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Abstract—One of the most popular platform based on
blockchain technology is Ethereum. Internal activity on this
public blockchain is analyzed both from a quantitative and
qualitative point of view. In a first part, it is shown that the
creation of the Ethereum Alliance consortium has been a game
changer in the use of the technology. In a second part, the
network robustness against attacks is investigated from a graph
point of view, as well as the distribution of internal activity among
users. Addresses of great influence were identified, and allowed
to formulate conjectures on the current usage of this technology.

Index Terms—Blockchain, Ethereum, cryptocurrency, smart
contract, graph analysis.

I. INTRODUCTION

A transaction between individuals, in the classical sense,
requires either trust in each parties, or in a third party.
Blockchain solves this problem of trust between the actors by
using a consensus algorithm. Beyond the debate on whether
or not this technology can be qualified as innovative or simply
being an aggregation of already existing building blocks (peer-
to-peer protocols, multi-party validation algorithm etc.), it can
be reasonably stated that its usage lies on a new paradigm of
communication and value exchange . The number of scientific
publications dedicated to the general concept of blockchain
was multiplied by 15 between 2009 and 2016, which demon-
strates both a growing interest for the technical development
of blockchains compounds and for its applications in domains
for which it has been thought to be potentially disruptive [1]–
[6].

Looming over the daily increasing number of available
blockchain technologies, Bitcoin is by far the most popular and
widely used blockchain. However, in February 2017, a consor-
tium of major I.T. and banking actors announced the creation
of the Ethereum Alliance, a large project aiming at developing
a blockchain environment dedicated to the enterprise based
on the Ethereum blockchain. This event suddenly promoted
the latter to the level of world wide known and trustworthy
blockchain technologies - that up to then only included Bitcoin
- making it an essential element of the blockchain world.

Despite an increasing notoriety and a monthly growing
fiat money equivalent volume, it remains difficult to find
publications dedicated to the establishment of economical and
behavioural models aiming at describing internal activity on
Ethereum, similarly to the studies performed for the Bitcoin

network [7]–[9]. Concomitantly, global, time-resolved or ma-
jor actors-resolved statistical indicators on the past internal
activity and on the blockchain network topology are not com-
monly found in the literature, while they exist for Bitcoin [10]–
[12].

This paper aims at providing basic quantitative insights
related to the activity on the Ethereum public network, from
the origin, on July 2015, to August 2017. In the first part,
correlations in time between internal variables, and between
internal variables and the USD/ETH exchange rate are com-
puted. A strong sensitivity of the activity to external events is
highlighted. In a second part, the network is analyzed from a
graph point of view. Its topology and robustness against attacks
is investigated, as well as the distribution of internal activity
among users. This leads to the identification of major actors
in the blockchain, and to a detailed insight into their influence
on the Ethereum economy.

II. THE ETHEREUM TECHNOLOGY

Similarly to Bitcoin, Ethereum is a public distributed ledger
of transactions [13]. Yet, the latter differs from the former
by major features, among which the existence of smart con-
tracts. Smart contracts are pieces of code that execute on
a blockchain. Users or other smart contracts can call its
functions, in order to store or transfer tokens, perform simple
calculations, dealing with multi-signature transactions etc.

The existence of smart contracts allows us to distinguish
five different kinds of transactions:

• User-to-user: a simple transfer of tokens from one ad-
dress to another - both addresses can belong to the same
physical user.

• User-to-smart contract: a signed call to one of the func-
tions of a smart contract.

• Smart contract deployment: a transaction that contains
the binary code of a compiled smart contract and sent to
a special deployment address.

• Smart contract-to-smart contract and smart contract-to-
user: user calling a smart contract might call another
function of the same smart contract, or of another smart
contract, or again transfer tokens to a user. These are
called internal transactions, and their study is beyond
the scope of this paper.



III. DATA SOURCES AND FEATURES CLASSIFICATION

A. Blocks and transactions

In order to collect data, a public Geth [14] node was con-
nected to the Ethereum public network. Once synchronised,
the blockchain was stored for further analysis. Within this
paper, we only deal with validated transactions, i.e. inserted
into a block that was mined and added to the main chain before
August 31st 2017.

B. Transactions features

Two main transactions features are retained for the analysis.
• address: A hexadecimal chain of characters pointing to

an account, that can either be a user or a smart contract.
Even though there is no direct link between an address
and its user identity, some of them are publicly known
to belong to major actors such as exchange platforms or
mining pools. The correspondence can be found on open
access blockchain explorer websites, such as Etherscan1.

• value: the amount of tokens, expressed in wei, transferred
through the transaction. The ether/wei conversion rate is
a hard coded constant equal to 1018. The time-resolved
exchange rate between ether (ETH) and USD is provided
by the Poloniex website API.

The notions of uncles, gas and gas price, inherent to block
validation protocol on Ethereum, are not investigated in this
paper.

1https://etherscan.io/

IV. ACTIVITY ON THE ETHEREUM NETWORK

A. Evolution in time of transaction main features

Table I displays the global percentage of the number of
transactions and the amount of tokens that each of the three
kinds of transactions defined in Section II represents.

Number of transactions Value transferred
user-to-user 64.6% 90.5%
user-to-smart contract 34.3% 9.5%
smart contract deployment 1.1% < 0.1%

TABLE I: Proportions of transactions sent and value transfered
through the three kinds of transactions.

It is worth noting that although the user-to-user transactions
gather almost two thirds of the total of all transactions, they
carry almost 90% of the transferred amount of tokens. A
detailed investigation of the use of smart contracts reveals
that most of them have been called only once, but that a
small fraction of them have been massively used; this explains
the smallness of the number of smart contract deployments
compared to the number of user-to-smart contract transactions.

Figure 1 displays the monthly total number of transactions
and transferred value, respectively, for each of the three
categories of transactions defined above. The first two, ranging
within the same orders of magnitude, are plotted together for
both kinds of plot ((a) and (c)).

1) Number of transactions:
A behavior common to the three categories when it comes
to the variation of the number of transactions in time is a

Fig. 1: Number of different transactions and value transfered over time. The gray line highlights the creation of the Ethereum
Alliance.



Group by... Month Week Day Hour
From 2015/07/31 to 2017/... 02/28 08/31 02/28 08/31 02/28 08/31 02/28 08/31
user-to-user 0.96 0.96 0.95 0.97 0.92 0.96 0.48 0.89
user-to-smart contract 0.69 0.94 0.66 0.94 0.60 0.93 0.36 0.88
smart contract deployment 0.61 0.98 0.34 0.88 0.15 0.67 0.01 0.45

TABLE II: Pearson correlation coefficient over time between the USD/ETH exchange rate and the number of transactions
validated, for different aggregation periods (month, week, day and hour), and two time windows - bold figures highlight the
time-range ending before the creation of the Ethereum Alliance.

sharp increase from March to August 2017 (top two figures).
A very similar trend is observed on the same period concerning
the USD/ETH exchange rate, leading to conjecture that these
parameters are strongly correlated.

However, a careful examination of these variations reveals
that two distinct time windows should be distinguished at this
stage when investigating correlations between transactions in-
ternal features, and external features, on this network. Indeed,
the activity on public blockchains such as Bitcoin or Ethereum,
as they allow to invest traditional currencies through exchange
platforms, may be subject to the same sudden fluctuations as
those that can be observed on common market places after
external events, such as marketing announcements or financial
bankrupts. In the present case, we can reasonably conjecture
that there is a causal relationship between the creation of
the Ethereum Alliance on February 28th 2017 and the sharp
take-off of the above-mentioned features. Considering the
renown of the initial partners, this announcement may have
promoted Ethereum to a larger audience, even in the non-
specialist public, and may have brought a massive interest from
individuals resulting in an exponential growth of the activity
in terms of number of transactions of all kinds. Hence, the
strong correlation that could be calculated between features on
a global time range, because of scale effects, may be biased
and not reflect a normal behaviour.

To test this hypothesis we computed the Pearson correlation
coefficient [15] between the USD/ETH exchange rate and the
number of each of the three kinds of transactions defined
above, for four different aggregation time periods, and for two
subsets of data, that differ from their latest cut-off date: the
first one includes all transactions from the creation date of the
blockchain (July 31st 2015) up to the announcement date of
the Ethereum Alliance (February 28th 2017), while the second
one ends on August 31st 2017. Results are displayed in table
II.

When considering the entire blockchain lifetime (unbold
figures), we observe a strong correlation coefficient between
the exchange rate and both the user-to-user and the user-to-
smart contract number of transactions for all aggregation time
sizes (between 0.83 and 0.96), which is consistent with the
visual impression discussed above. But when excluding the
time range [March 2017-August 2017] (bold figures), such a
strong correlation only remains for the user-to-user number of
transactions, and for aggregation time sizes no shorter than a
day (between 0.92 and 0.95). It turns out that this particular
data set is the only one for which the exchange rate variation in

time follows the bump observed between March and October
2016, which explains the low correlation coefficient for the two
other kinds of transactions. As was conjecture, the Ethereum
Alliance creation announcement seems to have been a game
changer on the Ethereum internal activity.

2) Values:
The total exchanged values by unit of time displayed on plots
(c) and (d) of Figure 1 are shown on log scales for clarity.
The peak of activity, in terms of number of transactions, in the
period that follows the Ethereum Alliance creation translates
here into an average multiplicative factor of 10 as for the total
exchanged value through the user-to-user transactions (bottom
left figure), compared to the period that precedes it. As for the
range of value transferred through smart contract deployment,
it spans two orders of magnitude on the whole blockchain
lifetime time window, and shows no substantial correlation
with any of the retained features within this study.

To emphasise the rise of interest Ethereum has benefitted
between 2016 and 2017, we display in table III the equiv-
alent in USD of the total value that circulated within the
blockchain during the months of June of these two years.
The fluctuation of the average amount of tokens transferred
per transaction bears no relation to the sudden increase of
both the USD/ETH exchange rate and the number of trans-
actions after the Ethereum Alliance creation announcement.
The tremendous rise of the total value exchanged is thus a
direct consequence of the internal activity increase in terms of
number of transaction, and not of a behavior change among the
individual addresses in terms of amount of tokens transferred
through transactions. The macro perspective presented can be

June 2016 June 2017
Value in million ether 41 411 (+1002%)
Value in million USD 589 124,088 (+21,068%)

TABLE III: USD equivalent of the total value that circulated
within the Ethereum public blockchain during the month of
June 2016 and 2017.

completed by a more granular level view. In the following
sections, the topology of the resulted graph is examined in
order to obtain a characterization of the addresses, as well as
to see if there are certain addresses that stand out.

B. Network analytics

A better understanding of the repartition of transactions at
the addresses level is revealed by a graph representation of the
activity.



The Ethereum blockchain graph is built by setting the
addresses as nodes, the transactions as edges, and using a time
window that includes all internal events from the first block on
July 31st 2015 to August 31st 2017. The user-to-user and user-
to-smart-contract are different types of interaction. In this short
paper, we thus limit to user-to-user transactions. The resulting
graph contains 5,174,983 nodes (unique user addresses) and
33,811,702 edges (transactions).

1) Network scaling and robustness against attack:
The topology is firstly analyzed. Random networks are mod-
eled by connecting their nodes with randomly placed links,
as opposed to scale-free networks [16], such as the Internet,
where the presence of hubs is predominant. Following a scale-
free architecture implies that the network is rather robust to
isolated attacks, however, remaining vulnerable to coordinated
efforts, that might shut down the important nodes. In order to
understand potential vulnerabilities of the Ethereum Network,
we will investigate the presence of central nodes.

In accordance with a previous study on the Bitcoin network
in which it is shown to be scale-free [12], and with what is
commonly observed in real networks, a power law distribution
of the nodes degree d of the form c · d−α is expected, with c
a constant. Such a fit in the case of Ethereum gives α = 2.32,
which lies in the observed range for most real networks [16].

2) Centrality on the Ethereum Network:
In order to determine whether the activity is well spread
among the users, or whether there exist major actors or
activity monopoles, we make use of three different centrality
indicators:

• In-Degree/Out-Degree: the number of incoming/outgoing
edges a node is connected to;

• Betweenness Centrality: an indicator that summaries how
often a node is found on the shortest path between two
other nodes and, when communities exist, how well it
connects them;

• Left Eigenvector Centrality: a measure of the influence
of a node based on the node’s neighbors centrality.

Figure 2a depicts the network directed degree distribution
discrete probability density p, i.e. the probability for a ran-
domly picked node to show a certain in- (di) and out- (do)
degree. The latter are plotted in logarithmic scale for clarity
and, by convention, any initial in- (respectively out-) degree
value of 0 is plotted with a -1 in- (respectively out-) degree
coordinate, to preserve surface continuity. The probability
associated with p is denoted P .

It appears that the great majority of users do a rather limited
number of transactions, having an in-degree and an out-degree
equal to 1 (30.0%), followed by users that just send trans-
actions once, never receiving any (20.0%). Firstly, the radial
anisotropy is seen subsequent to larger values on the di = do
line, which implies that in- and out-degree distribution are not
independent variables: with p(di) and p(do) following a power
law distribution, it seems that p(di, do) 6= p(di) · p(do), and
the proportion of nodes having di = do is 36.9%. It should be
noted that this dependence is consistent with p(di, do) having
a finite value when di or do individually go to 0. Secondly,

(a)

(b)

Fig. 2: (a) Directed degree distribution (logarithmic color
scale) upon in-degree and out degree of user addresses ex-
pressed as probability; (b) Cumulated in-degree and cumulated
out-degree for the first 100 addresses in descending order of
their in-degree or out-degree

a mirror asymmetry is observed from one side of the above-
mentioned line to the other: P (di 6= do, di > do) = 43.4%,
while P (di 6= do, di < do) = 19.7%. These results suggest
that, regarding the description of degree distribution, more in-
formation on the blockchain network could be obtained using
a more sophisticated model than a simple power-law [17],
contrarily to what was assumed above.

Following these results, the degree spread among addresses
is being investigated. Figure 2b shows the cumulative in- and
out-degree percentage that represent, over all users, the first
100 addresses in descending order according to their in-degree
or out-degree. It reveals that, out of more than 1 million
addresses, just 20 addresses account for more than 60% of
the transactions sent and 20% of the transactions received. It
is then of interest to look for the identity of these addresses
and try to infer their public role on Ethereum.

Consequently, we identified the owner of each of the 20
first users in these two lists of addresses, and gather them
under three labels, Mining pool, Exchange platform, Unknown,



Mining Pool Exchange platform Unknown
In-degree 0% 35% 65%
Out-degree 60% 25% 15%
Betweenness 15% 50% 35%
Eigenvector 0 0 100%

TABLE IV: Public status of the top 20 addresses according to
different measurement of centrality

which we assume meaning neither mining poool or exchange
platform. Results are displayed in Table IV.

Among the top 20 addresses that send transactions are found
12 mining pools (60%), 5 exchange platforms (25%) and 3
unknown addresses (15%). The top 20 addresses that receive
transactions are 7 exchange platforms or addresses related to
one of them. The rest of the addresses are unknown. Since the
mining retribution is sent to the pool main address only, we
can conjecture that around 40% of transactions consist in token
redistribution to miners that contribute to a pool. Similarly,
because of the lack of services proposing direct payment in
ether, it is likely that miners transfer their earned tokens to
exchange platforms to convert them into other numeric digital
currencies, such as dollar or bitcoin.

The betweenness centrality of the over 1 million nodes lies
within the range 0-1%, apart from two addresses for which
it reaches nearly 15%. These nodes are important as a high
value indicates that a significant number of transactions are
connected to this node. How well they connect communities
in the network is left for further investigations. Among the
top 20 nodes in this category there are 10 exchange services
related addresses and 3 mining pools.

Among the 21 unique addresses identified as most cen-
tral, none of them belong to the 20 most central addresses
in terms of eigenvector centrality. Because the eigenvector
centrality awards higher score to nodes connected to other
nodes showing a high connectivity, it can be concluded that
the most central nodes, from this perspective, are individuals
that interact often with major actors, rather than the latter inter-
acting with themselves. Inspecting the interaction of services
previously identified as central, according to the in- and out-
degree and betweenness centrality, we compute for each of
these 21 addresses the percentage of transactions in which
they take part that connect each of them to other members of
the group. It is found that none of them has more than 1.17%
of outbound transactions within the group.

The time-independent network topology was investigated
and, as for the node directed connectivity, a sharp asymmetry
between the in- and out-degree distribution was noticed. A
conjecture on the non-independence between these two fea-
tures was established. Major actors in terms of number of
transactions were identified, as opposed to the vast majority
of addresses which are used only once.

V. CONCLUSION

In this paper, quantitative indicators that summarize the
internal activity on the Ethereum blockchain were presented.

The study of transaction features temporal variation revealed
that the announcement of the Ethereum Alliance creation initi-
ated an increase of the activity by several hundred percent,both
in terms of number of transactions and the amount of exchange
tokens by unit of time. Thus the subsequent caution in the
interpretation of time correlations in a blockchain network was
highlighted.

The study of the transaction graph revealed that more than
97% of nodes have been engaged in less than 10 transactions.
Oppositely, 40 addresses, among which mining pools and
exchange platforms, were found to account for more than 60%
of the activity, leaving open the question of the health of the
Ethereum economic ecosystem.
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