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Abstract—In this paper, we examine and propose a solution
for the challenges of sharing of genome sequence data and of data
querying on the genome sequence data on a cloud server in per-
sonalized medicine scenarios. We develop a privacy-preserving,
a secure and efficient solution for personalized medicine. The
solution that we propose making use of stream cipher-based
homomorphic transciphering in a cloud server, and to show
the effectiveness of transciphering solution in the personalized
medicine scenario. This paper also provides the comparative anal-
ysis of well-known existing homomorphic encryption solutions
BGV and FV schemes combined with the FLIP stream cipher to
demonstrate the efficiency and privacy of our solution.

Keywords—Homomorphic encryption, Stream cipher, Transci-
phering, Personalized medicine

I. INTRODUCTION

Genomics is an emerging field facing multiple challenges
for hosting, sharing, computing on, and interacting with the
large data sets. The increasing availability of genome data
is accompanied by increasing privacy concerns, such that an
inappropriate disclosure of such data might put individuals at
risk.

Cloud computing is becoming the preferred solution for
efficiently dealing with data storage and analysis with the
increasing amount of Genome Sequence Data (GSD). The
cloud is providing the power of analytics to companies of
every size and companies utilizing analytics are enjoying a
significant advantage in the marketplace. Cloud computing
is creating the vast new opportunities and dismantling entire
approaches to business [28], [20]. Cloud computing has the
potential to address the interoperability challenges currently
present in health IT systems and to be the technical standard
that enables individuals, health care providers, health care
entities and medical researchers to securely share electronic
health data [19]. Privacy regulations and concerns about the
risks of leaking sensitive GSD add another layer of complexity
to the problem. This calls for new highly developed techniques
that ensure data protection from an untrusted cloud server and
still enables healthcare persons/researchers to obtain useful
information.

One effective way of addressing these concerns is to
store genome data in an encrypted form in the untrusted
cloud. Unfortunately, computing on encrypted data is noto-
riously difficult, often requiring highly refined cryptographic
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techniques to protect genome data when their storage and
processing is outsourced to an untrusted cloud server such
as homomorphic encryption (HE) scheme. The HE scheme
can be used to encrypt data in such a way that storage can
be outsourced to an untrusted cloud, and the data can be
computed on in a meaningful way in encrypted form, without
access to decryption keys. This scheme enables more flexible
scenarios and functionalities. It requires fewer interactions,
thereby reducing the communication complexity.

A. Homomorphic Encryption Solutions for Genomic Compu-
tations

The HE scheme is attracting attention as a tool for secure
outsourcing of data analysis. Since the seminal work of Gentry
[11], introducing the first fully homomorphic encryption (FHE)
many other simpler and more efficient schemes have been
proposed [10], [6], [5]. The HE based solutions have been
applied to secure outsourcing of computation that involves
genome data. Lauter et al. [16] demonstrated an approach to
conducting private computation using encrypted genome data
with FHE, and presented several statistical algorithms can be
carried out on encrypted genomes by using somewhat HE
(SHE) scheme. Unfortunately, these cryptographic solutions
are not efficient in terms of time and space to conduct a
genome-wide association study (GWAS)-scale computation.

Similarly, Bos et al. [3] proposed a working implemen-
tation of cloud service for private computation of encrypted
health data using FHE. They give optimized performance
numbers for HE and a particular application in health care to
predictive analysis, along with an algorithm for automatically
selecting parameters. In a similar line of research, Cheon et
al. [15] adopted an SHE scheme to ensure the security of
shared data in a cloud server. They only focused on computing
the edit distance. Wang et al. [26] designed an SHE based
technique to discover the rare disease variants and analyze
the disease susceptibility in an untrusted cloud environment.
McLaren et al. [17] proposed a technique based on the additive
HE scheme for securely performing pharmacogenetic tests on
the encrypted genomes.

B. Identified Gaps and Solution to fill the Gap for our Work

We identify shortcomings on uses of HE schemes on
genome data analysis in the Subsection I-A which respectively
focus on three main areas in this paper. The computational cost,
memory cost, and noise increase are the limitations for the
deployment of cloud services based on such HE schemes, and
limits scalability to real-size genome data sets. The memory



cost is mostly influenced by the homomorphic ciphertexts
and public key sizes. These limitations make homomorphic
solutions impractical while also resulting in unsatisfactory
query privacy. Thus, our objective is to improve the efficiency
and reduce the complexity of encryption, evaluation, and
decryption algorithms.

To address these problems, we utilize the FLIP stream
cipher [18] which is specifically designed to be combined with
the HE scheme to improve the efficiency of HE frameworks.
The main design principle of the FLIP stream cipher is to
filter a constant key register with a time-varying public bit
permutation, which allows for small and constant noise growth.
The constant noise growth outcome of the FLIP is very useful
to increase the performance of HE schemes. We use the “tran-
sciphering” [6] from FLIP to HE schemes to get a constant
and small(er) noise (thus we get compressed ciphertext bits)
in a cloud server. This is a very efficient solution for securely
outsourcing genome data storage and processing.

C. Contribution

We propose an architecture for enhanced privacy protection
of sensitive genome sequence data on the cloud server in
the case of personalized medicine. We summarize the key
contributions of this paper as follows:

1) A privacy-preserving homomorphic evaluation of a stream
cipher is utilized to store and later compute on genome
sequence data in an untrusted cloud server.

2) Transciphering towards to HE solution is adopted for re-
duced ciphertext bits which are used for efficient memory
storage, low computation and communication costs.

3) Real-world genomic rules are generated, implemented,
and performed testing for personalized medicine solution.

4) A comprehensive comparison study is performed on ex-
isting homomorphic solutions (BGV and FV) and our
utilized transciphering schemes.

D. Paper Organization

The rest of the paper is organized as follows. Section II
presents the basis for our architecture and demonstrates well-
known existing HE schemes for comparison in experimental
analysis. In Section III, we describe the definitions and nota-
tions for subsequent parts of the paper. Section IV provides de-
scriptions of our proposed architecture and workflow processes
between the entities of our architecture. In the experimental
Section V, we present our experimental setup in Subsection
V-A. Genome data sets and genomic rules are exhibited in
Subsection V-B. Section VI demonstrates our computational
results and comparative analysis. Section VII summarizes and
presents conclusions.

II. PRELIMINARIES

We provide background information about the FLIP stream
cipher and Armadillo compilation chain which are used in our
work. We also mention the brief information of BGV and FV
schemes which are used in the experimental analysis for the
comparative study.

a) FLIP Scheme.: FLIP is a new family of stream
ciphers and specifically designed to be combined with the
HE scheme to improve the efficiency of HE frameworks. This
homomorphic-friendly design requires to drastically reduce the
multiplicative depth of the decryption circuit. This achievement
is made possible by the use of a new construction called as
filter permutator [18]. Its operational principle is represented
in Figure 2 of the paper [18]. Security analysis of this scheme
is presented in the paper [18].

b) Armadillo.: The Armadillo compilation chain [7]
provides an easy to use a compiler which builds a privacy-
preserving binary for an application written in a high-level
language using homomorphic encryption as a back-end. Ar-
madillo aims at addressing the software engineering issues of
cost-effectively writing programs for execution over encrypted
data and automatically handling a large amount of parallelism
in order to lead to non-prohibitive performances.

c) The BGV Scheme.: Gentry, Halevi and Smart [12]
constructed an efficient BGV-type SHE scheme. The security
of this scheme is based on the (decisional) Ring Learn-
ing With Errors (RLWE) assumption. The Brakerski-Gentry-
Vaikuntanathan (BGV) scheme [4] stands today as one of the
most efficient somewhat FHE scheme. The BGV scheme is
more efficient for large plaintext moduli [9]. We use HElib
software library for our experimental analysis (see in Section
VI), which implements the BGV scheme, along with many
optimizations to make homomorphic evaluation run faster.

d) The FV Scheme.: The FV scheme is defined in
the paper [10]. The security of this scheme is based on
the hardness of the “Ring-Learning With Errors” (R-LWE)
problem. In the FV scheme, besides the public and private
keys, a relinearization key is generated to be used during
multiplication on ciphertexts in order to reduce the noise. For
more details about this scheme, we refer the reader to the
paper [10]. The FV scheme is implemented in the back-end of
Armadillo compiler [7] without the bootstrapping step.

III. NOTATIONS AND DEFINITIONS

We briefly describe the notations and definitions for
subsequent parts of the paper. Let M be the plaintext
space, C the ciphertext space, and λ the security parame-
ter. H denotes an HE scheme which consists of four al-
gorithms: H.KeyGen(1λ), H.Enc(m, pkH), H.Dec(c, skH),
H.Eval(f, c1, ...., ck, pk

H). Similarly, F denotes a FLIP
scheme which consists of three algorithms: F.KeyGen(1λ),
F.Enc(m, skF ), F.Dec(c, skF ), where m ε M and c ε C.

a) Homomorphic Encryption Scheme Definition:

• H.KeyGen(1λ). Output pkH and skH the public and
secret keys of the HE scheme.

• H.Enc(m, pkH). From the plaintext m ε M and the
public key pkH , output a ciphertext c ε C.

• H.Dec(c, skH). From the ciphertext c ε C and the
secret key skH , output a m

′
ε M .

• H.Eval(f, c1, ...., ck, pk
H). With ci =

H.Enc(mi, pk) for 1 ≤ i ≤ k, output a ciphertext cf
ε C such that H.Dec(cf ) = f(m1, ....,mk).



b) FLIP Scheme Definition: We utilize the definition
of FLIP family of stream ciphers [18] in our architecture. The
algorithms of the FLIP scheme are defined as:

• F.KeyGen(1λ). Output skF secret key of the FLIP
scheme.

• F.Enc(m, skF ). From the plaintext m ε M and the
secret key skF , output a ciphertext c ε C.

• F.Dec(c, skF ). From the ciphertext c ε C and the
secret key skF , output a m

′
ε M .

The main feature of the filter permutator model, considering
HE settings, is that it allows handling ciphertexts having the
same constant and small amount of noise, whatever the number
of output bits [18].

IV. OUR ARCHITECTURE

Our architecture is designed to provide a solution for per-
sonalized medicine in a secure and privacy-preserving manner
on an untrusted cloud server. In the setup, we use five entities:
Patient, Hospital, a Sequencing facility (SF), a Cloud server
(CS), and Medical team/Doctor (MT/D). Our full architecture
includes several patients, hospitals, and medical teams/doctors.
To simplify the explanations, we present only one patient, one
hospital, one MT/D as shown in Figure 1.

In our architecture, each patient belongs to the hospital for
medical treatment. A hospital has sensitive biosamples of each
patient to examine the medical problems and get a solution.
Hospital sends biosamples of each patient to the trusted SF.
The SF sequences, encrypts genome sequence data (GSD), and
sends encrypted genome sequence data (e-GSD) to a CS in a
secure, privacy preserve, and efficient manner. Now, the CS
receives e-GSD and stores in the data repository. The e-GSD
is a useful data to get personalized medicine solution for the
corresponding patient.

The MT/D is mainly interested in receiving a portion
of patient’s genome data to get a solution for personalized
medicine. The MT/D sends a query request using an HE
algorithm and cooperation with a patient (Steps 3 and 4 in
Table II). Patient encrypts own secret key using HE algorithm
and sends to the CS. This is an essential step for transciphering.
Additionally, this is an independent step and can be performed
in an advance by the patient. The CS performs homomorphic
evaluation algorithm using transciphering to process query
request. Furthermore, MT/D uses a pre-defined knowledge
in its query request. For example, MT/D knows the CS has
storage of HLA or ABO genome data sets of patients. These
observations are acknowledged as a pre-defined knowledge for
MT/D. However, MT/D does not know the content of GSD of
a patient. We reduce the communication cost using the pre-
defined knowledge. The CS receives a query request, uses a
transciphering method (Step 5 in Table II), and computes a
requested data in an encrypted form. This allows to compute
the data in a very less size compare to the FHE scheme com-
puted data. This computed data is known as the compressed
ciphertext bits and sends to the MT/D as a query response.
The MT/D decrypts an encrypted query response and gets a
result to investigate personalized medicine solution.

Fig. 1: Our Architecture: A Personalized Medicine Scenario

The communication steps of each entity are illustrated in
detail as follows:

The Communication Steps. At the CS end, the service
manager, a data repository, policy enforcement side (PEP), and
policy decision point (PDP) are used for each communication
step. We utilize a separation of the PDP from the PEP as
described in [23], along with the introduction of an insider
threat detection unit at the PDP side in our scheme to prevent
PEP-side caching. The authors of [21] also use this separation
to prevent the insider attack (see their Figure 4). The service
manager is responsible for each process (send and receive) on
the CS, in which policies are established using PEP and PDP,
and decisions are made on the basis of these policies.

a) Step.1: Key generation Set-up (Initialization
step): The SF runs the FLIP key generation algorithm
F.KeyGen(1λ), and gets the secret key skF . Now, the SF
sends skF value to the corresponding patient. The MT/D uses
an HE scheme and obtains pkH , skH public and secret HE
keys respectively. This step is defined in Table I.

TABLE I: Communication between SF, CS, and MT/D

Steps SF CS MT/D

1. skF

←−
F.KeyGen(1λ)

(skH , pkH) ←−
H.KeyGen(1λ)

2. CF (M)
=
F.Enc(M, skF )

CF (M)−−−−−−−→CF (M)

b) Step.2: Communication between the SF and the CS:
In this step, the SF sequences genome data and gets the



GSD as illustrated in Table I. Then, the SF performs FLIP
encryption using skF on GSD (M ), and gets cipher value
of GSD: CF (M) = F.Enc(M, skF ). The SF sends CF (M)
to the CS, and CS stores this value in a data repository for
future use. The FLIP scheme provides a better efficiency for
both storage and computation costs (Table VII of Subsection
VI-B).

c) Steps.3 and 4: Communication between the MT/D, a
Patient, and the CS: In this step, an MT/D sends pkH to a
patient. A patient computes homomorphically ciphertext value
of skF using this equation CH(skF ) = H.Enc(skF , pkH),
and sends CH(skF ) and pkH to the CS. This is a necessary
step to request data query as MT/D is unauthorized to access
the skF . The CS can not send query result to an unauthorized
entity. This step is an essential step for transciphering in Step
5 and can be computed in an advance as a result of an
independent step. This step confirms the MT/D is a part of
the hospital. These steps are described in Table II.

d) Steps.5 and 6: Communication between the CS, and
the MT/D: Now, the CS has a data query from the MT/D.
As we mentioned in the above paragraph of this section, an
MT/D knows the pre-defined knowledge of an e-GSD, which
are stored on the CS.

TABLE II: Communication between CS, MT/D, and Patient

Steps CS MT/D Patient

3. pkH
pkH−−−−−−−−−−−−→ pkH

4. CH(skF ), pkH
CH (skF ),pkH←−−−−−−−−−−−−−−−−−−−−−− CH(skF )

=
H.Enc(skF

, pkH)

5. C̃H(f(M))
=
H.Eval(f, (F.Dec(CF (M))), CH(skF ), pkH)

6. C̃H(f(M))
C̃H (f(M))−−−−−−−−→ C̃H(f(M)),

decrypts
f(M) =
H.Dec(C̃H(f(M), skH)

In our case, we use the HLA, and the ABO data sets (detail
in Subsection V-B). The pre-defined knowledge is applicable
in our case for speed-up communication. The CS has these
values CF (M), CH(skF ), and pkH from previous Steps
2 and 4. In step 5, the CS evaluates the FLIP algorithm
CF (M) homomorphically using HE encrypted FLIP private
key CH(skF ) (Transciphering from FLIP to HE is used as
defined in the paper [8]). The CS obtains a compressed result
of an e-GSD C̃H(f(M)), and sends to the MT/D (Step-6).
This compression is achieved using homomorphic evaluation
of FLIP stream cipher scheme. In step 6, the MT/D decrypts
data using HE secret key skH and gets the requested data.
By using transciphering from FLIP to HE scheme, we get the
compressed ciphertext bits C̃H(f(M)). This reduces the cost
of storage on the CS and efficiently transmits ciphertext bits.
We find the existing HE schemes (see in Section I) suffer
from a very large ciphertext expansion. The transmission of
ciphertext between the CS and an MT/D (in our architecture)

is, therefore, a very significant bottleneck in practice. In our
architecture, we reduce the size of ciphertext in a very efficient
manner by using homomorphic evaluation of the FLIP stream
cipher scheme. Steps 5 and 6 are characterized in Table II.

V. EXPERIMENTAL SETUP AND DATA SETS

We present the experimental setup in Subsection V-A. Our
genome data sets and genomic rules are described in the
Subsection V-B.

A. Experimental Setup

The BGV [12] and the FV [10] schemes are implemented
in an HElib library [14], [13] and Armadillo [7] respectively.
The FLIP stream cipher is implemented in both HElib and
Armadillo for transciphering and comparative analysis with
the BGV and the FV schemes. These experiments are per-
formed on an Ubuntu 14.04 virtual box which is running on
windows 7 with Intel (R) Core (TM) i5-5300U CPU, 2.30
GHz processor, and RAM 16 GB. We present performance
costs in terms of the number of boolean operators (ANDs
and XORs), computation times (encryption, evaluation, and
decryption), and multiplicative depth (MD) in the Tables IV,
V, VI, and VII. Number of ANDs and XORs are denoted as the
“]ANDs” and“]XORs” respectively in Table IV. The AND and
XOR gates are exhibited as multiplicative and additive gates
respectively.

B. Genome Data sets and Genomic Rules

We utilize the publicly available data set Blood Group Anti-
gen Gene Mutation Database (BGMUT), which is an online
repository of the allelic variations in genes that determine the
antigens of various human blood group systems [22]. The data
set is in VCF file format. The VCF file has four parameters
(chromosome, position, reference chromosome, alternate al-
lele). ABO genomic rules are described in the paper [24]. A
total of 2504 patients are included for each study in the analysis
of ABO and HLA rules.

1) ABO Genomic Rule: We use ABO genomic rules from
the paper [24]. ABO rules are classified into two parts: ABO-1
and ABO-2. ABO-1 is presented in Table 2 of the Paper [24].
Details of both ABO rules are presented in detail on pages
7 and 8 of the Paper [24]. Authors have implemented both
rules using HElib library in the Paper [24]. We use their results
(Tables 3 and 4 from the Paper [24]) in our experimental results
for discussions and comparative analysis. Table IV delineates
the number of AND and XOR operators for both ABO-1 and
ABO-2 genomic rules.

2) HLA Genomic Rule: HLA complex helps the immune
system and distinguishes the body’s own proteins from proteins
made by foreign invaders such as viruses and bacteria. HLA
genes have many possible variations. For example, in our case,
50 very similar haplotypes for G∗01 : 01 : 01 : 01 phenotype,
49 similar haplotypes for G ∗ 01 : 01 : 01 : 02 phenotype etc.
The haplotypes of G ∗ 01 : 01 : 01 : 01 phenotype of HLA
are designated as G ∗ 01 : 01 : 01 : 01/G ∗ 01 : 01 : 01 : 01
. . . . . . G ∗ 01 : 01 : 01 : 01/G ∗ 01 : 01 : 01 : 06, G ∗ 01 : 01 :
01 : 01/G ∗ 01 : 02 . . . . . . G ∗ 01 : 01 : 01 : 01/G ∗ 01 : 18.
Similarly, we determine haplotypes of different phenotypes in
our analysis of HLA rules. Table III exhibits the example of



TABLE III: HLA Genomic Rules on the basis of Haplotype,
Phenotype, Chromosome position and Nucleotides

Phenotype Haplotype Rules using Chromosome
positions and Nucleotide

G ∗ 01 :
01 : 01 :
01

G ∗ 01 : 01 : 01 : 01, G ∗
01 : 01 : 01 : 02, G ∗ 01 :
01 : 01 : 03, G ∗ 01 : 01 :
01 : 04, G ∗ 01 : 01 : 01 :
05, G ∗ 01 : 01 : 01 : 06,
G ∗ 01 : 01 : 02 : 01, G ∗
01 : 01 : 02 : 02, G ∗ 01 :
01 : 03 : 01, G ∗ 01 : 01 :
03 : 02, G ∗ 01 : 01 : 03 :
03,G∗01 : 01 : 04,G∗01 :
01 : 05, G ∗ 01 : 01 : 06,
G ∗ 01 : 01 : 07, G ∗ 01 :
01 : 08, G ∗ 01 : 01 : 09,
G ∗ 01 : 01 : 11, G ∗ 01 :
01 : 12, G ∗ 01 : 01 : 13,
G ∗ 01 : 01 : 14, G ∗ 01 :
01 : 15, G ∗ 01 : 01 : 16,
G ∗ 01 : 01 : 17, G ∗ 01 :
01 : 18, G ∗ 01 : 01 : 19,
G ∗ 01 : 01 : 20, G ∗ 01 :
01 : 21,G∗01 : 02,G∗01 :
03 : 01 : 01, G ∗ 01 : 03 :
01 : 02, G ∗ 01 : 04 : 01,
G ∗ 01 : 04 : 02, G ∗ 01 :
04 : 03, G ∗ 01 : 04 : 04,
G ∗ 01 : 04 : 05, G ∗ 01 :
05N , G ∗ 01 : 06, G ∗ 01 :
07, G ∗ 01 : 08, G ∗ 01 :
09, G ∗ 01 : 10, G01 : 11,
G ∗ 01 : 12, G ∗ 01 : 13N ,
G ∗ 01 : 14, G ∗ 01 : 15,
G ∗ 01 : 16, G ∗ 01 : 17,
G ∗ 01 : 18

Rules for haplotype G ∗ 01 :
01 : 01 : 01/G ∗ 01 : 01 :
01 : 02 →
(6 : 29795720;A;G; 1|1)
& (6 :
29795747;G;C; 1|1)
& (6 :
29795751;C;T ; 1|1) &
(6 : 29795768;T ;C; 0|0)
& (6 :
29795855;C;G; 0|0) &
(6 : 29795983;A;G; 1|1)
& (6 :
29795987;G;A; 0|0) &
(6 : 29795993;G;A; 0|0)
& (6 :
29795914;C;T ; 0|0) &
(6 : 29795918;G;A; 0|0)
& (6 :
29795927;G;A; 0|0) &
(6 : 29796029;C;T ; 0|0)
& (6 :
29796327;C;T ; 0|0) &
(6 : 29796348;C;T ; 0|0)
& (6 :
29796399;C;G; 0|0) &
(6 : 29796436;C; .; 0|0) &
(6 : 29796523;T ;C; 0|0)
& (6 :
29796555;C;T ; 0|0) &
(6 : 29797280;G;A; 0|0)
& (6 :
29797421;G;A; 0|0) &
(6 : 29798459;C;G; 1|0)

50 haplotypes of G ∗ 01 : 01 : 01 : 01 phenotype. Due to page
limitation, we are not able to present genomic rule of each
phenotype and haplotype in this paper. The first column of
Table III denotes the phenotype of HLA (G∗01 : 01 : 01 : 01),
the second column denotes 50 haplotypes of G ∗ 01 : 01 :
01 : 01 phenotype. The third column presents the rule of HLA
haplotype (G ∗ 01 : 01 : 01 : 02) in correspond to phenotype
G ∗ 01 : 01 : 01 : 01. We choose G ∗ 01 : 01 : 01 : 02
haplotype because of smaller descriptions of chromosome
position with nucleotide than the other haplotype descriptions
(due to page limitation). In the third column, if the HLA-
rule is satisfied then a patient has the presence of this antigen
G ∗ 01 : 01 : 01 : 01/G ∗ 01 : 01 : 01 : 02 correspondingly.
The output of the values is in two forms “0” or “1”. “0”
means corresponding haplotype/phenotype does not find on
the patient genome and “1” means presence on the genome
of a patient. On the third column, “6” indicates chromosome,
followed by a separator “:” and an integer number “29795720”
that corresponds to the position at the reference chromosome.
The “;” is separator followed by “A” which is the nucleotide
at the reference chromosome, followed by a separator “;”
then the value “G” which indicates the nucleotides of the
alternative allele, 1|1 means that both alleles have that specific
polymorphism and thus the individual is homozygote for that
polymorphism. Similarly, we can define other values of the
haplotype with a definition of 0|0 means that both alleles of
an individual have no change in the nucleotide compared to a
reference chromosome. 0|1 means that one of the alleles has
a polymorphism at that specific chromosome position. “&”
denoted as “AND” operator, “|” denoted as “OR” operator

in homomorphic calculations. In total, we implemented and
analyzed 1274 HLA rules. The number of AND and XOR
operators for all HLA rules are presented in Table IV.

VI. EXPERIMENTAL RESULTS AND ANALYSIS

This section presents the computational results and com-
parative analysis of our experimental work. We implement and
test BGV, FV, and FLIP schemes. Additionally, we perform
transciphering (FLIP to HE schemes) to compute homomor-
phic evaluation of the FLIP algorithm. We use Armadillo [7]
to test FV scheme, and HElib is used for BGV. We compute
results of FLIP on both HElib and Armadillo for transciphering
and comparative analysis with the FV and BGV schemes.

A. Calculation of Boolean Operators

TABLE IV: Boolean Operators on HElib and Armadillo for
ABO-1, ABO-2, HLA Genomic Rules

Genomic
Rules

Number
of Rules

Boolean Operators on HElib and Armadillo
]ANDs ]XORs Total Number of Operators

ABO-1 15 100 58 158
ABO-2 16 3156 20132 23288
HLA 1274 13481 7040 20521

The number of boolean operators is the important parame-
ter to calculate a multiplicative depth for each genomic rule in
our experimental analysis. AND and XOR boolean operators
are used in our genomic rules. AND denotes multiplication
and XOR denotes addition operations in our genomic rule
evaluation. The descriptions of these boolean operators for
each rule is mentioned in Table IV.

B. Computation Costs of FV, BGV, Transciphering from FLIP
to FV, and Transciphering from FLIP to BGV Schemes

The FV and transciphering from FLIP to FV schemes are
implemented in C++ and compiled using Armadillo compi-
lation chain. We set the security parameter to 128-bit for
both schemes. Other parameters of the schemes are derived
automatically following the procedure from the paper [7].
Armadillo addresses optimizing compiler and parallel runtime
environment to minimize computation cost in an HE execu-
tion [7]. In our experimental analysis, we did not consider
parallelism optimization technique [7] during evaluation of
both FV and transciphering from FLIP to FV schemes in
Armadillo. In case of parallelization, we can execute the
circuits in parallel, for example, 8 threads. The number of
parallel execution threads is used to minimize computation cost
in an HE execution. Still, we have not employed parallelism in
our experimental evaluation, and no batching. ABO-1, ABO-
2, and HLA genomic rules are implemented on Armadillo in
both FV and transciphering from FLIP to FV schemes. The
computation costs of these genomic rules are illustrated in the
Tables V, VI, and VII. The presented results are the measures
of the actual compilation times for both FV and transciphering
from FLIP to FV schemes.

The BGV and transciphering from FLIP to BGV schemes
are implemented in HElib [14]. The same ABO-1, ABO-2,
and HLA rules are evaluated using BGV and transciphering
from FLIP to BGV schemes. The experimental results of both



schemes are mentioned in the Tables V, VI, and VII. We use
the results of ABO-1 and ABO-2 genomic rules from Table
4 of the Paper [24]. Additionally, we use the same HElib
parameter setting from the Paper [24] in our implementation.

TABLE V: HE Schemes (BGV and FV) Execution time in
Seconds

Parameters KeyGen Encrypt Evaluate Decrypt MDSchemes Genomic
Rules

BGV
ABO-1 2.732 0 3 1 3
ABO-2 11.976 9 1549 5 13
HLA 8.964 43 2047 24 7

FV
ABO-1 0 0 1 0 3
ABO-2 1 6 427 2 13
HLA 1 29 563 12 6

TABLE VI: HE Schemes (BGV and FV) Execution time in
Seconds with additional FLIP Multiplicative Depth

Parameters KeyGen Encrypt Evaluate Decrypt MDSchemes Genomic
Rules

BGV
ABO-1 14.128 1 27 5 7
ABO-2 53.692 31 4757 23 17
HLA 30.948 45 7554 271 11

FV
ABO-1 1 0 5 1 7
ABO-2 3 18 1231 4 17
HLA 3 40 1947 17 10

TABLE VII: FLIP Transciphering Evaluation time in Seconds

Parameters Evaluate MDSchemes Genomic Rules

Transciphering FLIP to
BGV

ABO-1 6.76 7
ABO-2 1893.995 17
HLA 2468.91 11

Transciphering FLIP to
FV

ABO-1 0.467 7
ABO-2 208.232 17
HLA 731.132 10

Subsection 6.2.3 of the Paper [24] describes the Multiplica-
tive Depth (MD) in detail. The results of transciphering from
FLIP to BGV and FLIP to FV schemes are presented in Table
VII. The computation costs of each genomic rule with original
MD in FV and BGV schemes are delineated in Table V. The
computation costs of each genomic rule with the original MD
and the MD of the FLIP are executed using FV and BGV
schemes in Table VI. The MD of the FLIP scheme is 4 [18].
For example, the MD of ABO-1 is 3 in Table V, and the
value of MD for the same rule is 7 (3 + 4 = 7) in Table VI,
where 4 is a MD value of the FLIP. Similarly, we compute MD
values for each rule, and execution times on new MD values
in the Table VI. We use the addition of the MD of FLIP for
each rule to compare the computation costs of each rule with
transciphering using FLIP computational results in the Table
VII. The computation costs of transciphering from FLIP to FV,
and from FLIP to BGV schemes for each genomic rule with
similar values of MD are defined in the Tables VI and VII.

C. Comparative Analysis and Discussions

Comparative analysis of HE (BGV and FV) and tran-
sciphering schemes are determined from Tables VI and VII
respectively. The FV scheme is conceptually simpler than
the BGV scheme as shown in Table VI. Our transciphering

computational results are mentioned in Table VII. We use
transciphering from FLIP to BGV, and FLIP to FV schemes
to prove that the transciphering method is more appropriate
to minimize the computation cost in any HE schemes and to
compare with both well-known HE schemes.

From Table VI, the evaluation times needed for BGV
scheme to compute each genomic rule ABO-1, ABO-2, and
HLA are 27, 4757, 7554 seconds respectively. Similarly, the
evaluation times needed from Table VI for FV scheme in
the execution of ABO-1, ABO-2, and HLA are 5, 1231,
1947 seconds respectively. From the results of Table VII, we
can see that the time needed in evaluations of transciphering
from FLIP to BGV for each ABO-1, ABO-2, and HLA are
6.76, 1893.995, 2468.91 seconds respectively. Evaluations of
transciphering from FLIP to FV for each ABO-1, ABO-2, and
HLA are 0.467, 208.232, 731.132 seconds respectively. Thus,
their highest evaluation time is achieved on BGV scheme. The
graphical comparison of these schemes is depicted in Figure
2a.

(a) Homomorphic evaluation of ABO-1, ABO-2, HLA rules using BGV, FV, and Transciphering
(FLIP to BGV, and FLIP to FV) schemes

(b) Homomorphic evaluation of ABO-1 using BGV, FV, and Transciphering (FLIP to BGV, and
FLIP to FV) schemes

Fig. 2: Comparative Analysis of BGV, FV, and Transciphering
(FLIP to BGV, and FLIP to FV) schemes

Figure 2a illustrates the advantages of using a transcipher-
ing method in the HE schemes during homomorphic evaluation
step. The Figure 2a delineates the computation cost of the
transciphering scheme is better than the both well-known BGV
and FV schemes for each genomic rule. Figure 2b depicts
the ABO-1 results for each scheme as depicted in the Figure



2a. We put ABO-1 results separately because the graphs are
not clear in Figure 2a due to lower values of ABO-1. We
find the evaluation time of transciphering from FLIP to FV
scheme is efficient than the other schemes. The sequence
success of schemes in the homomorphic evaluation are: BGV
<Transciphering FLIP to BGV < FV < Transciphering FLIP
to FV. In this study, we achieve the FV scheme is better than
the BGV scheme. Thus, transciphering from FLIP to FV is
better than the transciphering from FLIP to BGV scheme.

VII. SUMMARY AND CONCLUSIONS

This paper presents an entire secure framework for genome
data sets processing leveraging on an untrusted cloud. This
study assesses the steps required for deployment of privacy-
preserving genetic testing in a personalized medicine scenario.
We enable the transciphering within our architecture in order
to enhance the storage efficiency of the genome data sets,
computation, and communication costs. We utilize a FLIP
scheme as the basis of a secure scheme in the well-known
BGV and FV schemes to provide a high level of efficiency.
Additionally, we perform a comparison study between BGV,
FV, and transciphering (FLIP to BGV, and FLIP to FV)
schemes to validate the efficiency of transciphering in HE
schemes using ABO-1, ABO-2, and HLA rules. The testing
results have proven that the transciphering provides efficient
results than both BGV and FV schemes. Additionally, we
achieve the best efficient results in transciphering from FLIP
to FV scheme as FV scheme is efficient than the BGV scheme.

Our next step is to extend our architecture for achieving
interoperability and overcoming data exchange issues using the
Blockchain [1], [25], [27]. For example, Microsoft provides
Blockchain as a Service (BaaS) on the Azure cloud platform.
IBM provides Watson IoT platform to manage IoT data in
a private blockchain ledger, which is integrated with IBM’s
business-level cloud services. Edge computing is a promising
solution for the blockchain applications [2]. Additionally, our
forthcoming work is to enhance the current architecture by
utilizing the edge computing in order to enhance the computing
power for data analytics and processing.
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