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Reaction wheels desaturation using
magnetorquers and static input allocation

Jean-François Trégouët, Denis Arzelier, Dimitri Peaucelle, Christelle Pittet and Luca Zaccarian

Abstract—Considering the most widely spread configuration
of actuators for low orbit satellites, namely a set of reaction
wheels and a set of magnetorquers, we revisit the classical “cross
product control law” solution for achieving attitude stabilization
and momentum dumping. We show how the classical solution
has a quasi-cascade structure that, under a suitable input-to-
state (ISS) assumption, can be stabilized by high gain, thereby
making the actuators more inclined to saturate. Motivated by
this, we propose a revisited version of this control law that
transforms the quasi-cascade into a real cascade. Then we show
that both strategies are such that the attitude control is affected
by the momentum dumping, and that they both require a suitable
ISS property. To overcome these drawbacks, we propose a new
allocation-based controller which makes the attitude dynamics
completely independent of the momentum dumping and induces
global asymptotic stability without any ISS requirement. Several
formal statements and simulation results support our discussions
and highlight the pros and cons of the different control strategies.

Index Terms—aerospace control, attitude control, magnetor-
quers, reaction wheels desaturation, input allocation, Lyapunov
methods.

I. INTRODUCTION

THE attitude control problem has been a challenging issue
for the scientific community for decades (see [1], [5],

[24], [38] and references therein) and still constitutes an active
area of research. Recently, the literature has been enriched
by several remarkable solutions which achieve asymptotic
stability in a global way [30], [26]. If these results are an
important step, they rely on an abstract context for which
the availability of an external actuation torque is assumed.
However, when it comes to physical realization of this control
torque by means of real actuators, solutions mainly rely on
engineering consideration and can be largely improved.

Most of three-axis stabilized spacecrafts are equipped with
angular momentum storage devices such as reaction wheels
when high pointing accuracy is required [7]. Despite their
known advantages [39], these momentum exchange systems
may suffer from saturation limitations as well as static friction
when approaching zero angular velocity. Thus, reaction wheels
need a secondary attitude control system for momentum un-
loading and desaturation of the reaction wheels system (RWS).
For small satellites in Low Earth orbits (LEO) magnetorquers
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provide a cheap, reliable and effective external torque for
momentum desaturation purposes [3], [4], [8], [27], [33]. Earth
observation satellites such as Spot4, Jason1 and 2, Demeter or
as Corot for inertial pointing are thus equipped by magnetic
and mechanical actuation systems [7], [28]. While reaction
wheels are easily exploited because they can generate a torque
in any desired direction at any time, magnetorquers rely on a
more subtle principle: by generating a magnetic momentum
that interacts with the geomagnetic field, a torque is created.
However, as this field is not constant, due to the rotation
of the satellite around the earth, the synthesis models are
naturally almost periodically time-varying. In addition to that,
at any given instant of time, the produced torque lies in
the orthogonal plane to the instantaneous geomagnetic field
leading to the non-controllability of the direction parallel to the
local geomagnetic field vector. For these reasons, the control
problem associated with the magnetorquers is recognized as a
challenging one [27], [24].

Despite these limitations, engineers frequently resort to this
kind of actuators, for cost-effectiveness, efficiency, reliability
and weight reasons. Moreover, the combined action of the
magnetorquers with the reaction wheels allows to regard the
latter actuators as the main actuators for fine attitude control
and the former ones as auxiliary actuators used for “desat-
uration” or “momentum dumping”. A classical engineering-
based solution following this paradigm is the so-called “cross
product control law” mentioned in [3], [4], [8], [33], where the
problem is addressed within a linear approximation context.

In this paper we address the problem of designing a suitable
centralized law for the reaction wheels and magnetorquers on
an inertially pointing satellite orbiting at low altitude. More
precisely, given an attitude stabilizer that has been initially
designed disregarding the momentum dumping problem, we
propose a control scheme managing the two actuators in such
a way that momentum dumping is performed continuously
throughout the maneuver while remaining completely hidden
for the attitude dynamics that exactly follows the response
induced by the prescribed attitude stabilizer. The paper’s
contributions are summarized next.

1) Our first contribution is to provide a rigorous inter-
pretation (inspired by the formalization of [24], where only
magnetorquers are considered) of the architecture behind the
“cross product control law”. The treatment helps formalizing
this approach by highlighting its hidden assumptions. 2) As
a second contribution, we propose a revisited version of the
“cross product control law”, which is shown to be valid in
a wider range of practical situations. In particular, we show
a peculiar feedback structure arising from this controller,
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which can be converted (using the proposed revisited law)
into a more convenient cascaded form consisting of an upper
subsystem whose state is the total angular momentum and a
lower subsystem whose state is the satellite attitude (position
and speed). We discuss and show by simulations that the above
cascaded structure is not desirable due to the fact that the
regulation of the angular momentum of the wheels perturbs
the attitude control system. 3) Our third and main contribution
is then given and consists in a novel control scheme that
is capable of reversing the cascaded scheme by way of
static input allocation. Input allocation techniques address the
problem of suitably assigning the low level actuators input,
based on a higher level control effort requested by the control
system [18]. Their use is especially suited in the presence of
redundant plant inputs from the point of view of the main
control task. Then the allocation can be performed in such
a way to optimize a cost function related to a lower priority
secondary task (see [32] for an interesting collection of results
in the aerospace, marine and terrestrial vehicles). Within the
attitude control setting described above, it appears natural
to regard the primary goal as the attitude stabilization goal
and the secondary goal as the reaction wheels desaturation
goal. To this end, the employed allocation scheme may be
selected as a static one (this is the structure of most of the
existing techniques, well surveyed in [18]) or a dynamic one
(following, e.g., the paradigm in [40] or the more recent
developments in [31], [11]). Note that the use of an allocation
strategy for the engineering problem described here has been
also proposed in [10]. However, the suggested distribution of
the total control effort does not address the dynamics of the
angular momentum of the wheels, which is instead the goal
of the allocation scheme proposed in this paper.

In a nutshell, the allocation-based control scheme proposed
here completely decouples the attitude stabilization task from
the angular momentum of the wheels and is therefore capable
of stabilizing the attitude dynamics following a prescribed law
that can be designed disregarding the momentum dumping
task. This goal is achieved by the cascaded structure of the new
scheme where the upper subsystem, consisting in the (undis-
turbed) attitude stabilization loop, drives the lower subsystem,
which performs the (lower priority) task of desaturating the
reaction wheels. A preliminary version of this paper was
presented in [37]. Here, as compared to [37], we treat a
more general scenario with non-periodic local geomagnetic
fields, we provide several statements and proofs of the stability
properties of the proposed schemes, and we provide revised
and improved simulation tests based on realistic data from
satellite missions.

The paper is structured as follows. In Section II we intro-
duce the satellite model, some preliminary facts about global
attitude stabilization and formalize our problem statement.
In Section III we explain and interpret the “cross product
control law”, provide a revisited version of it and establish
its formal properties. In Section IV we propose the new
control strategy based on static allocation. In Section V we
provide comparative simulation results for the two controllers
introduced in Sections III and IV. Finally, in Section VI we
give some concluding remarks.

Notation: Given any vectors v, w ∈ R3, the matrix v× ∈
R3×3 is a skew-symmetric matrix defined in such a way that
the vector product between v and w satisfies v × w = v×w,

i.e. v× =

[
0 −vz vy
vz 0 −vx
−vy vx 0

]
for v = [ vx vy vz ]

T . The identity

quaternion is denoted by q◦ = [ 0 0 0 1 ]
T . The set R≥0 denotes

the non-negative reals while Z≥0 denotes the non-negative
integers. The identity matrix of size n × n is written 1n.
Depending on its argument, the bars | · | refer to the absolute
value of a scalar, the Euclidean norm of a vector or the induced
l2/spectral-norm of a matrix. The superscript [I] indicates that
the related vector is expressed in the inertial frame. Otherwise,
the body-fixed frame is considered.

II. PRELIMINARIES AND PROBLEM STATEMENT

Figure 1 represents the scenario addressed in this paper,
namely an inertially pointing satellite equipped with two
actuator sets:

1) the reaction wheels that are capable of exerting a triple
of torques spanning all the degrees of freedom of the
attitude dynamics but suffer from the drawback of pos-
sibly experiencing a gradual increase of their spinning
speed, due to their inability to alter the total momentum
of the satellite affected by external disturbances;

2) the magnetorquers that are capable of exerting a rank
deficient torque on two out of the three degrees of
freedom of the attitude dynamics due to the fact that they
interact with the geomagnetic field; this second actuator
may affect the total momentum of the satellite and
therefore can be used to suitably stabilize the rotational
speed of the wheels, even though the rank deficient
nature of the generated torque is a challenge to be
addressed.
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Fig. 1. An inertially pointing satellite orbiting around the earth and equipped
with reaction wheels and magnetorquers.

Within the above context, we address in this paper the
goal of suitably using the redundancy available in the two
sets of actuators to stabilize the attitude of the satellite while
simultaneously regulating the rotational speed of the wheels
(momentum dumping). Note that attitude stabilization and
momentum dumping are potentially conflicting goals because
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attitude control requires to speed up (or decelerate) the wheels,
which may badly interact with the momentum dumping per-
formed by the magnetorquers. From an engineering standpoint,
the problem addressed and solved in this paper can be formu-
lated as follows.

Problem 1. Given a spacecraft equipped with reaction wheels
and magnetorquers actuators, as represented in Figure 1,
design a control strategy for driving the two sets of actuators
to ensure simultaneously that the body frame is aligned with
the inertial frame (attitude stabilization) and that the angular
momenta of the reaction wheels are stabilized at a given
reference value.

As customary in the case of redundancy of actuators,
the engineering problem described in Problem 1 is usually
addressed in two steps. First, a suitable attitude stabilizer with
respect to given attitude specifications is obtained. It is based
on an abstract model that does not take the reaction wheels
saturation issue into account. Then, an additional control
layer, implementing this control law for the retained actuation
equipment, is designed. We stress that this paper is mainly
concerned with the second step. Thus, all our derivations
are valid for any stabilizer as long as it satisfies some mild
regularity properties. Nevertheless, for illustration purposes,
and to show the potential of our scheme to provide global
results on nonlinear models, we use the attitude controller
proposed in [26].

To suitably address and solve Problem 1, we give in this
section the essential material to formulate it in mathematical
terms. First, the dynamics of the satellite model are described
in Section II-A. Then in Section II-B we recall the global
attitude stabilizer proposed in [26] and prove some additional
properties that were not given in [26]. Then in Section II-C
we introduce some assumptions on the satellite orbit that
enable us, together with the other derivations of the section,
to mathematically formalize the engineering Problem 1.

Remark 1. We emphasize that the design problem stated in
Problem 1 addresses the issue of saturation of the angular
speed of the wheels but should take into account the maximum
torque that can be exerted both by the magnetorquers and by
the reaction wheels actuators. While we do take into account
all these different types of saturations in the simulations
carried out in Section V, we do not take torque saturations into
account in our mathematical analysis. Indeed, taking saturation
into account at a design level is a challenging nonlinear
control problem that would most likely lead to conservative
bounds and possibly sacrifice the small signal behavior. A
viable approach that does not sacrifice local performance is
that of anti-windup design [41], [35], which poses nontrivial
theoretical difficulties when applied to nonlinear saturated
plants (see, e.g., the discussion in the recent paper [21]).
Since our allocation-based solution allows for any attitude
stabilizer, one may actually take saturation into account in
the attitude stabilization design and then apply our allocation-
based desaturation scheme. Clearly, the challenging problem
of designing such a stabilizer is beyond the scope of this paper.

◦

A. Attitude equations for an inertially pointing satellite with
reaction wheels and magnetorquers

The total angular momentum of the satellite in the body-
fixed frame comprises the angular momentum Jω of the
central body and the angular momentum hw of the reaction
wheels:

hT = Jω + hw, (1)

where ω ∈ R3 and J ∈ R3×3 are the rotational speed of the
satellite body-fixed frame with respect to the inertial frame and
the symmetric matrix corresponding to its moment of inertia,
respectively. Applying Newton’s theorem in the inertial frame,
we get

ḣ
[I]
T = T [I]

m , (2)

where T [I]
m is the torque generated by the magnetorquers and

acting as an external torque on the spacecraft. When expressed
in the body-fixed frame, (2) becomes:

ḣT + ω×hT = Tm, (3)

where the gyroscopic term ω×hT appears due the rotation of
the body-fixed frame with respect to the inertial frame. Replac-
ing hT in (3) by its expression given in (1) and recognizing
that the variation of hw corresponds to the torque τw applied
by the reaction wheels, with straightforward manipulations,
we get the dynamic equations in the body-fixed frame:

{
Jω̇ + ω×(Jω + hw) = −τw + Tm
ḣw = τw.

(4a)

The attitude of the spacecraft is conveniently described
using quaternion coordinates q = [ εη ] ∈ S3, where ε ∈ R3

and η ∈ R. By definition, the three-sphere S3 refers to the set
of every element q ∈ R4 satisfying the constraint |q| = 1. For
an inertially pointing satellite, the quaternion q characterizes
the instantaneous rotation of the body-fixed frame with respect
to the inertial frame. The angular position dynamics is then
described by the following well known kinematic differential
equation (see, e.g., [19]):

q̇ = F (ω)q =
1

2

[
−ω× ω
−ωT 0

]
q =

1

2

[
−ω×ε+ ηω
−ωT ε

]
, (4b)

where F (ω) is clearly a skew-symmetric matrix.
The magnetic torque Tm produced by the magnetorquers

originates from the interaction between the local geomagnetic
field b̃ and the magnetic momentum1 τm according to the
following relationship Tm = −b̃×τm.Then, the magnetic field
b̃ is a function of both the location of the spacecraft along its
orbit and its attitude. These two dependencies can be separated
out writing b̃ as R(q)b̃◦ where R(q) is the rotation matrix
expressing the body-fixed frame with respect to the inertial
frame, whose expression clearly depends on the quaternion q,
and b̃◦ is the geomagnetic field expressed in the inertial frame:

Tm = −
(
R(q)b̃◦(t)

)×
τm. (4c)

1The dynamics of magnetic coils can be neglected as it reduces to a very
fast electrical transient [23].
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An explicit expression of R(q) can be written as follows, [16]:

R (q) =
(
η2 − εT ε

)
I3 + 2εεT − 2ηε×. (4d)

Under the assumption that the orbital trajectory is perfectly
known, the time evolution of b̃◦(t) can be predicted using
a model of the geomagnetic field such as the International
Geomagnetic Reference Field (IGRF) which gives access to
the local magnetic field at any point in space [39].

B. Global asymptotic stabilization of the attitude dynamics

In this paper, we will address control design problems for
model (4) derived in the previous section aiming at global
asymptotic stabilization of the attitude dynamics. This problem
can be understood as the problem of designing a feedback
controller from (ω, q) capable of globally2 asymptotically
stabilizing a suitable equilibrium for the simpler model given
by (4b) and

Jω̇ + ω×Jω = u+ d (5)

from the control input u. The disturbance input d will be useful
later and should be considered as zero for stability purposes.

Despite its apparent simplicity, this problem involves tricky
aspects that have been highlighted, e.g., in [1]. The main con-
clusion is that there exists no continuous time-invariant (static
or dynamic) controller that globally asymptotically stabilizes a
desired equilibrium attitude. This property is related to the fact
that every continuous time-invariant closed-loop vector field
on SO(3), the set of attitudes of a rigid body, has more than one
closed-loop equilibrium, and hence, the desired equilibrium
cannot be globally attractive [1].

However, as soon as the control law is not continuous or
time-invariant, this obstruction does not hold anymore and
many remarkable solutions to the global attitude stabilization
problems have been given in the literature (see, e.g. the recent
work [30] and references therein). In this paper, we will use
a dynamic (discontinuous) hybrid controller that was recently
proposed in [26] whose dynamical equation can be written as
follows using the notation in [13], [14]:

ẋc = 0, (q, ω, xc) ∈ C
x+c = −xc, (q, ω, xc) ∈ D
u = −cxcε−Kωω

(6a)

where the flow set C and the jump set D are defined as

C := {(q, ω, xc) ∈ S3 × R3 × {−1, 1} : xcη ≥ −δ}
D := {(q, ω, xc) ∈ S3 × R3 × {−1, 1} : xcη ≤ −δ}. (6b)

Note that the scalar controller state xc is constrained to
belong to the set {−1, 1} by the hybrid dynamics. Moreover,
the control input u corresponds to a state feedback from (ω, ε)
where the sign of the ε gain is toggled by xc. The suggestive

2Note that we actually consider a strict subset of R7, since qT q = 1 holds
for all times, and thus we shall call this property “asymptotic stability in
the large” rather than “global asymptotic stability” – see [22], however for
consistency with existing results, such as [1], [26], we use “global asymptotic
stability” throughout this paper.

result of [26] is that the hybrid controller (6) is able to asymp-
totically stabilize the set (attractor) A ⊂ S3 × R3 × {−1, 1}
defined as:

A = {q◦}×








0
0
0





×{1}

⋃
{−q◦}×








0
0
0





×{−1} , (7)

which is the union of two points, corresponding to q = q◦
and q = −q◦ respectively. Remarkably, due to the well known
double coverage nature of quaternion coordinates (see e.g. [5]),
these two points correspond to the same element of SO(3), i.e.
the same attitude of the satellite. The following lemma states
the global asymptotic stability result of [26] with an additional
local exponential stability property which will be useful later
in this paper.

Lemma II.1. For any positive definite matrix Kω = KT
ω � 0

and scalars c > 0, δ ∈ (0, 1), the closed-loop given by (4b),
(5) with d = 0 and (6) is such that the set A in (7) is globally
asymptotically stable (GAS) and locally exponentially stable
(LES).

Proof: The proof of GAS is established in [26, Theorem
4.2]. To show LES, first recall from [26] that all solutions
to (4b), (5), (6) (with d = 0) are eventually continuous,
indeed as noted in [26, top of page 2525], for a suitable
Lyapunov function V , one has V +−V = −4δ and since V is
non-negative, there cannot be any jump in the neighborhood
of A where V < 4δ. Therefore, we study LES by only
focusing on the flow dynamics and continuous-time LES
bounds. Moreover, since the two points in A are disjoint,
then local analysis amounts to analyzing separately the two
points (note that since no jumps occur locally, then xc remains
constant along local solutions). We carry out the analysis
looking at the left one in (7), namely x◦ = (q◦, 0, 1). The
other one follows the same steps and is omitted.

Consider now that the motion in S3 can be studied in
the variables ε, ω replacing η by its constrained value η =√

1− εT ε (note also that η is positive around the equilibrium
x◦). Then, we can replace (4b) by q̇ = 1

2

[
−ω×ε+

√
1−εT εω

−ωT ε

]

and the linearized dynamics around the equilibrium x◦ corre-
sponds to [ ε̇ω̇ ] =

[
0 1/2·13

−cJ−1 −J−1Kω

]
[ εω ] which is exponentially

stable3 for any positive c and positive definite Kω . As a
consequence, from the linear approximation theorem (see,
e.g., [20, Thm 4.7]), the equilibrium is LES, namely there
exist positive scalars Υ, λ such that for small enough initial
conditions, |(ε(t), ω(t))| ≤ Υ exp(−λt)|(ε(0), ω(0))| for all
t ≥ 0. Assume now that ε(0) is small enough so that
η(t) =

√
1− ε(t)T ε(t) > 0 for all t ≥ 0. Then, one can

write

|1− η| = (1− η) ≤ (1 + η)(1− η) = 1− η(t)2

= ε(t)T ε(t) ≤ Υ2 exp(−2λt)|(ε(0), ω(0))|2,
which gives the local exponential bound also for the variable
η and completes the proof of LES.

3This fact is easily proven using the Lyapunov function V = 2cεT ε +
ωT Jω which satisfies V̇ = −2ωTKωω, and applying La Salle’s invariance
principle.
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Remark 2. One of the reasons why we adopt the hybrid
stabilizer of [26] is that the lack of robustness of a non-
hybrid stabilizer, together with the so-called unwinding effect
(see, [26, §2] for details) is successfully overcome by the
hybrid scheme, in light of the results of [14, Ch. 7]. In
particular, since all the data of the hybrid solutions proposed
here satisfy the basic assumptions of [14] and the attractor
(7) is compact, then by applying [14, Lemma 7.20 and Thm
7.21], asymptotic stability is robust to small disturbances and
semiglobally practically robust to large ones. In particular,
according to the definition in [14, Def. 7.18] all solutions to
the dynamical system generated by perturbing the right hand
side of the differential equation remain arbitrarily δ-close to
the attractor (7) as long as they start in a ∆-ball around it,
where as the size of the disturbance shrinks, one can show
that δ becomes arbitrarily small (practical) and ∆ becomes
arbitrarily large (semiglobal). For more details, the reader is
referred to [14]. ◦

Throughout the paper, we will consider the attitude stabi-
lizer (6) for the spacecraft dynamics. However, we stress that
the results presented here are valid for any static or dynamic
stabilizer inducing GAS and LES of the attractor A in (7).

C. Mathematical formalization of the design goal

While the stabilization result in Lemma II.1 should be
regarded as an important step toward the stabilization of
dynamics (4), it is still not implementable for that dynamics as
the availability of u is an abstraction. Indeed, global asymp-
totic stabilization of a suitable attractor for (7) requires to reach
the attitude equilibrium and to dump the momentum hw of the
reaction wheels. If using the magnetorquers for this secondary
task, complication arises from the fact that magnetorquers are
associated with tricky time-varying controllability problems.
Indeed, at any given instant time, the achievable torque Tm
is constrained to a plane because the vector Tm arises from
the cross product between τm and b̃ and therefore is always
orthogonal to b̃. The fact that the 3×3 matrix b̃× is structurally
singular originates from this remark. For this reason, the
preliminary feedback

τm =
b̃×

|b̃|2
um (8)

is often used and introduces the new control vector um ∈
R3 (see e.g. [24] and references therein) so that the resulting
torque Tm is equal to −b̃×b̃×/|b̃|2um. In such a case, the
identity −b̃×b̃×/|b̃|2 = 13 − b̃b̃T /|b̃|2 allows to interpret Tm
as the projection of um on the orthogonal plane to b̃. Thus, the
control action (8) normalizes the magnetic field b̃ and reduces
the control effort by canceling out the useless part of um which
is in the direction of b̃.

Despite these limitations, strong controllability properties
still exist whenever b̃(t) is time-varying4 and exhibits a
sufficiently rich behavior in such a way to being capable

4Note that it is also possible to achieve 3-axis stabilization by using only
magnetorquers, as demonstrated in [24]. However, only poor attitude control
performance can be expected when using this type of solution because of the
very nature of these singular actuators.

of persistently spanning all of the three-dimensional space.
Sufficient properties for the time-varying function t 7→ b̃(t)
to be able to preserve this controllability can be expressed in
terms of the following matrix:

Π(t) =
1

t

∫ t

0

b◦(τ)bT◦ (τ)dτ, (9)

where b◦(t) = b̃◦(t)/|b̃◦(t)| is the normalized expression of
the geomagnetic field in the inertial frame. These properties
are formalized in the next assumption and suitably commented
next.

Assumption II.1. Given the matrix function t 7→ Π(t) in (9),
the following limit exists, is finite and satisfies:

Π∞ = lim
t→+∞

Π(t), Π∞ ≺ 13. (10)

Moreover, there exists a scalar σ > 0 such that

|M(t)| = |t(Π(t)−Π∞)| ≤ σ, ∀t ≥ 0. (11)

It is interesting to remark that if b◦(τ) is a signal having
finite power then assumption II.1 is verified [42, Chapter 4].

Remark 3. In our preliminary work [37] we imposed a
stronger assumption on the magnetic field b◦ because we
required it to be periodic with half of the period T0 of the
orbital motion of the spacecraft. In that specific case, the limit
in (10) exists and corresponds to Π∞ =

∫ T0/2

0
b◦(τ)bT◦ (τ)dτ

and then boundedness of M(t) can be established by noticing
that Π(kT0/2) = Π∞ for each k ∈ Z and using boundedness
of b◦. Here we impose milder assumptions on b◦ also in
light of the data reported later in Figure 5, where the actual
evolution of b◦ along several orbits is compared to its periodic
approximation.

It is also worthwhile to mention that our Lyapunov construc-
tion is inspired by the work of [24], where only the following
assumption is made on the geomagnetic field b◦ (see the first
displayed equation in [24, Lemma 1]):

Γ̄0 = lim
T→+∞

− 1

T

∫ T

0

b×◦ (τ)b×◦ (τ)dτ, 0 < Γ̄0 < 13. (12)

Property (12) is weaker than Assumption II.1 and corresponds
to only enforcing relation (10), as one can easily check by
selecting Γ̄0 = 13 − Π∞. In [24, Proof of Proposition 1] it
is claimed that under the assumption that |b◦(t)| = 1 for all
t ≥ 0, (12) is sufficient for the existence of σ > 0 satisfying

(11). Nevertheless, selecting b◦(t) = 1
2(t+1)

[
t+2√

3t2+4t sin(t)√
3t2+4t cos(t)

]
,

it is possible to prove that (12) (equivalently, (10)) holds while
there exists no σ > 0 satisfying (11). The proof of this fact is
given in Appendix B.Since we follow the construction of [24,
Proposition 1] in our Lyapunov derivations, in light of this
example, we explicitly enforce (11) in our Assumption II.1.
Note that the example above and in Appendix B does not
clearly correspond to a plausible physical scenario and arises
from a purely mathematical observation. Finally, we should
emphasize that the result in [24, Prop. 1] has been proven later
in [25] under milder assumptions and with a different proof
technique. Here we use the Lyapunov-based proof technique
of [24] that can be effectively employed in our context. ◦
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Based on Assumption II.1, we can now mathematically
formalize the engineering problem stated in Problem 1 dealing
with the implementation of the attitude controller presented
in Section II-B to suitably stabilize the spacecraft dynamics
presented in Section II.

Problem 2. Consider the spacecraft described by (4) and
satisfying Assumption II.1. Design a state-feedback controller
acting on the input (τw, τm) which ensures global asymptotic
stability of the set A× {hw ∈ R3 : hw = href}, where A is
defined in (7) and href ∈ R3 is any constant setpoint reference
for the angular momentum hw of the reaction wheels.

III. A CLASSICAL APPROACH REVISITED

As a first contribution of this paper, a rigorous mathematical
treatment of the so-called “cross product control law” is
proposed in Sections III-A and III-B before introducing a
revisited version of this control law in Section III-C

A. The classical cross-product control law

A classical approach to the solution to Problem 2 is the so-
called “cross product control law” well surveyed in [3], [4],
[8], [33]. This control law has been used, e.g., in the spacecraft
Demeter [28], as described in [29]. The underlying philosophy
of this approach is to use the reaction wheels actuator for the
attitude stabilization loop, while the momentum of the wheels
is simultaneously regulated by a second control loop acting on
the magnetorquers. This leads to two control loops designed
independently, as illustrated next.

1) The attitude stabilization loop: For attitude stabilization,
one can rewrite the first relationship in (4a) as

Jω̇ + ω×Jω = −τw − ω×hw︸ ︷︷ ︸
u

+ Tm︸︷︷︸
d

. (13)

Note that (13) corresponds to (5) with u = −τw −ω×hw and
d = Tm. Then, forgetting for a moment the presence of the
disturbance d (which should however be taken into account at
a later stage for stability analysis), the reaction wheels input
τw can be selected by only focusing on the attitude control
goal using some global asymptotic stabilizer, such as the one
discussed in Section II-B. In particular, with that construction
one can use (6) for u and

τw = −ω×hw − u. (14)

Then, Lemma II.1 implies that attitude stabilization is achieved
globally, with d = 0.

2) The momentum dumping loop: For the task of con-
trolling hw, assume that the attitude controller is capable of
converging to (a small enough neighborhood of) the desired
equilibrium attitude (q, ω) ∈ A given in (7). The equilibrium,
u + Tm = 0 gives τw = Tm, for (q, ω) ∈ A. Then,
remembering that href is constant, from the second equation
in (4a) and from (4c), we get for (q, ω) ∈ A,

˙̂
hw − href = −b̃×(t)τm. (15)

One can then select the magnetorquers input τm in such a
way to stabilize the origin of (15) following, for example, the

so-called “cross product control law” of [3], [4], [8], [33],
corresponding to

τm = − b̃
×(t)

|b̃(t)|2
kp(hw − href ), (16)

which can be interpreted as the combination of the preliminary
feedback (8) with a proportional action kp(hw − href ). It can
be shown that this control law globally exponentially stabilizes
the attractor

Ah = {hw ∈ R3 : hw = href} (17)

as stated in the following lemma whose proof, given in
Appendix A, follows the same steps as in [24, Prop. 1].

Lemma III.1. If Assumption II.1 holds, then for any scalar
kp > 0, the set Ah in (17) is globally exponentially stable for
the closed-loop system (15), (16) with b̃ replaced by b̃◦.

Remark 4. Following the same philosophy, other control laws
have been proposed in the literature to achieve momentum
dumping by focusing on (15). For example, in [23], a periodic
LQ controller has been designed relying on numerical methods
to solve the periodic Riccati equation. Moreover, a semi-
analytical optimal open-loop solution for only one axis was
proposed in [12]. ◦

B. Quasi-cascade structure of the classical approach

A closer look at the “cross product control law” strategy
reveals that the attitude stabilization loop (14) is designed
assuming that the second loop is at the equilibrium (namely
hw = href which induces d = Tm = 0 according to (16)
and to (4c)). Conversely, the momentum dumping action (16)
is designed assuming that the first loop is at the equilibrium
(q = q◦ so that b̃ = R(q)b̃◦ is replaced by b̃◦ in (15) and
(16)). Despite its intuitive interpretation, it seems that formally
showing desirable stabilization properties of the overall con-
troller (6), (14), (16) is not so straightforward. Some directions
are given with respect to this in [3], [4], [6], [9], [15], [23]
where a frequency separation argument is required between
the two loops cited above, which corresponds to selecting a
very aggressive action of the attitude stabilizer (14). This can
be performed, for example, by selecting sufficiently large gains
c and Kω in (6).

One way to tackle the asymptotic stability properties of the
equilibrium set A × Ah (see (7) and (17)) for the overall
dynamics (4), (6), (14), (16) is to recognize that the input
τw to the reaction wheels does not change the total angular
momentum h

[I]
T = RT (q)(Jω+ hw) (this follows easily from

(1) and (2) and is obvious from the fundamental mechanics
viewpoint). Thus, in order to help separating the influence of
each actuator, it makes sense to use h

[I]
T , rather than hw to

represent the momenta of the reaction wheels in the first loop.
Indeed, in the set A×Ah, one has h[I]T = RT (±q◦)hw = hw.
However, when substituting hw by R(q)h

[I]
T −Jω in the “cross

product control law” (16), bearing in mind that kp is a scalar,
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(Rv)× = Rv×RT for all v ∈ R3 and |b̃| = |b̃◦|, one gets

τm = − (R(q)b̃◦(t))×

|b̃(t)|2
kp(R(q)h

[I]
T − Jω − href )

= −R(q)
b̃×◦ (t)

|b̃◦(t)|2
RT (q)kpR(q)(h

[I]
T

−RT (q) (Jω +href ))

= −R(q)
b̃×◦ (t)

|b̃◦(t)|2
kp

(
h
[I]
T − href

+RT (q)
(

(R(q)− 13)href − Jω︸ ︷︷ ︸
ζ(q,ω)

) )
.

(18)

b̃◦(t)

Upper Subsystem

τ [I]m

href

ḣ
[I]
T

−+

Lower Subsystem

R(q)

RT(q)

Dynamics of

(q, ω)

ζ(q, ω)h
[I]
T

(q, ω)+

+

+
+

b̃×◦ (t)

|b̃◦(t)|2
kp ∫−b̃×◦ (t)

ḣ
[I]
T

u Hybrid
Controller

href

ζ(q, ω)

Fig. 2. The quasi-cascaded structure of the “cross product control law” and
the role of the signal ζ(q, ω).

Equation (18) provides insightful understanding about the
quasi-cascaded, or feedback structure of the “cross product
control law” which, based on (18) can be remapped in the
inertial coordinate frame to get

τ [I]m = − b̃×◦ (t)

|b̃◦(t)|2
kp

(
h
[I]
T − href +RT (q)ζ(q, ω)

)
. (19)

This is clarified in the block diagram of Figure 2 where
the presence of the signal ζ(q, ω) creates an undesirable
dependence of ḣ[I]T on the attitude parameters (q, ω). Even
though the literature contains reference to frequency separation
(or two time scale results when speaking in nonlinear terms),
it is unclear how to apply those results to the scheme of
Figure 2, where the time-varying input b̃◦(t) makes it hard
to say that the upper subsystem is slower than the lower one.
Conversely, a possible way to establish asymptotic stability of
the attractor is via the input-to-state (ISS) small gain approach
[17] where one could claim that increasing the gain of the
attitude stabilizer in the lower subsystem allows to reduce
enough the ISS gain from h

[I]
T to RT (q)ζ in the block diagram.

Then, one could characterize the “cross product control law”
solution as some sort of high-gain feedback solution leading
to global asymptotic stabilization of the set A × Ah defined
in (7) and (17) via small gain results.

C. A revisited cross-product control law

While the “cross product control law” approach of the
previous section has been long used in experimentation and
performs desirably when a high-gain attitude stabilization is
adopted, the natural question that arises in light of (18) is
whether the signal ζ(q, ω) is really necessary. The answer
is no, if one recalls that the stabilizer (16) was designed by

focusing on the case (q, ω) ∈ A and that in this set one has
ζ(q, ω) = 0. Consequently, this signal ζ can be freely inserted
into (16) to obtain the “revisited cross-product control law”:

τm = − b̃
×(t)

|b̃(t)|2
kp(hw − href − ζ(q, ω)), (20a)

which can be used as an alternative to stabilizer (16). The
advantage of using the revisited law (20a) in place of the
classical one (16) is best appreciated by rewriting (20a) as
follows, by using the identities in (18):

τ [I]m = − b̃×◦ (t)

|b̃◦(t)|2
kp(h

[I]
T − href ). (20b)
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classical

|ω| × 102

1− |η|

1− |η|

|ω| × 104

Fig. 3. Comparison in Remark 5 between the classical (dashed) and revisited
(solid) “cross-produce control laws” when using an aggressive attitude con-
trollers (left-hand side plot) and a non-aggressive one (right-hand side plot).

Remark 5. From an engineering viewpoint, the revisited con-
trol strategy given by (6), (14) and (20) is not much different
from the classical “cross-product control law” (6), (14), (16)
whenever the attitude stabilizer is aggressive enough so that
the standing assumptions behind this historical approach are
respected. However, significant differences are witnessed when
using non aggressive actions in the attitude controller and this
mainly because while the revisited solution keeps performing
desirably, the classical solution exhibits very large overshoots
and even diverging responses. This can be motivated by the
fact that the interaction between the momentum dumper (upper
subsystem) and the attitude stabilizer (lower subsystem) in
Figure 2 does not anymore satisfy a small gain condition and
asymptotic stability is lost.

Figure 3 illustrates this fact by comparatively showing the
responses of the two closed-loops starting from the initial
conditions w0 = 0, q0 = [0.10, 0.05, 0.02, 0.99]T , hw0 =
[0.09, 0.072, 0.078]T , xc0 = 1. For illustration purposes, the
simulations of Figure 3 have been carried out without imposing
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any saturation limits on τw and τm, so that the difference
among the two dynamic solutions can be best appreciated.
Simulations incorporating these saturations are carried out in
Section V. In the figure, the dashed lines correspond to the
response obtained from the classical solution (6), (14), (16)
and the solid lines correspond to the revisited law (6), (14) and
(20). With these two controllers, two cases are analyzed: the
left-hand side plot shows the responses obtained when using
an aggressive attitude controller, corresponding to Kw = 5 ·13

and c = 0.5 while the right plot corresponds to the less
aggressive gains Kw = 0.07 · 13, c = 10−4. In both cases,
we consider δ = 0.5 and kp = 0.01. We illustrate the closed-
loop responses by showing the (rescaled) norm of the angular
speed and the scalar value 1−|η| which is zero in the attractor.
Similar comparison results are experienced when looking at
all the components of the state (q, ω, xc, hw). Note that the
responses of the two closed-loops are essentially the same in
the case when the classical solution performs desirably, but
the revisited solution preserves asymptotic convergence to the
attractor, with the less aggressive attitude stabilizer. ◦

One advantage arising from replacing (16) by (20) is that
the feedback interconnection of Figure 2 becomes a cascaded
interconnection (the dashed arrow disappears) and one can
then use results on stability of cascaded nonlinear systems
to establish global asymptotic stability of the set A × Ah
defined in (7) and (17). In particular, for the cascaded system
of Figure 2, the upper subsystem regulates the total angular
momentum using the magnetorquers and is completely inde-
pendent from the satellite attitude and the lower subsystem
regulates the attitude dynamics using the reaction wheels and
is disturbed by the upper subsystem through the action of
d = Tm = −R(q)b̃◦(t)×τ

[I]
m . More specifically, the overall

closed-loop corresponds to the “revisited cross-product control
law” (6), (20) together with

ḣ
[I]
T = −b̃◦(t)×τ [I]m (21a){

(4b)
Jω̇ + ω×Jω = u+R(q)ḣ

[I]
T .

(21b)

Using the result established by Lemma III.1, which can
be rewritten in the same form when looking at the feedback
(21a), (20b), one gets global exponential stability of the
upper subsystem. Then, Global Asymptotic Stability can be
derived from properties of cascaded interconnections of hybrid
systems (recall that the attitude controller is hybrid). The result
is formalized in the following theorem.

Theorem III.1. Under Assumption II.1, given any set of gains
kp > 0, Kω = KT

ω � 0, c > 0 and δ ∈ (0, 1), consider
the closed-loop system between plant (4) and controller (6),
(14), (20a) with state space variables x = (q, ω, xc, hw). Then,
the set Ae = A × Ah as defined in (7) and (17) is locally
asymptotically stable.

Moreover, if the hybrid closed-loop system (4b), (5), (6) is
ISS from the input d (in the sense of [2]), then the set Ae
is globally asymptotically stable, namely the control scheme
solved the formalization in Problem 2 of the engineering
Problem 1.

Proof: First let us represent the closed-loop with the
coordinates x̄ = (q, ω, xc, h

[I]
T ) and note that, from (1) and

h
[I]
T = RT (q)hT , we have x ∈ Ae if and only if x̄ ∈ Ae. Then,

we can prove the theorem by studying asymptotic stability of
Ae for the transformed dynamics (6), (20b) (21) which is in
cascaded form.

For this cascade, using Lemma III.1 rewritten by replacing
hw by h

[I]
T , the set Ah is globally exponentially stable for

the upper subsystem, corresponding to (21a), (20b). Moreover,
the lower subsystem with zero input, corresponding to (6),
(21b) with ḣ[I]T = 0, coincides with (4b), (5), (6) with d = 0
and therefore guarantees global asymptotic stability (and local
exponential stability) of the set A from Lemma II.1. Then, we
can apply [13, Corollary 19] and the follow-up results about
the cascades [13, eqn. (23)] to prove local asymptotic stability
of the cascade5. Moreover, if the lower subsystem is input-
to-state stable with respect to d in the sense of [2], then all
solutions are bounded for any initial condition. Then, the result
follows once again from the results on cascaded system stated
for [13, eqn. (23)].

IV. USING STATIC ALLOCATION TO INVERT THE CASCADE

The solution to Problem 2 presented in the previous section
can lead to satisfactory closed-loop responses, however it
suffers from three main drawbacks.

1) Due to the cascaded structure of Figure 2, the attitude
control loop is undesirably disturbed by the momen-
tum dumping system. Since attitude control is more
important than momentum dumping, it would be more
desirable if the converse relation was in place.

2) Global asymptotic stability is only established by Theo-
rem III.1 under an ISS assumption on the attitude control
system, which is not easy to guarantee in general. It
would be more desirable to have a solution to Problem 2
which is effective without requiring anything more than
GAS and LES of the attractor for the attitude control
system.

3) The solution should be implemented using (20a) that,
through ζ(q, ω), requires exact knowledge of the inertia
J and may result in lack of robustness if J is uncertain.

The limitations above can be overcome by following an
alternative paradigm for the design of the stabilizing law,
which arises from the intuition of reversing the cascaded
structure of Figure 2. This inversion of the cascade would
result in the fact that the attitude stabilization would not be
disturbed at all by the momentum dumping. In order to give
priority to the attitude control goal, we revisit equation (13)
and perform a different partition of the terms at the right hand
side in such a way that the disturbance d of the equivalent
formulation (5) is zero:

Jω̇ + ω×Jω = −τw − ω×hw + Tm︸ ︷︷ ︸
u

. (22)

5Note that in [26] forward completeness of all maximal solution is proven
so all pre-asymptotic stability results are equivalent to asymptotic stability
results.
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Then, the attitude dynamics (4b), (22) corresponds to (4b), (5)
with u = −τw − ω×hw + Tm and d = 0. Following the same
steps as in the previous section, the reaction wheels input τw
can then be selected by only focusing on the attitude control
goal using some global asymptotic stabilizer, such as the one
discussed in Section II-B. In particular, with that construction,
one can use (6) and select

τw = −ω×hw + Tm − u
= −ω×hw − (R(q)b̃◦(t))×τm − u

(23)

(where we used (22) and (4c)). Then Lemma II.1 implies
that attitude stabilization is achieved globally, regardless of
the torque Tm generated by the magentorquers.

As a next step, we can now focus on the momenta of the
reaction wheels, which are indeed affected by the magnetor-
quers indirectly from the input selection (23). In particular,
using the second equation in (4a), selection (23) and the fact
that href is constant, we get

˙̂
hw − href = −ω×hw − u− (R(q)b̃◦(t))

×τm, (24a)

or
ḣ[I]w = −RT (q)u− b̃×◦ (t)τ [I]m , (24b)

which reveals that the momentum of the reaction wheels is
indeed affected by the attitude variables due to the presence
of u at the right hand side. Remarking that if (q, ω) ∈ A
then (24a) reduces to (15), it appears natural to select the
magnetorquers input τm in such a way to exploit the useful
stabilization result of Lemma III.1, namely

τm = − (R(q)b̃◦(t))×

|b̃◦(t)|2
kp(hw − href ), (25a)

or

τ [I]m = − b̃×◦ (t)

|b̃◦(t)|2
kp(h

[I]
w −RT (q)href ), (25b)

where kp is a positive scalar gain.

Dynamics of

(q, ω)
(q, ω)

Upper Subsystem

u

Lower Subsystem

b̃◦(t)

href

h[I]w

−
τ [I]m

u u[I]

−
−

∫

+
b̃×◦ (t) − b̃×◦ (t)

|b̃◦(t)|2
kp RT (q)

RT (q)

Hybrid

controller

Fig. 4. Cascaded structure of the static allocation scheme.

The structure of the control loop is illustrated in Figure 4
in order to make a thorough comparison with the structure
represented in Figure 2. The corresponding equations of the
closed-loop system are composed of the control laws (6), (25b)
and the upper subsystem

{
(4b)
Jω̇ + ω×Jω = u,

(26)

which affects the lower subsystem (24b) (25b). This cascaded
structure should be compared to (6), (20) and (21). In particu-
lar, comparing Figure 4 to Figure 2, it is obvious that we have

exchanged the order of the attitude and momentum dumping
subcomponents. As mentioned above, an advantage arising
from the new cascaded structure of Figure 4 is that the attitude
control goal becomes the primary goal and is associated with
transient responses that are not disturbed by the momentum
dumping controller. Therefore, even though the limit set of the
closed-loop trajectories is the same under both controllers, the
solution of this section has no impact at all on the transient of
the attitude dynamics. This feature is well illustrated by the
simulation examples of Section V.

Theorem IV.1. Under Assumption II.1, given any set of gains
kp > 0, Kω = KT

ω � 0, c > 0 and δ ∈ (0, 1), consider
the closed-loop system between plant (4) and controller (6),
(23), (25a) with state space variables x = (q, ω, xc, hw). Then
the set Ae = A × Ah as defined in (7) and (17) is globally
asymptotically stable, namely the control scheme solves the
formalization in Problem 2 of the engineering Problem 1.

Proof: The proof uses the results for asymptotic stability
of nonlinear hybrid cascaded interconnections that have been
recalled in the proof of Theorem III.1 (namely [13, Corollary
19] and the follow-up results about the cascades [13, eqn.
(23)]). In particular, generalizing to the hybrid case the classi-
cal continuous-time result of [34], global asymptotic stability
of the cascaded interconnection can be established by using
GAS and LES of the upper subsystem (which holds due to
Lemma II.1), 0-GAS of the lower subsystem (namely GAS
with zero input) and global boundedness (UGB) of trajectories.
These three items are proven below.

0-GES of the lower subsystem. As already said, the zero
input equation of the lower subsystem corresponds to (15),
(25a) (where it is recalled that b̃(t) = R(q)b̃◦(t)). Thus,
Lemma III.1 can be directly applied to prove that Ah is
globally exponentially stable for the lower subsystem with zero
input.

Global Boundedness. By global boundedness (GB) of the
closed-loop (4), (6), (23), (25a), we mean that for each r > 0,
there exists Ψ(r) > 0 such that 6 for each initial condition
x0 = (ω0, q0, xc0, hw0) satisfying |x0|A×Ah

≤ r, one has
that all solutions x satisfy |x(t, j)|A×Ah

≤ Ψ(r) for all
(t, j) ∈ dom(x). To show this, first note that GAS of the
upper subsystem implies GB of the (ω, q, xc) substate. As
for the state hw, consider the function H = |h̃w|2/2 where
h̃w = hw − href and note that h̃w does not change across
jumps, while along flows, from (24a) we get:

Ḣ = h̃Tw(−ω×(h̃w + href )− b̃×(t)τm − u)

= −h̃Tw
(
u+ ω×href

)
+ kph̃

T
w

b̃×(t)b̃×(t)

|b̃(t)|2
h̃w,

indeed h̃Twω
×h̃w = −h̃Twh̃×wω = 0. Then defining

ρ(t) := |u| + |ω×href | and remarking that −b̃×(t)b̃×(t) =
(b̃×(t))T b̃×(t) � 0,∀t, Ḣ can be bounded as follows:

Ḣ ≤ |h̃w| ρ(t) ≤ (1 + |h̃w|2)ρ(t) = (1 + 2H)ρ(t).

6As customary, given a set S and a vector w, we denote the distance of w
from S as |w|S := inf

z∈S
|w − z|.
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From GAS and LES of the (ω, q) dynamics, for each r > 0
there exist positive Kr, λr such that ρ(t) ≤ Kr exp(−λrt).
Then, from Gronwall-Bellman’s inequality [20, Lemma A.1],
since ρ(t) is integrable, we have that H = |h̃w|2/2 is globally
bounded.

Let us now summarize the important advantages of using
the new allocation-based scheme of this section as compared
to the two approaches presented in Section III:

1) Unmodified transient of the attitude dynamics. Bearing
in mind that the scheme works for any attitude stabilizer
inducing GAS and LES, the transient response induced
by the preferred attitude stabilizer is preserved by the
allocation-based scheme because the controlled attitude
dynamics is now the upper (undisturbed) block of the
cascaded structure. Note that an interesting property
induced by this feature is that the attitude stabilization
is independent of b̃(t) (or b̃◦(t)) which leads to more
desirable robustness properties of the closed loop due to
an intrinsic decoupling property.

2) Only GAS and LES of the attitude stabilizer is required.
As formally stated in the previous Theorem IV.1, global
asymptotic stability of the attractor Ae holds under the
mild requirement that the attitude stabilizer induce GAS
and LES. This shows clear advantages as compared
to: 1) the classical approach, for which instability can
be observed for an non-aggressive attitude stabilizer
inducing GAS and LES, and 2) its revisited version,
which requires an extra ISS property from the attitude
stabilizer, as stated in Theorem III.1. Note also that GAS
of the attractor Ae implies uniform global convergence
of the speed of the reaction wheels to the desired
reference href . Finally, it is also worthwhile mentioning
that the stability properties guaranteed for the allocation-
based scheme hold globally. In other terms, this means
that the proposed strategy can be suitably employed
when dealing with either large or small depointings.
To our best knowledge, nothing can be said about the
classical scheme with respect to this.

3) Dealing with saturations. Regarding saturation of in-
put torques and reaction wheels speed, the allocation-
based scheme is preferable as compared to the classical
one for two reasons. First, a formal proof of stability
demonstrates that, with the allocation-based scheme,
hw converges to the arbitrary set point href , which,
when suitably defined, helps keeping hw away from the
saturation bounds and from zero velocity which induces
undesirable stiction effect. Secondly, global stability
with the new scheme is guaranteed regardless of the
aggressiveness of the attitude stabilizer. This allows
implementing low-gain attitude controllers, less inclined
to induce saturation of hw, τw and τm. Simulation results
proposed in the next section confirm that this property
does not hold for the classical scheme.

4) Robustness with respect to model parameters. In the case
where b̃(t) is measured on board, the new control law is
independent of the model parameters. This was not the
case in the revisited version of the classical approach,

where J is required7. This may be easily shown by
comparing (25a) with (20a) where, in this last case, the
dependence upon the inertia matrix J comes through
the term ζ(q, ω). This remark is an argument in favor
of the robustness of the proposed allocation scheme as
explained, e.g., in [38].

V. SIMULATION RESULTS

To suitably illustrate the control schemes proposed in
this paper, we provide in this section a range of numerical
simulations. All the simulation tests are carried out using
the physical parameters parameters of the satellite Demeter
[28] designed and produced by CNES, the French space
agency. This spacecraft is the first microsatellite in the Myriade
series, a new concept of modular satellite weighing less than
200 kg, flying at an altitude of 710 km, and developed to
provide an affordable access to space. Launched on June 29,
2004, the Demeter mission has now come to its end and
the satellite was terminated on December 9, 2010. Like most
low orbit satellites, Demeter is equipped with reaction wheels
and magnetorquers. A star tracker is used to measured its
attitude. All numerical data and specifications were provided
by CNES [28] and correspond to the ones used for the real
design of the control system implemented on board during
the flight of Demeter. For simplicity of the exposition, the
Demeter example is used here for an inertial pointing mission
(as graphically shown in Figure 1), while the real mission
needed geocentric pointing. The inertia matrix is given by

J =




39.30 −3.65 −0.37
−3.65 27.15 −1.45
−0.37 −1.45 46.54


 (kg.m2).

The nominal angular momentum of each reaction wheel is
chosen to be 0.06 N.m.s, so that the constant vector href is
given by 0.06 · [1, 1, 1]T . The actuators need to comply with
the following constraints:

|hiw| ≤ 2hiref = 0.12 N.m.s, |τ iw| ≤ 0.005 N.m,

|τ im| ≤ 12 A.m2, ∀ i = 1, 2, 3.

The circular orbit considered for the satellite is characterized
by an altitude of 660 km, an inclination of 98.23◦ and a local
time of the ascending node of 22h15. From these parameters,
the geomagnetic field b̃◦(t) is evaluated using the International
Geomagnetic Reference Field (IGRF) model. Figure 5 shows
the chronograph of b̃◦ over a time range of 60 orbits, together
with its periodic approximation. It is emphasized that in our
preliminary work [37] we investigated the stability properties
of our schemes under a periodicity assumption for b̃◦. Figure 5
well illustrates the relevance of the extension, carried out in
this paper, to non-periodic instances of b̃◦. In Figure 5 as well
as in all the other figures reported in this section we use the
following color codes: the x component is shown in blue, the
y component is shown in red and the z component is shown
in green.

7It should be however stated that the original classical “cross-product”
control law does not require the knowledge of J .
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Fig. 5. Chronograph of b̃◦ together with its periodic approximation (thick
cyan line) over 60 orbits.

Several stabilization problems with non-nominal initial an-
gular momentum of the wheels have been simulated using the
control laws presented in this paper, namely:

1) the classical approach (dash-dotted lines in our figures);
2) its revisited version (dashed lines);
3) the allocation-based strategy (solid lines).

For all our simulations, unless differently specified, the initial
conditions are selected as hw0 = [0.09, 0.05, 0.04]T , ω0 =
0, ε0 = [0.10, 0.05, 0.02]T and η0 =

√
1− εT0 ε0.

Regarding the parameter kp inducing momentum dumping,
keeping in mind that it should be strictly positive, we ran sev-
eral numerical simulations of the closed-loop (15) with (16).
The resulting choice was kp = 5 ·10−3. Remarkably, choosing
larger or smaller values leads to deteriorated responses, which
reveals somewhat interesting trends of the linear time-varying
stabilizing law (16).

1) Aggressive attitude stabilizer: As a first test, the parame-
ters of the hybrid attitude stabilizer u defined by (6) are chosen
to make this control law aggressive: We assign Kω = 5·13 and
c = 0.5. Additionally, xc0 = 1 and δ = 0.5. The simulation
results are displayed in Figure 6 and Figure 7. While all
closed-loop systems eventually converge to the desired attitude
equilibrium for all control strategies, it can be seen that all the
actuators signals, namely hw, τw and τm, hit the saturation
limits (dotted horizontal lines). This is the main drawback of
selecting an aggressive attitude stabilizer. Note that using an
aggressive attitude controller induces comparable responses on
all of the three proposed schemes. We will point out that this
is not the case when studying the responses in the presence
of disturbances, as illustrated at the end of the section.

2) Non-aggressive attitude stabilizer: In a subsequent sim-
ulation test, to prevent saturation, the attitude stabilizer param-
eters are redefined in order to obtain an attitude controller that
is less demanding for the actuators. In particular, we choose
the smaller values c = 10−4 and Kω = 0.07 · 13, while δ
and xc0 remain unchanged. The simulation results starting
from the same initial conditions are displayed in Figures 8
and 9. From Figure 8, it appears that the classical (dash-dotted)
controller leads to instability as one would expect in light of
the discussions already provided in Remark 5. Instead, the
other control strategies ensure convergence to the equilibrium
(as predicted by Theorems IV.1 and III.1) without reaching
the actuators limits. Finally, one can observe that the time
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Fig. 6. Quaternion and ω for the three approaches using an aggressive attitude
controller.
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Fig. 7. hw , τw and τm for the three approaches using an aggressive attitude
controller.

evolution of (ω, q) is more regular with the allocation scheme
than it is with the revisited approach. This result is expected
as it originates from the hierarchical relationship between the
two stabilization tasks, represented in Figure 4, where the
attitude control loop is independent of the momentum dumping
task so that the allocation control law intrinsically prevents
the transient of the reaction wheels desaturation loop from
introducing disturbances on the attitude transient.

3) Influence of the uncertainties on the model parameters:
Based on the observations already mentioned in Remark 2,
the asymptotic stability properties established in this paper are
robust to disturbances of the plant dynamics. In light of this
fact, using the same non-aggressive attitude stabilizer, a set of
Monte-Carlo simulations has been performed to evaluate the
sensitivity of each control scheme to variations of J . In par-
ticular, following the benchmark definition proposed in [28],
the Monte-Carlo extractions for the randomized analysis have
been carried out using a uniform distribution of the parameters
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Fig. 8. Quaternion and ω for the three approaches using a non-aggressive
attitude controller.
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Fig. 9. hw , τw and τm (with zoom) using a non-aggressive attitude controller
for the revisited and the allocation-based strategies.

of J within the following disturbance ranges: ±3 kg.m2 on the
off-diagonal terms and ±30% on the three diagonal terms. The
random disturbed inertia matrix J has been used in place of
the nominal one in the satellite dynamics (4) (while the inertia
matrix used by the controllers, wherever needed, remains the
nominal one). Figures 10 to 13 show the simulation results
using 50 such Monte-Carlo extractions for the revisited and the
allocation controllers (the response with the classical controller
diverges also in this case). Note that larger initial depointings
are now considered, namely ε0 = [0.50, 0.20, 0.05]T and
η0 =

√
1− εT0 ε0, while hw0 = [0.09, 0.05, 0.04]T and ω0 = 0

remain the same.
The fact that both of the proposed closed-loop systems

behave well and do not reach the saturation limits for all of
the considered disturbances of J , is a practical illustration
of the robustness of these approaches. On the other hand,
from a theoretical viewpoint, some level of robustness can be
guaranteed from the regularity of the hybrid system data using
the results in [14, Chapters 6 and 7] (see also Remark 2). In

the case of the allocation-based controller, these observations
were predicted by Theorem IV.1 as this control scheme is
independent of J , which means that closed-loop GAS holds
for any positive definite selection of J . This is in contrast to the
revisited strategy for which the same kind of robustness result
seems to be much harder to establish, and might even not hold
in general. As for the previous case, one can again observe,
by comparing Figures 10 and 12, that the allocation-based
solution leads to more regular responses due to the advantages
arising from the underlying cascaded scheme that prioritizes
the attitude stabilization task.
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Fig. 10. Monte-Carlo study on uncertainties on J : Cardan angles and w for
the revisited controller.
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Fig. 11. Monte-Carlo study on uncertainties on J : hw , τw and τm for the
revisited controller.

4) Rejection of periodic disturbances: To assess the perfor-
mance of the proposed controller in a more realistic environ-
ment, a disturbing torque Text is injected in the dynamics and
comparisons between the classical and the allocation schemes
are given via a new set of simulations. Predominant for LEO,
as in the Demeter example [28], gravity gradient disturbances,
aerodynamic drag and magnetic torques disturbances caused
by the interaction of the current loops with the magnetic field,
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Fig. 12. Monte-Carlo study on uncertainties on J : Cardan angles and w for
the allocation-based controller.
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Fig. 13. Monte-Carlo study on uncertainties on J : hw , τw and τm for the
allocation-based controller.

can be modeled in the inertial frame by two periodic signals
T1 and T2, whose period is one and two times the orbital
frequency ω0 added to a secular term T0 (see [7], [36]):

T
[I]
ext(t) =

T0x + T1x sin(ω0t+ ϕ1x) + T2x sin(2ω0t+ ϕ2x)
T0y + T1y sin(ω0t+ ϕ1y) + T2y sin(2ω0t+ ϕ2y)
T0z + T1z sin(ω0t+ ϕ1z) + T2z sin(2ω0t+ ϕ2z)


 (27)

The dynamic equation (4a) is then modified accordingly and
corresponds to:

Jω̇ + ω×(Jω + hw) = −τw + Tm +R(q)T
[I]
ext(t). (28)

Simulations have been performed over 20 orbits using
the aggressive attitude stabilizer previously introduced and
are reported in Figures 15 and 16. For these simulations,
according to [7], [36], the numerical parameteres in (27) have
been selected as follows: T0x = T0y = T0z = 1.0 · 10−7

(N.m), T1x = T1y = T1z = 2.1 · 10−5 (N.m), T2x =
T2y = T2z = 2.1 · 10−5 (N.m), ϕT1x = −ϕT2x = π/4,
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Fig. 14. The periodic disturbance T [I]
ext used for the simulations of Figures 15

and 16.

ϕT1y = −ϕT2y = −π/4, ϕT1z = 0 and ϕT2z = π/2. This
corresponds to the periodic trace for the overall disturbance
T

[I]
ext represented in Figure 14.
To remain coincise, only the attitude responses variables

are displayed in Figures 15 and 16. Indeed, the two control
schemes lead to very similar behavior of the actuators signals
(namely hw, τw and τm) that exhibit an oscillatory behavior
that remains well within the saturation limits. The most
relevant insight coming from this last set of simulation is
revealed by a comparative evaluation of the attitude variables
of Figures 15 and 16. Indeed, the advantages arising from
the cascaded structure of the allocation-based solution (see
Figure 4), where the allocation closed-loop is completely
independent of b̃◦, can be well appreciated in Figure 16,
where the attitude is only affected by the periodic external
disturbance torque T [I]

ext and the attitude variables converge to a
periodic steady-state. Conversely, for the structure in Figure 2
of the classical strategy, the attitude variables are affected by
both T

[I]
ext and the non-periodic term b̃◦ (see Figure 5). As a

result, the behavior of the attitude variables is non-periodic.
Finally, it should be noted that from the two block diagrams
of Figures 4 and 2, the attitude of the classical controller
is disturbed by its feedback interaction with the momentum
dumping dynamics. This fact explains the larger irregular
oscillations that can be appreciated by comparing Figures 15
and 16.
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Fig. 15. Attitude reponses (Cardan angles and w) to a periodic disturbance
using the classical controller.
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Fig. 16. Attitude reponses (Cardan angles and w) to a periodic disturbance
using the allocation-based controller.
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VI. CONCLUSIONS

In this paper, the problem of designing an attitude stabilizer
for satellites equipped with a set of magnetorquers and reaction
wheels is dealt with. The classical “cross product control law”
addressing this problem is first investigated and its hidden as-
sumptions are revealed. Then, this control scheme is revisited
to obtain a new control strategy benefiting from a rigorous
proof of global asymptotic stability and local exponential
stability under reasonable assumptions on the geomagnetic
field. Relying on this preliminary study, a new allocation-based
control scheme is finally proposed as the main contribution
of this paper. In addition to the features of the revisited
controller, the allocation-based strategy makes the attitude
dynamics independent of the momentum dumping task. This is
highly desirable as it allows to completely decouple the design
of the attitude stabilizer from its implementation problem in
satellites with the considered dual actuator configuration.

APPENDIX A
PROOF OF LEMMA III.1

Using b◦(t) = b̃◦(t)/|b̃◦(t)| as defined before Assump-
tion II.1, we can rewrite the closed-loop (15) and (16) with b̃
replaced by b̃◦ as follows:

˙̃
hw = kpb

×
◦ (t)b×◦ (t)h̃w (29)

where we use for simplicity h̃w = hw − href . Then in the
transformed coordinates, the lemma is proved if we establish
UGES of the origin for (29).

We first introduce the candidate Lyapunov function pro-
posed by [24, Prop. 1]

V (t, h̃w) = h̃Tw

(
λ

2
13 −M(t)

)
h̃w, (30)

where M(t) has been defined in (9)–(11). From the bounded-
ness of M(t), coming from Assumption II.1, and for a large
enough λ > 0, V satisfies, for all h̃w and for some positive
scalars c1, c2,

c1|h̃w|2 ≤ V (t, h̃w) ≤ c2|h̃w|2, ∀t ≥ 0. (31)

We can then compute its derivative along dynamics (29) as

V̇ (t, h̃w) = −(h̃w)TQ(t)h̃w (32)

with

Q(t) = (−λ13 + 2M(t)) kpb
×
◦ (t)b×◦ (t) + b◦(t)b

T
◦ (t)−Π∞.

The two unit vectors b1(t), b2(t) are now introduced. They
form an orthogonal basis with b◦(t), i.e. defining T (t) =
[ b0(t) b1(t) b2(t) ], we have TT (t)T (t) = 13. Then,
from the definition of M(t) it is readily seen that Q̃(t) :=
TT (t)Q(t)T (t) corresponds to

Q̃(t) =




1 0 0
0 λkp 0
0 0 λkp


− kp






0
0 Ξ(t)
0




+




0 0 0

ΞT (t)




− TT (t)Π∞T (t),

with |Ξ(t)| = |TT (t)M(t)[ b1(t) b2(t) ]| ≤ σ. Now, from
the rightmost inequality of (10), in Assumption II.1, there
exists a positive scalar γ such that Π∞ � (1−γ)13. Therefore,
TT (t)Π∞T (t) � (1 − γ)TT (t)T (t) = (1 − γ)13 and there
exists a large enough λ > 0 such that Q̃(t) ≥ c313 for some
positive scalar c3, which implies Q(t) ≥ c313. Finally, from
(32) we get V̇ (t, h̃w) ≤ −c3|h̃w|2 which, together with (31)
implies UGES of the origin for (29) by [20, Thm 4.10].

APPENDIX B
A PECULIAR SELECTION OF THE GEOMAGNETIC FIELD

To substantiate the claim given in Remark 3, we prove the
next proposition in this appendix, which is aimed at clarifying
a subtle issue about the relation between the assumptions in
[24, Lemma 1] and our Assumption II.1.

Claim B.1. The following selection:

b◦(t) =
1

2(t+ 1)




t+ 2√
3t2 + 4t sin(t)√
3t2 + 4t cos(t)


 , t ≥ 0, (33)

satisfies |b◦(t)| = 1 for all t ≥ 0, satisfies relation (10)
(equivalently (12)) with Π∞ = 1

8

[
2 0 0
0 3 0
0 0 3

]
while there exists

no scalar σ > 0 satisfying (11).

To prove Claim B.1 we will make use of the following fact.

Fact B.1. Assume that function t 7→ a(t) satisfies
lim

t→+∞
a(t) = ā for some ā ∈ R. Then

L := lim
t→+∞

1

t

∫ t

0

a(s) sin(s)ds = 0. (34)
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Proof. Define ã(t) = a(t) − ā, so that lim
t→+∞

ã(t) = 0.
Moreover, given a generic integer k ≥ 0, define τ = t− 2πk
to get

L = lim
t→+∞

1

t

∫ t

0

ā sin(s)ds

︸ ︷︷ ︸
→0

+
1

t

∫ t

0

ã(s) sin(s)ds

= lim
t→+∞

1

t

∫ 2πk

0

ã(s) sin(s)ds

︸ ︷︷ ︸
→0

+
1

t

∫ t

2πk

ã(s) sin(s)ds

= lim
τ→+∞

1

2πk + τ

∫ 2πk+τ

2πk

ã(s) sin(s)ds

= lim
τ→+∞

1

τ

∫ τ

0

ã(2πk + ω) sin(ω)dω. (35)

The proof is completed by using (35) to show that for each
positive δ > 0, one has:

lim sup
t→+∞

1

t

∣∣∣∣
∫ t

0

a(s) sin(s)ds

∣∣∣∣ ≤ δ, (36)

which clearly implies that the limit in (34) exists and is zero.
To prove (36), since ã converges to zero, let us pick k = kδ

sufficiently large to ensure |ã(2πkδ + ω)| < δ ∀ω ≥ 0. Then
we have from (35) applied with k = kδ ,

lim supt→+∞
1
t

∣∣∣
∫ t
0
a(s) sin(s)ds

∣∣∣
= lim supτ→+∞

1
τ

∣∣∫ τ
0
ã(2πkδ + ω) sin(ω)dω

∣∣
≤ lim supτ→+∞

1
τ

∫ τ
0
|ã(2πkδ + ω)|| sin(ω)|dω

≤ lim supτ→+∞
1
τ

∫ τ
0
δdω = lim supτ→+∞

δτ
τ = δ,

which completes the proof.

In light of Fact B.1 we can now prove Claim B.1.
Proof of Claim B.1. The fact that |b◦(t)| = 1, ∀t ≥ 0 can

be easily verified by direct calculation.
Moreover, we may easily compute:

b◦(t)bT◦ (t) =


(t+2)2

(2t+2)2 ? ?

(t+2)
√
3t2+4t

(2t+2)2 sin(t) 3t2+4t
(2t+2)2 sin2(t) ?

(t+2)
√
3t2+4t

(2t+2)2 cos(t) 3t2+4t
(2t+2)2 sin(t) cos(t) 3t2+4t

(2t+2)2 cos2(t)


,

where the ? symbols denote symmetric entries. To compute
Π∞ we now need to evaluate the asymptotic value of the
integral in (10). To this aim, we can apply Fact B.1 to the off-
diagonal terms (the sinusoidal terms can be easily transformed
in sinuses by a change of variable) to show that they converge
to zero. As for the diagonal terms, we can perform a partial
fraction expansion of the biproper polynomial factors and
use standard formulas to find explicit solutions in terms of
suitable combinations sinuses, logarithms and of the “Sine
integral” function Si(t) :=

∫ t
0

sin(s)
s ds, which is known to be

globally bounded for all t in [0,+∞). As a result, we obtain
Π∞ = 1

8

[
2 0 0
0 3 0
0 0 3

]
, which clearly shows that Γ̄0 = 13 − Π∞ =

1
8

[
6 0 0
0 5 0
0 0 5

]
satisfies the assumption 0 < Γ̄0 < 13 in (12).

Note however that using (11) we have M(t) =
t(Π(t) − Π∞) =

∫ t
0
b◦(τ)bT◦ (τ)dτ − tΠ∞ =

∫ t
0

(
b◦(τ)bT◦ (τ)−Π∞

)
dτ , thus we get that the upper

left entry of M(t) corresponds to

M(t)[1,1] =

∫ t

0

(
(τ + 2)2

(2τ + 2)2
− 1

4

)
dτ =

∫ t

0

2τ + 3

4(τ + 1)2
dτ

=
1

2

(
log(t+ 1) +

t

2(t+ 1)

)
,

which clearly grows unbounded as t goes to +∞, thus proving
that there exists no scalar σ satisfying (11). �
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