectrum, i.e. the number of photons of actual energy
E that are expected to be detected in bin b if there was no
attenuating object, aij is the coefficient of the forward projection
matrix A at row i and column j, and xjm is the concentration of
material m in voxel j. One-step inversion then means finding20

the volumes xm for which the forward model yields photon
counts y as similar as possible to those measured by the
scanner. By construction, the drawbacks of two-step methods
are circumvented, and there is no risk of losing information.
One-step methods therefore have the potential to yield higher25

image quality than their two-step counterparts, but they are
also slower to converge. This is likely to prevent their use
in many applications, as it happened for regularized iterative
reconstruction techniques on standard CT [19]. Since in the
multi-energy CT case the amount of data contained in a single30

acquisition is multiplied by the number of energy bins, and
the one-step problem is more complex than the reconstruction
problem alone, the need for fast methods is even more acute
than for standard CT.

In this paper, we present a comparison of five one-step35

methods [1, 2, 3, 4, 5]. Among these, only Cai et al. [1]
reported a comparison with another one-step method [20] and an
advanced image-based two-step method [21]. Barber et al. [5]
showed many results, but only with the proposed method, and
the other ones [2, 3, 4] are compared to two-step methods, either40

projection-based or image-based [22], with the exception that
Mechlem et al. [4] contains a comparison with Weidinger et al.
[3] in terms of convergence speed. An independent comparison
between many one-step methods is therefore still missing. In the
present work, experiments were conducted on both simulated45

and real data on a single slice. A strong emphasis was put on
convergence speed, but other aspects like memory footprint, sta-
bility, necessity to tune additional parameters and mathematical
rigour were also taken into account. Adequately comparing the
image quality of the reconstruction results of each method is50

notoriously difficult [23], and would have required many choices
(on datasets, method to determine the regularization parameters,
convergence criteria and image quality metrics). It is therefore
beyond the scope of the present paper.

In [5, 24], it is proposed to perform internal computations not55

with the actual materials into which one wishes to decompose
the object, but with carefully chosen linear combinations of
these materials. Since the materials are characterized only by
their attenuation coefficient µ as a function of the incident en-
ergy, Barber et al. call this step µ-preconditioning. In this paper, 60

we present three different ways to perform µ-preconditioning
and evaluate their impact on convergence speed. Since most
methods were not explicitly designed for µ-preconditioning, a
small adaptation is required (and described in the present paper)
for the regularization step. 65

II. MATERIAL AND METHODS

A. Compared methods

This paper is a comparison of five one-step inversion methods.
We have tried to stick as much as possible to the original
algorithm description but some modifications were required. In 70

this section, we briefly introduce each method, and describe the
modifications we had to perform. Though we have tried to make
the present paper as self-contained as possible, it is impossible to
explain all the methods in details without ending up duplicating
large passages of the original papers. For the same reason, 75

we sometimes use the notations of the original papers without
always re-defining them, but only for very specific comments,
which anyway do not make sense without reading the original
papers, and are not necessary to understand the message of the
present paper. We use a contraction of the first author’s name 80

and publication year (e.g. “Cai2013”) to refer to each method.
When the distinction is relevant, it should be clear from the
context whether we mean the method implemented and modified
by us, or the one described in the original papers.

1) Cai2013: Cai2013 [1] was originally published for dual 85

energy CT. The cost function is built with a variable y that is
the ratios between photon counts with object and photon counts
without object (instead of just the photon counts with object, in
the other methods). The variance of these ratios y is assumed to
be proportional to y, with a factor kd that has to be estimated. 90

The regularization term is the Huber function of the spatial
gradient of the volumes. The cost function is minimized by
a non-linear conjugate gradient, with a heuristically determined
step size. Given the descent direction, the step size is computed
as the one that would minimize the cost function’s second-order 95

Taylor expansion. Then the cost function is computed at the
candidate destination point, and the step size divided by 2 if it
causes an increase of the cost instead of a decrease. According
to the authors, the case where the step length had to be divided
by 2 never occurred in the experiments they conducted (which 100

were limited to dual-energy CT). In ours, it did occur, and
we had to implement a reset of the descent direction to the
opposite of the gradient (instead of the one provided by non-
linear CG, which includes the descent direction at previous
iteration) when the step size has been divided by 2 too many 105

times (in our implementation, 10 times) and still yields an ascent
step. Cai2013 is the generalization of [1] to 3 materials, which
is straightforward, and kd was determined by simulations. Note
that Cai2013 does not minimize the same data-attachment term
as the other four methods. 110

2) Long2014: Long2014 [2] was originally published as a
method for reconstructing three or more materials from dual
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energy CT scans. To that end, it adds a lot of a priori informa-
tion, in the form of equality and inequality constraints on the
reconstructed volumes. It uses surrogates of the cost function to
minimize it. Surrogates are defined as follows: let Ψ : RN → R
and x0 ∈ RN . The function Φx0 : RN → R is a surrogate of Ψ5

at x0 if and only if{
∀x ∈ RN ,Φx0(x) ≥ Ψ(x)
Φx0(x0) = Ψ(x0)

(3)

i.e. if Φx0
is above Ψ on RN , and tangent to Ψ at x0. Note that

we have used RN as domain for simplicity, but in Long2014
the domain actually used is R+N . The algorithms based on
surrogates consist in finding a surrogate Φx0

to the cost function10

Ψ at the current iterate x0, minimizing the surrogate instead of
the original cost function, adopting that minimizer as the new
iterate x1, and starting over. Obviously the surrogates must be
chosen carefully, in order to be easier to minimize than the
original cost function. In [2], surrogates are derived one after15

the other: first a convex one, then a quadratic one, and finally
a separable quadratic one, each new one being a surrogate
for all the previous ones, and therefore for the original cost
function. Performing minimization while complying with all
constraints requires an inner loop of quadratic programming us-20

ing the Generalized Sequential Minimal Optimization (GSMO)
algorithm [25]. Since in our case, there are more bins than
the number of materials, we have removed all constraints in
our implementation of Long2014, which allowed to replace
the quadratic programming inner loop by a single iteration25

of Newton’s method. Long2014 uses Ordered Subsets (OS) to
speed up convergence.

3) Weidinger2016: Weidinger2016 [3] also minimizes the
Poisson negative log-likelihood of the data by Separable
Quadratic Surrogates (SQS). As in [2], surrogates are derived30

sequentially. However, the quadratic “surrogate” is actually not
a surrogate, but an approximation, of the convex surrogate.
It simplifies the calculations, but the method is no longer
guaranteed to converge.

4) Mechlem2017: Mechlem2017 [4] builds upon [3], adding35

three features: calibration, Ordered Subsets and Nesterov accel-
eration. The calibration part allows to estimate the product of
the incident spectrum and detector response, in cases where it is
either not known at all, or known with insufficient accuracy. In
this study, we have assumed perfect knowledge of these system40

characteristics, and therefore dropped the calibration part. In
addition to that, Mechlem2017 [4] suggests to compute the
Hessian (and its inverse) only once, thus updating only the
gradient at each iteration. This approach is only valid if the
Hessian is near-constant, i.e. if the estimated volumes undergo45

little change over the course of the iterations. Therefore, the
paper proposes to start the iterations from a previously known
approximate result, like a set of two-step reconstructed volumes.
Since we start from zero-filled estimates, we do not use this
acceleration.50

5) Barber2016: Barber2016 [5] minimizes the transmission
Poisson likelihood (or a least squares term) plus a Total
Variation (TV) regularization term, using the mirrored con-
vex/concave (MOCCA) algorithm [26]. MOCCA is a primal-
dual algorithm designed to minimize non-convex functions that55

can be expressed as the difference of two convex functions. As

explained in section 3.1 of [5], the algorithm should have an
outer and an inner loop, but to speed up convergence, the inner
loop is set to perform only a single iteration. Unfortunately,
that modification can cause the algorithm to diverge, so an 60

additional parameter λ has been introduced and tuned to avoid
that. Roughly, λ is tuned to the largest value that does not cause
divergence. We also adapted the parameter θ of the Chambolle-
Pock algorithm (see the last line of equation 7 in [27]), which
must lie in [0; 1], and in [5] is implicitely set to 1. With θ = 1, 65

examining the sequence of iterates, we observed fast and ample
oscillations, and artifacts constantly appearing and disappearing.
These oscillations and artifacts did not significantly decrease
in intensity over the course of the iterations. Setting θ = 0.5
got rid of them, yielding a more stable sequence of iterates. 70

Computing the primal and dual step sizes Σ and T involves
the element-wise absolute value of products of matrices, which
is not trivial if both matrices have positive and negative values
and are too large to be actually stored. The computation of
the step sizes proved particularly tedious to implement, so 75

we restricted our study to a µ-preconditioning method (see
section II-B) that does not generate negative attenuation values
(i.e. simply normalizing the attenuation coefficient vectors),
which makes simplifications possible. This µ-preconditioning
is different from the one presented in the original paper [5] (i.e. 80

orthonormalizing the attenuation coefficient vectors), but our
study on Cai2013 in section III-F shows a better convergence
speed for normalization than for orthonormalization, so it is
unlikely that switching to orthonormalization for Barber2016
would greatly improve its convergence speed. 85

B. Mu-preconditioning

We form the matrix M as follows:

M =

 µI(1keV) µGd(1keV) µH2O(1keV)
...

...
...

µI(150keV) µGd(150keV) µH2O(150keV)

 (4)

where µm(E) is the mass-attenuation coefficient of material m
for incident X-ray photons of energy E, I stands for iodine,
Gd for gadolinium and H2O for water. For E ≤ 150 keV, 90

µH2O(E) and µGd(E) typically differ by 2 orders of magnitude,
which causes conditioning issues in the resolution of the one-
step inversion problem, and slows down convergence. Section
3.4 of [5] proposes to modify the material attenuation matrix
M to speed up and stabilize the internal computations. They 95

call this step “µ-preconditioning”. It can be interpreted as
creating synthetic materials, which are linear combinations of
the original ones, possibly with negative coefficients. We present
three different µ-preconditioning methods. Each one yields a
synthetic material attenuation matrix M̃ and a matrix P such 100

that MP = M̃ :
• Normalization: M̃ is obtained by dividing each column of
M by its norm. This has the advantage of not introducing
negative attenuations. The added complexity associated
with the use of negative attenuation coefficients, like the 105

use of absolute values in the calculation of Σ(n) and T (n)

in [5], can be avoided with this synthetic materials basis.
• Orthonormalization: M̃ is obtained either using the Gram-

Schmidt algorithm on M , or diagonalizing MTM (as
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proposed in [5]). This will generate negative attenuation
coefficients (for the dot products between columns to be
zero).

• Fessler’s method:

Q =
SM

S1
i.e. (Q)b,m =

∑
E Sb,E µm(E)∑

E Sb,E
(5)

with Sb,E the effective spectrum at energy E in bin b,5

and µm(E) the attenuation of material m at energy E.
Each value (Q)b,m is a weighted mean of the attenuation
coefficients of material m over the whole energy spectrum,
the weights being the number of photons seen by the
detector in bin b. Roughly, it evaluates how much the10

material m attenuates the photons that will end up being
detected in bin b. Now, the problem of determining which
linear combination of materials causes the observed attenu-
ation would be much easier if each material attenuated the
photons of only one bin, i.e. if Q was diagonal. Therefore,15

we define M̃ = MQ−1, i.e. P = Q−1. When Q is not
square, e.g. when there are more bins that materials, Q
cannot be inverted, but P can be defined as the Moore-
Penrose pseudo inverse of Q, i.e. P = (QTQ)−1QT .
This approach was proposed in [24] for dual energy CT,20

but its extension to more materials and more bins is
straightforward.

When the algorithm is fed a matrix M̃ = MP of the attenu-
ations of synthetic materials, it reconstructs synthetic material
volumes x̃. No change is required for the data-attachment term,25

but the regularization must be perfomed on the original materials
volumes x = Px̃, since we want the original material volumes
to be regular, not the synthetic ones.

For Cai2013, the regularization term J2, its gradient g2 and
its Hessian H2 must be replaced by their counterparts adapted
to synthetic materials J̃2, g̃2 and H̃2 defined as follows:

J̃2(x̃) = J2(Px̃) = 2Φ(Dx, θ2)

g̃2(x̃) = PT g2(Px̃) = 2PTDT Φ′(Dx, θ2)

H̃2(x̃) = PTH2(Px̃)P = 2PTDT Φ′′(Dx, θ2)DP

The notations are those of the original paper [1], except for the
matrix P , which is the one defined above. Similar changes are30

required for Long2014, Weidinger2016 and Mechlem2017: the
gradient of the regularization term must be left-multiplied by
PT , and its Hessian left-multiplied by PT and right-multiplied
by P . For Barber2016, the required changes are described in
the original paper.35

C. Simulation setup

We have designed a simple two-dimensional 3-materials
phantom (see Figure 1), consisting of a large square of water
at 1 g/ml, a small square of iodine at 10 mg/ml, and a small
square of gadolinium at 10 mg/ml. The iodine and gadolinium40

squares are inside the water square, but do not overlap. The
phantom has 2562 voxels. Through this phantom, 725 parallel
projections were simulated, with 362 rays per projection, using
the sparse forward projection matrix generated by the AIR
toolbox [28]. The line integrals obtained were then converted45

to photon counts, following the classical polychromatic Beer-
Lambert attenuation law. For the incident spectrum, we used the

same one as in Ducros et al. 2017 [13] which, quoting the paper,
“was simulated using the SpekCalc software [29], considering
a tube voltage of 120 kV, a 12◦ anode angle, and a filter of 1.2 50

mm of Al”. The detector response was simulated according to
the model presented in appendix A.2 of [10]. In the end, the
photon counts were corrupted with Poisson noise. This model
therefore neglects pile-up, scatter, charge sharing and probably
many other complex effects. For all methods, the initial guess 55

is a set of zero-filled volumes.

Iodine Gadolinium Water

Fig. 1: Ground truth of the phantom

D. Real data

A rabbit underwent an injection of both iodine and gadolin-
ium in the kidney. The contrast agents were injected at differ-
ent times, allowing to visualize a cortical enhancement with 60

the iodinated contrast agent and a medullar phase with the
gadolinated contrast agent. This injection protocol highlights
the spectral capabilities of SPCCT for multiphase imaging
within one single acquisition. The data was acquired on a
Philips spectral photon counting CT prototype in Lyon. The 65

scan consists of 2400 projections, each one of size 643x9 pixels,
each pixel containing 5 energy bins. Only the central row of the
projections was kept, and only one projection out of 5, ending up
with a downsampled dataset of 643x1x480 pixels. Each material
volume was reconstructed as a 380x380 grid of 2D voxels. 70

The detector response and incident spectrum descriptions were
provided by the manufacturer of the spectral photon counting
CT scanner prototype. The Philips prototype used a two-step
projection-based reconstruction method: material decomposition
is performed with an adaptation of Schlomka et al. [10], then 75

filtered to remove aberrant pixels, and finally reconstructed by
a standard filtered backprojection.

E. Comparison criteria

Comparison between iterative methods must be performed at
convergence. How one determines that a method has converged, 80

though, is a difficult question. Finding mathematical criteria that
match with simple visual examination is a research topic in
itself, far beyond the scope of the present paper. In one-step
spectral CT, there are two potentially competing objectives:
tomographic reconstruction, and material separation. It turns 85

out that material separation is typically achieved much slower
than tomographic reconstruction: with all studied methods, early
iterates clearly show the shape of the imaged object, but exhibit
important levels of cross-talk, which is unacceptable for clinical
practice. Therefore, in the reconstruction of simulated data, 90

tracking the concentration of a material over a region of interest
(ROI) with known target concentration is a simple but efficient
measure of convergence. We have run all methods with many
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Method δcontrast δwater
Regularization

contrast
Regularization

water
Cai2013 0.001 0.1 100000 / 10000 30 / 10

Long2014 0.001 0.1 300000 / 10000 30 / 10
Weidinger2016 N/A N/A 30000 / 3000 3 / 1

Barber2016 N/A N/A 100 / 200 10000 / 20000
Mechlem2017 0.001 0.1 30000 / 10000 10 / 3

TABLE I: Regularization parameters of the five methods used to obtain the
reconstructions on simulated data / real data. “Contrast” means iodine and
gadolinium, which share the same set of parameters. For Barber2016, the
“Regularization contrast” and “Regularization water” are actually the TV limits
for contrast and water. The δ parameter is used in the Huber function or its
equivalent, in the regularization terms of the methods.

iterations (the exact number varies with the method), and for
each method, we provide:
• the concentrations of iodine and gadolinium in their re-

spective ROIs over the course of the iterations
• the time per iteration with our implementation. Measure-5

ments were performed on a machine equipped with an Intel
Xeon E5-2620 v4 CPU running at 2.10GHz and an NVidia
GeForce GTX Titan X, and running OpenSuse Leap 42.2
and Matlab R2017b

• the number of iterations required for all materials to reach10

their target concentrations in their respective ROIs, within
a certain tolerance

• the mean and standard deviation in each ROI at the last
iteration, only to prove that the reconstructed volumes are
reasonably close to the solution15

• the theoretical memory footprint, since the actual memory
footprint depends too much on the implementation

Since storing all iterates is impractical, for all methods except
Mechlem2017 we stored one iterate every ten, which is why
Table III contains mostly multiples of ten.20

F. Choice of the regularization parameters

Automatically finding an appropriate regularization parameter
is also a research topic in itself, and not in the scope of the
present paper. However, the problem gets even more acute
in spectral CT, since regularization typically creates cross-talk25

artifacts: most regularizations blur sharp borders, which causes
incorrect concentration values around the borders of an object.
This in turn causes a mismatch between the measured photon
counts and those simulated through the reconstructed volume,
and the algorithm fixes it by introducing some amount (positive30

or negative) of another material to obtain a better match. In
this study, we have determined the regularization parameters
empirically, choosing the largest possible regularization that did
not cause significant amounts of cross-talk. This constrains the
regularization parameters to remain small, which is why the35

results presented do not look patchy, and the noise level looks
similar between analytical and iterative reconstruction. Table I
summarizes the regularization parameters chosen for simulated
data and real data, separated by a ’/’.

G. Software40

For this study, we re-implemented all of the five methods
compared here in a lightweight Matlab framework. That code is
free and open source, available at https://github.com/cyrilmory/

OneStepSpectralCT, and we appreciate any relevant contribution
to it. In particular, we encourage the authors of the five methods 45

we have studied to check that code against their own imple-
mentation. Together with the code, we provide detailed notes
on how to re-do the calculations of some of these methods. In
some of the papers ([1, 3, 5]), while re-doing the calculations,
we found mistakes in one or more equations. There is no doubt 50

that the authors of the papers have actually implemented and
tested the algorithms they present with software that performs
the right calculations, and that these mistakes are only “typos”.
We provide the corrected equations in our notes.

III. RESULTS 55

A. Simulated data

Figure 2 shows the last iterate computed for each of the
methods presented here. For Cai2013, we used Fessler’s method
for µ-preconditioning. A video of the iterates, on which it is
easy to evaluate the relative convergence rates of the various 60

methods, is available as supplementary material. It has the
same grayscale and is arranged the same way as Figure 2.
The remaining cross-talk between gadolinium and water in
the reconstruction by Barber2016 is most probably due to the
fact that the algorithm has not converged: on very small-scale 65

experiments (32x32 pixels), we were able to push the iterations
further, and Barber2016 did yield results free from cross-talk.

B. Qualitative criteria and various comments

In addition to the quantitative criteria, we mention other im-
portant aspects of the algorithms: mathematical rigour, stability 70

issues and need for additional parameters. Though we admit it
is highly subjective, we also describe the “difficulty” of each
method, i.e. how much mathematics one has to master to be
able to follow the calculations (and ideally, re-do them), and
how much time it took to implement them. All methods require 75

parameters for regularization, but some need additional ones for
other purposes: Cai2013 needs a parameter kd characterizing the
detector, and a threshold on how many times one tries to halve
the step size before resetting the descent direction (see section
II-A1). Barber2016 has a parameter λ = 10−4, and a parameter 80

θ = 0.5 (see section II-A5). Long2014 splits the projections into
20 subsets, and Mechlem2017 into 4 subsets, in order to speed
up convergence. Mechlem2017 also uses Nesterov’s momentum
technique to speed it up even more. This does reduce the number
of iterations required to obtain a sensible result by one to 85

two orders of magnitude with respect to Weidinger2016, but
makes Mechlem2017 unstable: when splitting the projections
into too many subsets, Mechlem2017 sometimes diverges: the
iterates accumulate strong streak artefacts, then they reach a
point where the Hessian of the SQS is not invertible, which 90

stops the algorithm.
In terms of mathematical difficulty, Cai2013 is probably

the simplest method. It only requires to derive the gradient
and Hessian of the cost function, and use them in a non-
linear conjugate gradient framework. Weidinger2016 follows 95

closely: the calculations only require a basic understanding of
optimization transfer principles (see chapter 1 of [30]), and a
few simple tricks based on the convexity inequality. The main
theoretical difficulty (determining the optimal curvature for the

https://github.com/cyrilmory/OneStepSpectralCT
https://github.com/cyrilmory/OneStepSpectralCT
https://github.com/cyrilmory/OneStepSpectralCT
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Fig. 2: Reconstructed volumes with the five methods, with grayscale ranges
equal to [0; 15] mg/ml for iodine and gadolinium, and [0; 1.5] g/ml for water

quadratic surrogate) is avoided by using an approximation. Then
comes Mechlem2017, which adds Nesterov’s momentum tech-
nique and ordered subsets. Both can be implemented without
fully understanding the mathematics from which they stem.
They make the final implementation slightly more complex5

than that of Weidinger2016. Long2014 comes next, and solves
the optimal curvature problem, with the assumption that the
reconstructed volumes only contain positive attenuation values.
With respect to the approximation used in Weidinger2016
and Mechlem2017, this rigorous solution requires additional10

calculations and intermediate variables, and its complete proof
occupies several pages of the appendix. Lastly, Barber2016 is
far more complex than the other four methods, and requires an
in-depth understanding of proximal algorithms.

C. Quantitative criteria15

We show in Figures 3 and 4 the evolution of the concen-
trations of iodine and gadolinium over the course of iterations,
for all five methods, with a logarithmic scale only on the x-
axis. The concentrations are measured in the square where
iodine or gadolinium is expected, eroded by 2 pixels in order20

to avoid partial volume effects. In all methods, the pixels at the
border of the region of interest (ROI) have significantly lower

concentrations. The full line is the ground truth concentration
value in the ROI. Note that from these two graphs, Barber2016
seems to have reached convergence after 100 iterations, which 25

is wrong: the concentration of water after 100 iterations is
completely off target, and a quick look at the video of the
iterates reveals that all three volumes are still contain a lot of
cross talk. Table II contains the mean and standard deviation of

Fig. 3: Concentration of iodine over the course of the iterations for the five
methods, in the ROI where it is expected eroded by 2 pixels

Fig. 4: Concentration of gadolinium over the course of the iterations for the
five methods, in the ROI where it is expected eroded by 2 pixels

iodine, gadolinium and water concentrations in the ROI where 30

they are expected eroded by 2 pixels, on the final iterate.
Table III shows the total number of iterations performed, the

time per iteration, and the number of iterations it took for all
materials to reach target concentration in their respective ROIs,
within 20% or 10% tolerance. From these results, Mechlem2017 35

clearly appears as the best candidate for the processing of large
real datasets: it converges 1 to 3 orders of magnitude faster than
its competitors, and yields similar results.
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Iodine
(mg/ml)

Gadolinium
(mg/ml)

Water
(g/ml)

mean std mean std mean std
Cai2013 10.4 2.14 10.1 3.75 0.999 0.0518

Long2014 9.96 0.952 9.91 1.46 1 0.0191
Weidinger2016 9.92 1.86 9.92 2.44 1 0.0425

Barber2016 9.61 2.43 9.19 1.39 1 0.072
Mechlem2016 9.97 1.93 9.94 2.67 1 0.0227

TABLE II: Mean and standard deviation of iodine, gadolinium and water
concentrations in the ROI where they are expected eroded by 2 pixels on the
final iterate

Method Iterations
performed

Time per
iter (s)

Within
20% tolerance

Within
10% tolerance

Cai2013 5000 5.2 270 430
Long2014 5000 1.33 150 290

Weidinger2016 5000 0.48 190 390
Barber2016 10000 1.02 3900 8360

Mechlem2017 200 0.62 5 10

TABLE III: Number of iterations performed and required to reach target
concentrations within 20% and 10% tolerance.

D. Memory footprint of each method

We provide here a simple analysis of the memory foot-
print of each method, by listing the variables that have to be
stored and recalling their size. Note that the implementation
we provide keeps many intermediate variables in memory, for5

convenience and speed considerations, and therefore uses much
more memory than the minimum required. The measured photon
counts, which constitute the main input of these reconstruction
algorithms, are assumed to be available on disk, so they never
have to be fully loaded in memory and are not mentioned in this10

section. Obviously, re-reading them from disk at each iteration
is highly inefficient, and one should load them in memory if
possible. We use the notations of the original papers for the
names of the variables, and the following notations for various
quantities: Nv is the number of voxels of one reconstructed15

material volume, Nm the number of materials, Np the number
of pixels of all projections for one bin, Nb the number of energy
bins in photon counts measurements. Despite the fact that we
performed 2D simulations, we assume for these calculations that
the volumes are 3D (which matters for the computation of the20

spatial gradient).
1) Cai2013: The following variables must be stored and

updated at each iteration: x(k), d(k), g(k) and g(k−1), which
each contain a set of material volumes. Since all computations
can be performed pixel-wise, the expected photon counts ȳ do25

not have to be fully stored in memory, and neither does any
of the intermediate variables in the calculation of the gradient
and Hessian of the data-attachement term, so we do not count
them. Lastly, the spatial gradient of x(k), which is 3 times as
large as x(k), is used in the calculation of g and of dTHd.30

More precisely, it is the divergence of the first and second
derivative of the Huber function of the gradient that is used.
These calculations can be computed piecewise, with overlapping
pieces since the gradient and divergence require neighboring
voxels. In total, at least 4NvNm floating point values must be35

kept in memory, and storing 3NvNm additional values for the
gradient of x(k) avoids redundant computations, and the problem
of having to divide the volumes into overlapping pieces.

Variable Stored ? Size in memory
(in floating point values)

f0 yes NvNm

f (n−1)

f (n)

f (n+1)

only f (n−1) NvNm

Σsino yes NpNb

Σgrad
w

only one of both 3NvNm

T (n)

yes: used only once,
but computed as the sum

of two very different
calculations, unlikely to occur

voxelwise in parallel

NvNm

z
(n+1)
0

no: used only once,
pixelwise 0

y
(n−1)
sino
y
(n)
sino

y
(n+1)
sino

not y(n+1)
sino ,

because it replaces y(n)
sino

2NpNb

D1(f0)
b1(f0)
E1(f0)

no: used only to compute
y
(n+1)
sino , pixelwise

0

y+grad yes 3NvNm

y
(n)
grad

y
(n+1)
grad

only one of both 3NvNm

g+
yes: to be projected

onto L1 ball 3NvNm

ĝ+
no: used only once,

voxelwise 0

f (n)

f (n+1) yes 2NvNm

TABLE IV: Memory footprint of Barber2016, for each variable used in appendix
C.6 of [5]. Nv , Nm, Np and Nb are defined in section III-D of the present
paper. The words “pixelwise” and “voxelwise” mean that the variable can be
computed one pixel (or voxel) at a time, thus its computation requires negligible
amounts of memory

2) Long2014, Weidinger2016 and Mechlem2017: In all three
SQS-based methods we have implemented, the following vari- 40

ables must be stored and updated at each iteration: the current
iterate (x(n) as in [2]), of size NvNm, and the gradient and
Hessian of the surrogate at x(n), of size NvNm and NvN

2
m,

respectively. The gradient and the Hessian of the surrogate of the
data-attachment term both result from one forward and one back 45

projection. By performing these one angle at a time, they can be
computed with negligible amounts of memory. The gradient and
Hessian of the surrogate of the regularization term both require
a memory size of NvNm (the Hessian has NvN

2
m elements,

but is known to be diagonal), and internal computations can be 50

done in place. Since typically they are calculated separately,
and then added to those of the regularization terms, their
requirements in memory add up. In total, the memory footprint
is at least (4 +Nm)NvNm floating point values for Long2014
and Weidinger2016. For Mechlem2017, two additional Nesterov 55

variables must be stored (z(k) and v(k)), taking the memory
footprint to a minimum of (6+Nm)NvNm floating point values.

3) Barber2016: This method makes use of more intermediate
variables than the other four. Table IV lists the variables used in
the pseudo code given in appendix C.6 of [5], whether they must 60

be stored or not, why, and how many floating point values are
therefore required. In total, it uses at least 17NvNm + 3NpNb

floating point values.
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E. Real data

Figure 5 shows reconstructions of the rabbit acquisition
described in section II-D. For each method presented here, it
shows the last iterate computed (the number of iterations is
the same as for the simulated data). For Cai2013, we used5

Fessler’s µ-preconditioning. A video of the iterates is available
as supplementary material. The circular artefacts are due to
imperfect calibration of the detector’s response and/or physical
phenomena that are not taken into account in the forward
model. Again, cross-talk can be observed in the reconstruction10

by Barber2016. It is unclear whether it is due to the fact that
the algorithm has not converged, or to excessive regularization
because of a too restrictive TV constraint. For Cai2013, we set
the parameter kd to the same value as in the simulations, which
is probably not optimal, and may explain why Cai2013 results15

are noisier than the others. It illustrates why requiring extra
parameters is a serious drawback for a reconstruction method.
The spatial distribution of the gadolinium is different in the
prototype’s reconstruction, where the gadolinium seems mainly
located in a small region of the kidney, and in the one step20

reconstructions, where also the cortex of the kidney seems to
contain gadolinium. Without a ground truth, it is difficult to
determine which distribution is the correct one, if any.

F. Impact of mu-preconditioning

Surprisingly, none of the SQS-based methods is impacted by25

µ-preconditioning: once mapped back to the original materials,
the iterates are almost identical to the ones obtained without µ-
preconditioning, with difference maps two orders of magnitude
less intense than the reconstructed volumes. The only impact is
with Fessler’s method [24]: since in our case (three materials,30

five energy bins) it artificially increases the number of materials
to that of the number of bins, the Hessians of the SQS
are no longer invertible, so this µ-preconditioning cannot be
used at all with SQS-based methods. On Cai2013, however,
µ-preconditioning has a strong impact. Figure 6 shows the35

evolution of the cost function over the course of the iterations
minus its minimum, using Cai2013 without µ-preconditioning,
with normalization, orthonormalization and Fessler’s method.
Since all four of these experiments aim to minimize the same
cost function, the minimum we subtracted is the minimum40

over all iterations and all four experiments (reached, as can be
seen on the graph, with µ-preconditioning by normalization).
It clearly shows that Fessler’s method has the fastest initial
convergence, which is confirmed by looking at the iterates (not
shown here). After more than 1000 iterations, the experiment45

using normalization reached a lower value of the cost function
than the one using Fessler’s method.

IV. DISCUSSION

We have presented a comparison of five one-step inversion
methods for spectral CT, focused on aspects important for50

implementation into a real scanner: convergence speed, memory
footprint and required mathematical background for the pro-
grammer. This choice of criteria is in part due to the initial aim
of our study, which was to determine which algorithm should be
implemented to process large real datasets in reasonable time.55

But more importantly, it was dictated by the behavior of the
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Fig. 5: Reconstructions of a rabbit injected with iodine and gadolinium into the
kidney, with the five one-step methods presented, and reconstruction from the
Philips prototype. Grayscale ranges are [0;20] mg/ml for iodine, [0;7] mg/ml
for gadolinium and [0;1.5] g/ml for water.

algorithms themselves: while all methods seemed to perform
similarly in terms of image quality, provided one takes the
time to adjust the regularization parameters, they differed a
lot by practical aspects like convergence speed and ease of 60

implementation. We provide the complete Matlab code we have
used for this study, so that readers interested in conducting an
image quality comparison study have the means to do so.

There are other one-step inversion methods in the literature
than the ones we selected, e.g. [18, 20], and it is likely that more 65

will be proposed in the future. We provide our code (see section
II-G), hoping that others will be interested in implementing their
method in the same framework, to extend the comparison.

A limitation of the present study is the small size of the
data used in the experiments, which was dictated by our 70

implementation using a sparse system matrix stored in computer
memory. It is therefore possible that on larger datasets, e.g. on
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Fig. 6: Cost function of Cai2013 over the course of the iterations minus its
mininum, depending on the µ-preconditioning method used

a full real helical acquisition, the relative convergence speeds
of the studied methods would be different. However, the other
observations made in the paper would remain valid.

Another limitation is that since one-step inversion is a non-
convex problem, the results may strongly depend on the initial-5

ization. Mechlem et al. recommend to initialize the algorithms
with reconstruction results from a two-step method. We have not
tried that approach, and have instead initialized all reconstruc-
tions with zero-filled volumes. Different initialization strategies
may lead to different conclusions on relative convergence speeds10

and on image quality.
Since the same sparse system matrix was used both for simu-

lation and reconstruction, volumes reconstructed from simulated
data result from an inverse-crime setup [31]. However, this holds
for all methods, so the comparison remains valid. On the real15

data, no inverse-crime is possible.
Sidky et al. have recently proposed a more efficient µ-

preconditioning method [32], better-suited to three-materials
reconstructions than the one described in Barber2016. In the
experiment they present, this new µ-preconditioning method20

speeds up convergence by a factor 10. The slow convergence
of Barber2016 in our experiments must therefore be mitigated
by the fact that we did not implement that method. However,
a factor 10 would only make its convergence speed simi-
lar to Cai2013, Long2014 and Weidinger2016, and our other25

observations on Barber2016 (memory footprint, mathematical
complexity) remain valid.

Our implementation of Mechlem2017 differs from that of
Weidinger2016 only by the use of Nesterov’s momentum tech-
nique and a small number of ordered subsets, and yet greatly30

outperforms Weidinger2016. Therefore we confirm the obser-
vation made in the discussion of Mechlem2017, and in several
other papers [33, 34]: Nesterov’s momentum technique com-
bined with ordered subsets highly accelerates the convergence
speed per iteration. We have also tried modifying Cai2013 to35

include Nesterov’s momentum technique (it is available in the
code we provide), and it does accelerate convergence there too.

The five methods we have compared all use the same forward

model, which does not simulate advanced effects like charge
sharing or pulse pile-up. A way to improve the reconstruction 40

results of one-step methods on real data would be to take these
effects into account in the forward model. How to minimize a
cost function with such a modified forward model is a topic for
future research on one-step methods.

V. CONCLUSION 45

We have compared five one-step reconstruction methods:
Cai2013 [1], Long2014 [2], Weidinger2016 [3], Barber2016 [5],
Mechlem2017 [4], leaving aside image quality considerations to
focus on convergence speed and other practical aspects. From
these observations, it is clear that among the five methods 50

studied, the only one suitable for implementation in a real
spectral CT scanner is Mechlem2017.
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C. Becker, A. Kopp, and B. M. Ohnesorge, “First perfor-
mance evaluation of a dual-source CT (DSCT) system,”
European Radiology, vol. 16, pp. 256–268, Feb. 2006.

[18] B. Chen, Z. Zhang, E. Y. Sidky, D. Xia, and X. Pan,
“Image reconstruction and scan configurations enabled45

by optimization-based algorithms in multispectral CT,”
Physics in Medicine & Biology, vol. 62, no. 22, p. 8763,
2017.

[19] X. Pan, E. Y. Sidky, and M. Vannier, “Why do commer-
cial CT scanners still employ traditional, filtered back-50

projection for image reconstruction?,” Inverse Problems,
vol. 25, p. 123009, Dec. 2009.

[20] P. Sukovic and N. H. Clinthorne, “Penalized weighted
least-squares image reconstruction for dual energy X-ray
transmission tomography,” IEEE Transactions on Medical55

Imaging, vol. 19, pp. 1075–1081, Nov. 2000.
[21] N. Maass, S. Sawall, M. Knaup, and M. Kachelriess, “Em-

pirical multiple energy calibration (EMEC) for material-
selective CT,” pp. 4222–4229, IEEE, Oct. 2011.

[22] P. R. S. Mendonca, P. Lamb, and D. V. Sahani, “A 60

Flexible Method for Multi-Material Decomposition of
Dual-Energy CT Images,” IEEE transactions on medical
imaging, vol. 33, pp. 99–116, Jan. 2014.

[23] C. H. McCollough, G. H. Chen, W. Kalender, S. Leng,
E. Samei, K. Taguchi, G. Wang, L. Yu, and R. I. Pettigrew, 65

“Achieving Routine Submillisievert CT Scanning: Report
from the Summit on Management of Radiation Dose in
CT,” Radiology, vol. 264, pp. 567–580, Aug. 2012.

[24] J. A. Fessler, “Method for statistically reconstructing
images from a plurality of transmission measurements 70

having energy diversity and image reconstructor apparatus
utilizing the method,” Aug. 2003. International
Classification G06T5/00; Cooperative Classification
G06T2207/10081, G06T5/002, G06T11/006, A61B6/482,
A61B6/4241, A61B6/405, A61B6/032, A61B6/4035, 75

G06T2211/408, G06T2211/424; European Classification
A61B6/48D, G06T11/00T3, A61B6/03B, A61B6/40H,
A61B6/40F, A61B6/42B8, G06T5/00D.

[25] S. S. Keerthi and E. G. Gilbert, “Convergence of a General-
ized SMO Algorithm for SVM Classifier Design,” Machine 80

Learning, vol. 46, pp. 351–360, Jan. 2002.
[26] R. F. Barber and E. Y. Sidky, “MOCCA: Mirrored con-

vex/concave optimization for nonconvex composite func-
tions,” arXiv:1510.08842 [math], Oct. 2015.

[27] A. Chambolle and T. Pock, “A First-Order Primal-Dual 85

Algorithm for Convex Problems with Applications to
Imaging,” Journal of Mathematical Imaging and Vision,
vol. 40, pp. 120–145, May 2011.

[28] P. C. Hansen and M. Saxild-Hansen, “AIR Tools — A
MATLAB package of algebraic iterative reconstruction 90

methods,” Journal of Computational and Applied Math-
ematics, vol. 236, pp. 2167–2178, Feb. 2012.

[29] G. Poludniowski, G. Landry, F. DeBlois, P. M. Evans,
and F. Verhaegen, “SpekCalc: A program to calculate
photon spectra from tungsten anode x-ray tubes,” Physics 95

in Medicine and Biology, vol. 54, pp. N433–438, Oct.
2009.

[30] J. Beutel, Handbook of Medical Imaging: Medical Image
Processing and Analysis. SPIE Press, 2000.

[31] A. Wirgin, “The inverse crime,” arXiv:math-ph/0401050, 100

Jan. 2004.
[32] E. Y. Sidky, R. F. Barber, T. Gilat-Schmidt, and

X. Pan, “Three material decomposition for spectral
computed tomography enabled by block-diagonal step-
preconditioning,” arXiv:1801.06263 [physics], Jan. 2018. 105

[33] D. Kim, S. Ramani, and J. A. Fessler, “Combining Ordered
Subsets and Momentum for Accelerated X-Ray CT Image
Reconstruction,” IEEE Transactions on Medical Imaging,
vol. 34, pp. 167–178, Jan. 2015.

[34] D. C. Hansen and T. S. Sørensen, “Fast 4D cone-beam CT 110

from 60 s acquisitions,” Physics and Imaging in Radiation
Oncology, vol. 5, pp. 69–75, Jan. 2018.


	Introduction
	Material and methods
	Compared methods
	Cai2013
	Long2014
	Weidinger2016
	Mechlem2017
	Barber2016

	Mu-preconditioning
	Simulation setup
	Real data
	Comparison criteria
	Choice of the regularization parameters
	Software

	Results
	Simulated data
	Qualitative criteria and various comments
	Quantitative criteria
	Memory footprint of each method
	Cai2013
	Long2014, Weidinger2016 and Mechlem2017
	Barber2016

	Real data
	Impact of mu-preconditioning

	Discussion
	Conclusion

