
HAL Id: hal-01760575
https://hal.science/hal-01760575v2

Preprint submitted on 19 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deciding the First-Order Theory of an Algebra of
Feature Trees with Updates (Extended Version)

Nicolas Jeannerod, Ralf Treinen

To cite this version:
Nicolas Jeannerod, Ralf Treinen. Deciding the First-Order Theory of an Algebra of Feature Trees
with Updates (Extended Version). 2019. �hal-01760575v2�

https://hal.science/hal-01760575v2
https://hal.archives-ouvertes.fr

Deciding the First-Order Theory of an Algebra
of Feature Trees with Updates

(Extended Version)?

Nicolas Jeannerod and Ralf Treinen

Univ. Paris Diderot, Sorbonne Paris Cité, IRIF, UMR 8243, CNRS, Paris, France
nicolas.jeannerod@irif.fr ralf.treinen@irif.fr

Abstract. We investigate a logic of an algebra of trees including the
update operation, which expresses that a tree is obtained from an input
tree by replacing a particular direct subtree of the input tree, while
leaving the rest unchanged. This operation improves on the expressivity
of existing logics of tree algebras, in our case of feature trees. These allow
for an unbounded number of children of a node in a tree.
We show that the first-order theory of this algebra is decidable via a
weak quantifier elimination procedure which is allowed to swap existen-
tial quantifiers for universal quantifiers. This study is motivated by the
logical modeling of transformations on UNIX file system trees expressed
in a simple programming language.

1 Introduction

Feature trees are trees where nodes have an unbounded number of children,
and where edges from nodes to their children carry names such that no node
has two different outgoing edges with the same name. Hence, the names on the
edges can be used to select the different children of a node. Feature trees have
been used in constraint-based formalisms in the field of computational linguistics
(e.g. [14]) and constrained logic programming [1,15]. This work is motivated by
a different application of feature trees: they are a quite accurate model of UNIX
file system trees. The most important abstraction in viewing a file structure as a
tree is that we ignore multiple hard links to files. Our mid-term goal is to derive,
using symbolic execution techniques, from a shell script a logical formula that
describes the semantics of this script as a relation between the initial file tree
and the one that results from execution of the script.

Feature tree logics have at their core basic constraints like x[f]y, expressing
that y is a subtree of x accessible from the root of x via feature f , and x[f] ↑,
expressing that the tree x does not have a feature f at its root node. This is
already sufficient to describe some tree languages that are useful in our context.
For instance, the script consisting of the single command mkdir /home/john,

? This work has been partially supported by the ANR project CoLiS, contract number
ANR-15-CE25-0001.

which creates a directory john under the directory home, succeeds on a tree if the
tree satisfies the formula ∃d.(r[home]d ∧ d[john] ↑), which expresses that home

is a subdirectory of the root, which does itself not have a subdirectory john.
We ignore here the difference between directories and regular files, as well as file
permissions.

Update Constraints. In order to describe the effect of executing the above script
we need more expressivity. A first idea is to introduce an update constraint
y
.
= x[f 7→ z], which states that the tree y is obtained from the tree x by setting

its child f to z, and creating the child when it does not exist. Using this, the
semantics of mkdir /home/john could be described by

∃d, d′, e. (in[home]d ∧ d[john] ↑ ∧out .= in[home 7→ d′] ∧ d′ .= d[john 7→ e] ∧ e[∅])

Here, e[∅] expresses that e is an empty directory. Note that this formula, by
virtue of the update constraint, expresses that any existing directories under
home different from john are not touched.

Programming constructs translate to combinations of logical formula. For in-
stance, if φp(in, out), resp. φq(in, out) describe the semantics of script fragments
p and q, then their composition is described by ∃t.(φp(in, t) ∧ φq(t, out)). The
reality of our use case is more complex than that due to the hairy details of error
handling in shell scripts [10], and is up to future work.

Formulas with more complex quantification structure occur when we express
interesting properties of scripts. For instance, p and q are equivalent if

∀in, out. (φp(in, out)↔ φq(in, out))

Debian requires in its policy [7] so-called maintainer scripts to be idempotent,
which can be expressed for a script p as

∀in, out. (φp(in, out)↔ ∃t.(φp(in, t) ∧ φp(t, out))

Since we are interested in verifying these kinds of properties on scripts we need a
logic of feature trees including update constraints, and which enjoys a decidable
first-order logic.

Related Work. The first decidability result of a full first-order theory of Herbrand
trees (i.e., based on equations x = f(x1, . . . , xn)) is due to Malc’ev [13], this
result has later been extended by [6, 12]. A first decidability result for the first-
order theory of feature trees was given for the logic FT [1], which comprises the
predicates x[f]y and x[f] ↑, by [4]. This was later extended to the logic CFT [15],
which in addition to FT has an arity constraint x[F] for any finite set F of feature
symbols, expressing that the root of x has precisely the features F , in [3,5]. Note
that in these logics one can only quantify over trees, not over feature symbols.
The generalization to a two-sorted logic which allows for quantification over
features is undecidable [16], but decidability can be recovered if one restricts the
use of feature variables to talk about existence of features only [17]. All these
decidable logics of trees have a non-elementary lower bound [18]. The case of a
feature logic with update constraints was open up to now.

Choosing the Right Predicates. The difficulty in solving update constraints stems
from the fact that an update constraint involves three trees: the original tree,
the final tree and the sub-tree that gets grafted on the original tree.

There are no symmetries between these three arguments, and a conjunction of
several update constraints may become quite involved. Our approach to handle
this rather complex update constraint is to replace it by a more elementary
constraint system which is based on the classical x[f]y, and the new similarity
constraint x ∼f y. The latter constraint expresses that x and y have the same
children with the same names, except for the name f where they may differ.
This system has the same expressive power as update constraints since on the
one hand z

.
= x[f 7→ y] is equivalent to x ∼f z ∧ z[f]y, and on the other hand

x ∼f y is equivalent to ∃z, v.(z .
= x[f 7→ v] ∧ z .

= y[f 7→ v]). In order to
simplify these constraints one needs the generalization x ∼F y where F is a
finite set of features. For each set of features F , similarities ∼F are equivalence
relations, which is very useful when designing simplification rules, and these
relations have useful properties, like (x ∼F y ∧ x ∼G y) ↔ x ∼F∩G y and
(x ∼F y ∧ y ∼G z)→ x ∼F∪G z.

Eliminating Quantifiers. Our theory of feature trees does not have the property
of quantifier elimination in the strict sense [9]. This is already the case without
the update (or similarity) constraints, as we can see in the following example:
∃x.(y[f]x∧x[g] ↑). This formula means that there is a tree denoted by x such that
y points to x through the feature f , and that x does not have the feature g. A
quantifier elimination procedure would have to conserve this information about
the global variable y. This situation is not unusual when designing decision
procedures. There are basically two possible remedies: the first one is to extend
the logical language by new predicates which express properties which otherwise
would need existential quantifiers to express. This approach of achieving the
property of quantifier elimination by extension of the logical language is well-
known from Presburger arithmetic, it was also used in [3, 4].

However, in the case of feature tree logics, the needed extension of the lan-
guage is substantial and requires the introduction of path constraints. For in-
stance, the above formula would be equivalent to the path constraint y[f][g] ↑
stating that the variable y has a feature f pointing towards a tree where there
is no feature g. Unfortunately, this extension entails the need of quite complex
simplification rules for these new predicates.

The alternative solution is to our knowledge due to [13] and consists in ex-
ploiting the fact that certain predicates of the logic behave like functions. This
solution was also used in [6] for Herbrand trees. When switching to feature trees
this solution becomes quite elegant [17], the above formula would be replaced
by ¬y[f] ↑ ∧∀x.(y[f]x→ x[g] ↑) stating that y has a feature f (by ¬y[f] ↑) and
that for each variable x such that y points towards x via f (in fact, there is only
one), x has no feature g. The price is that existential quantifiers are not com-
pletely eliminated but swapped for universal ones. This is, however, sufficient,
since one can now apply this transformation to a formula in prenex normal form,
and successively reduce the number of quantifier eliminations.

Structure of this Paper. We summarize some notions from logic that will be used
in the rest of the paper in Section 2. Our model of trees as well as the syntax
and semantics of our logic are defined formally in Section 3. The quantifier
elimination procedure in given in Section 4. We conclude in Section 5. Proofs
are only sketched, full proofs are to be found in the appendixes A and B.

This is the extended version of [11].

2 Preliminaries

We assume logical conjunction and disjunction to be associative and commu-
tative, and equality to be symmetric. For instance, we identify the formula
x
.
= y ∧ (x[f] ↑ ∨x[g]z) with (x[g]z ∨ x[f] ↑) ∧ y .

= x.
The set of free variables of a formula φ is written V(φ). We write φ{x 7→ y}

for the formula obtained by replacing in φ all free occurrences of x by y. We
write ∃̃φ for the existential closure ∃V(φ).φ, and similarly ∀̃φ for ∀V(φ).φ.

A conjunctive clause with existential quantifiers, or in short clause, is ei-
ther ⊥, or a finite set of literals prefixed by a string of existential quantifiers.
Note that such a clause may still contain free variables, that is we do not require
all its variables to be quantified. If ∃X.(a1 ∧ . . . ∧ an) is such a clause, then we
can partition its set of literals c = gc ∪ lc such that gc contains all the literals
of c that contain no variable of X, and lc the set of literals of c that contain at
least one variable of X. We have the following logical equivalence:

|= (∃X.c)↔ (gc ∧ ∃X.lc)

We call (gc, lc) the decomposition of ∃X.c. gc is the global part and lc the local
part of c, X is the set of local variables and V(∃X.c) ⊇ V(gc) the set of global
variables.

A disjunctive normal form (dnf) is a finite set of clauses, all of which are
different from ⊥.

A formula is in prenex normal form (pnf) if it is of the form Q1x1 . . . Qnxn.φ
where φ is quantifier-free, and where the Qi are existential or universal quan-
tifiers. If all Qi are ∃ (resp. ∀) then the formula is called a Σ1-formula (resp.
Π1-formula).

A B denotes the set of partial functions from the set A to the set B
with a finite domain. The domain of a partial function f is written dom(f). The
complement of a set is written Xc. We write X \ Y for {x ∈ X | x 6∈ Y }.

3 A Logic for an Algebra of Trees with Similarities

3.1 Decorations

In addition to what has been said in the introduction, our model of feature trees
also has information attached to the nodes of the trees. In our application to
UNIX filesystems, these could be records containing the usual file attributes like

various timestamps and access permission bits, owner and group, and so on. This
work abstracts from the details of the information attached to tree nodes: we
take the definition of node decorations, and the pertaining logic as a parameter.
We hence assume given an arbitrary set D of decorations.

We assume given a set D of predicate symbols for decorations, and an in-
terpretation D for D with universe D. These predicate symbols are of course
assumed to be disjoint from the predicate symbols that will be introduced in
Subsection 3.3. We also require that D contains a binary predicate x � y ex-
pressing the disequality of two information items.

We also assume that we have a quantifier elimination procedure for D: we can
compute for any Σ1 formula ψ over the language D, possibly with free variables,
a quantifier-free formula D-elim(ψ) that is equivalent in D to ψ and has the
same free variables. Furthermore, we can decide for any closed and quantifier-
free D-formula whether in holds in D.

3.2 Feature Trees

We assume given an infinite set F of features. The letters f , g, h will always
denote features.

The set FT of feature trees is inductively defined as

FT = D × (F FT)

Here, the case of a partial function with empty domain serves as base case
of the induction. Hence, this amounts to saying that a feature tree is a finite
unordered tree where nodes are labeled by decorations, and edges are labeled by
features. Each node in a feature tree has a finite number of outgoing edges, and
all outgoing edges of a node carry different names. We write t̂ for the decoration

of the root node of t and we write
→
t for its mapping at the root, i.e. t = (t̂,

→
t).

Our notion of equality on trees is structural equality, i.e. t = s iff t̂ = ŝ and
→
t =

→
s , that is dom(

→
t) = dom(

→
s) and

→
t (f) =

→
s (f) for every f ∈ dom(

→
t).

Examples of feature trees are given in Figure 1.

t1 : d

d

f

d

g

d

h

t2 : d

d

i

d

h

d

g

d

f

t3 : d

d

d

f

d

g

d

h

f

d

g

d

h

Fig. 1. Examples of Feature Trees. d ∈ D is some arbitrary node decoration.

For the reasons explained in the introduction, our logical language does not
contain y

.
= z[x 7→ f] but the simpler x ∼F y for any finite set F ⊆ F . If

F ⊆ F then we say that t is similar to s outside F , written t ∼F s, if for all
f ∈ F c = F \ F we have that

– either f /∈ dom(
→
t) ∪ dom(

→
s)

– or f ∈ dom(
→
t) ∩ dom(

→
s), and

→
t (f) =

→
s (f).

In other words, t and s are similar outside F if they have precisely the same
children except maybe for the features in F .

3.3 Constraints and their Interpretation

The set of predicate symbols (or atomic constraints) of our logic is

x
.
= y Equality A(x1 . . . xn) Decoration predicate A ∈ D
x[f]y Feature f from x to y x[f] ↑ Absence of feature f from x
x[F] Fence constraint x ∼F y Similarity outside F

In fences and similarities, the sets F are finite. We will use the usual syntactic
sugar and write x 6 .= y for ¬(x

.
= y), and x 6∼F y for ¬(x ∼F y). As with equality,

we consider similarity predicates to be symmetric, that is we identify x ∼F y
with y ∼F x.

We have one model which has as universe the set FT . As usual, we use the
same symbol FT for the model and for its universe. The predicate symbols are
interpreted as follows, where ρ is a valuation of the free variables of the formula
in the model FT :

FT , ρ |= x
.
= y iff ρ(x) = ρ(y)

FT , ρ |= x[f]y iff f ∈ dom(
−−→
ρ(x)) and

−−→
ρ(x)(f) = ρ(y)

FT , ρ |= x[f] ↑ iff f /∈ dom(
−−→
ρ(x))

FT , ρ |= x[F] iff dom(
→
x) ⊆ F

FT , ρ |= x ∼F y iff ρ(x) ∼F ρ(y)

FT , ρ |= A(x1, . . . , xn) iff D, (λxi.ρ̂(xi)) |= A(x1, . . . , xn)

Example 1. Let ρ be the valuation [x→ t1, y → t2, z → t3] for the trees defined
in Figure 1. The following formulas are satisfied in FT , ρ:

z[f]x, x[i] ↑, x[{f, g, h, i}], x ∼{i} y

Similarity constraints are actually only of interest in case of an infinite set
of features. In case of a finite set F , the similarity constraint could already be
expressed in the logic FT that was mentioned in Section 1:

x ∼G y ⇔
∧

f∈F\G

((x[f] ↑ ∧y[f] ↑) ∨ ∃z(x[f]z ∧ y[f]z))

Note the difference between our fence constraint, which states an upper
bound on the root features of a tree, and the arity constraint of [3, 15] which
states a precise set of root features of a tree. Both are equivalent, since one can
express a fence F as a disjunction of all the arities that are subsets of F . Recip-
rocally, in our logic, we can express that x has arity F as x[F] ∧

∧
f∈F ¬x[f] ↑.

Also note that decoration predicates behave in FT as in D:

Proposition 1. If ψ is a formula using only symbols of D then

FT , α |= ψ ⇔ D, λx.α̂(x) |= ψ

4 Quantifier Elimination

4.1 Clashing Clauses

We say that a clause c that is not ⊥ clashes if one of the patterns of Figure 2
matches (modulo associativity and commutativity of ∧) a sub-clause c′ ⊆ c.

C-Cycle x1[f1]x2 ∧ . . . ∧ xn[fn]x1 (n ≥ 1)
C-Feat-Abs x[f]y ∧ x[f] ↑
C-Feat-Fen x[f]y ∧ x[F] (f /∈ F)
C-Neq-Refl x 6 .= x
C-NSim-Refl x 6∼F x

Fig. 2. Clash patterns

Remark that C-Cycle is a clash since our model allows for finite feature trees
only, the other clash cases should be obvious.

Lemma 1. If a clause c clashes then FT |= (c→ ⊥).

4.2 Positive Clauses with Local Variables

As a preparation for the general case we first consider only one single clause
∃X.(a1 ∧ . . . ∧ an) containing only positive atoms, prefixed by some existential
quantifiers.

S-Eq ∃X,x.(x
.
= y ∧ c) ⇒ ∃X.c{x 7→ y} (x 6= y)

S-Feats ∃X, z.(x[f]y ∧ x[f]z ∧ c) ⇒ ∃X.(x[f]y ∧ c{z 7→ y})
(y 6= z, and if z ∈ Vo then y ∈ Vo)

S-Feats-Glob ∃X,x.(x[f]y ∧ x[f]z ∧ c) ⇒ ∃X,x.(x[f]y ∧ y
.
= z ∧ c) (y, z 6∈ X)

S-Sims x ∼F y ∧ x ∼G y ∧ c ⇒ x ∼F∩G y ∧ c
P-Feat x ∼F y ∧ x[f]z ∧ c ⇒ x ∼F y ∧ x[f]z ∧ y[f]z ∧ c (f /∈ F)
P-Abs x ∼F y ∧ x[f] ↑ ∧c ⇒ x ∼F y ∧ x[f] ↑ ∧y[f] ↑ ∧c (f /∈ F)
P-Fen x ∼F y ∧ x[G] ∧ c ⇒ x ∼F y ∧ x[G] ∧ y[F ∪G] ∧ c
P-Sim x ∼F y ∧ x ∼G z ∧ c ⇒ x ∼F y ∧ x ∼G z ∧ y ∼F∪G z ∧ c

(if
⋂

(y∼Hz)∈c H 6⊆ F ∪G)

Fig. 3. Transformation rules for the positive case. Existential quantifiers are only writ-
ten were relevant. Rule S-Feats is parameterized by a set Vo of variables.

In this subsection and the following, we will use transformation rules as the
ones in Figure 3. These rules describe transformations that map a clause to a
formula (in this subsection the resulting formula is also a clause, but that will no

longer be the case in the next subsection). We say that such a rule left ⇒ right
applies to a clause c if:

1. The pattern left matches the complete clause c modulo associativity and
commutativity of conjunction.

2. The side conditions of the rule, if any, are met.
3. The transformation yields a formula which is different from c.

If c is a clause and r a transformation rule then we write r(c) for the formula
obtained by applying r to c.

Each of the rules of Figure 3 describes an equivalence transformation in the
model FT . Equation elimination (S-Eq) is a logical equivalence. S-Feats imple-
ments the fact that features are functional. This rule is parameterized by a set
Vo of variables that will be the set of variables (local or global) of the input
clause. The variable replacement is Vo-oriented in the sense that we never re-
place a variable in Vo by a variable outside Vo. S-Feat-Glob is similar to S-Feat for
the case that y and z are both global variables. S-Sims allows us to contract mul-
tiple similarities between the same pair of variables into one. P-Feats, P-Abs and
P-Fen propagate constraints along a similarity, taking into account the index of
the similarity. Finally, P-Sim is a kind of transitivity of similarity, where we take
care not to add a similarity which is subsumed by already existing similarities.

The propagations play two important roles in that system. First, they move
information, possibly leading to a clash. This is the case in the following example
where a fence moves through similarities to clash with a feature constraint:

x[f]v ∧ x ∼{g} y ∧ y ∼{h} z ∧ z[∅]

P-Fen x[f]v ∧ x ∼{g} y ∧ y[{h}] ∧ y ∼{h} z ∧ z[∅]

P-Fen x[f]v ∧ x[{g, h}] ∧ x ∼{g} y ∧ y[{h}] ∧ y ∼{h} z ∧ z[∅]

Second, they take information from local variables and move it to global vari-
ables. This mechanism is at the core of the elimination of existential quantifi-
cations, the idea being that once all the propagations took place, all interesting
information is explicit in the global part, and we can hence drop the local part.

y[h] ↑ ∧ ∃z.(x ∼{f} z ∧ z ∼{g} y)

P-Sim y[h] ↑ ∧ x ∼{f,g} y ∧ ∃z.(x ∼{f} z ∧ z ∼{g} y)

P-Abs x[h] ↑ ∧ y[h] ↑ ∧ x ∼{f,g} y ∧ ∃z.(x ∼{f} z ∧ z ∼{g} y)

The following function computes a normal form with respect to the rules of
Figure 3:

function normalize -positive(c: positive clause)

Vo := V(c1) where c = ∃X.c1
while c does not clash and some rule r of Fig 3 applies to c:
c := r(c)

return(c)

Lemma 2. For a positive clause c, the function normalize-positive termi-
nates and yields a positive clause that is equivalent in FT to c.

Given a quantifier-free clause c, we define D-part(c) as the conjunction of all
D-literals of c.

Lemma 3. Let the function normalize-positive return a clause ∃X.c that
does not clash and (gc, lc) be its decomposition. Let d = D-elim(∃X.D-part(c)).
If c contains no atom x[f]y with x /∈ X and y ∈ X then

FT |= ∀̃((∃X.c)↔ (gc ∧ d))

Actually, both lemmas are special cases of the forthcoming Lemmas 5 and 6 of
Section 4.3.

Lemma 3 can serve for quantifier elimination in the positive case, at least
when there is no feature constraint from a global variable to a local one. We will
see in Section 4.4 what can be done if this is not the case.

4.3 General Clauses with Local Variables

In case of clauses containing both positive and negative literals we have to con-
sider transformation rules that introduce negations or disjunctions. However, our
rules will continue to take a single clause as input. As a consequence, we have
to transform the result obtained by a transformation into disjunctive normal
form. We assume given a function dnf that takes a formula without universal
quantifiers and containing only positive occurrences of existential quantifiers,
and returns an equivalent dnf that does not contain any clashing clauses. This
can be achieved by using a standard dnf transformation and then purging all
clashing clauses, or alternatively by applying the clash rules on the fly.

Syntactic Sugar. In the transformation rules to be presented below we will use
several abbreviations that allow us to write the rules more concisely. First we
have

x〈F 〉 :=
∨
f∈F

∃z.x[f]z

where F ⊂ F is a finite set. This formula states that x has at least one feature in
the set F , it can be seen as a dual to the fence constraint x[F] which states that x
has at most the features in the set F . Note that x〈F 〉 introduces a disjunction,
so introducing such a formula requires the result to be put into dnf.

The formula x 6 .=f y states that x and y differ at feature f , that is either one
of them has f and the other one does not, or their children at f are different.
The formula x 6 .=F y generalizes this to a finite set F ⊂ F , stating that x and y
differ at at least one of the features in F .

x 6 .=f y := ∃z′.(x[f] ↑ ∧y[f]z′) ∨ ∃z.(x[f]z ∧ y[f] ↑)
∨∃z, z′.(x[f]z ∧ y[f]z′ ∧ (z � z′ ∨ z 6∼∅ z′))

x 6 .=F y :=
∨
f∈F

x 6 .=f y

We use (z � z′ ∨ z 6∼∅ z′) instead of (z 6 .= z) to denote a difference between
two variables in order to avoid problems with the termination. These formulas
introduce disjunctions. They also introduce negated similarities at some newly
created children of x and y, so we have to take care in the termination proof
when these formulas are introduced by a transformation.

R-NEq x 6 .= y ∧ c ⇒ (x � y ∨ x 6∼∅ y) ∧ c
R-NFeat ¬x[f]y ∧ c ⇒ (x[f] ↑ ∨∃z.(x[f]z ∧ (y � z ∨ y 6∼∅ z))) ∧ c
R-NAbs ¬x[f] ↑ ∧c ⇒ ∃z.x[f]z ∧ c
R-NFen-Fen x[F] ∧ ¬x[G] ∧ c ⇒ x[F] ∧ x〈F \G〉 ∧ c
R-NSim-Sim x ∼F y ∧ x 6∼G y ∧ c ⇒ x ∼F y ∧ x 6 .=F\G y ∧ c
R-NSim-Fen x[F] ∧ x 6∼G y ∧ c ⇒ x[F] ∧

(
¬y[F ∪G] ∨ x 6 .=F\G y

)
∧ c

E-NFen x ∼F y ∧ ¬x[G] ∧ c ⇒ x ∼F y ∧ (¬x[F ∪G] ∨ x〈F \G〉) ∧ c
(F 6⊆ G)

E-NSim x ∼F y ∧ x 6∼G z ∧ c ⇒ x ∼F y ∧
(
x 6∼F∪G z ∨ x 6 .=F\G z

)
∧ c

(F 6⊆ G)

Fig. 4. Replacement and Enlargement rules for the general case. � is the disequality
of decorations.

New Rules. Figure 4 extends the previously defined set of rules by adding several
replacement rules and two enlargement rules. First, we have R-NEq, R-NFeat and
R-NAbs that eliminate occurrences of the negated constraints x 6 .= y, ¬x[f]y and
¬x[f] ↑ respectively. Since no other rule introduces any of these negated con-
straints we can ignore these two negated constraints in the rest of the section.

Then we have three rules that combine a positive with a negative constraint.
R-NFen-Fen applies to the case where we have both a positive fence F and a
negated fence G for x. We simplify this by keeping the positive fence F , and
replacing the negative fence by saying that x must have a feature that is in F
(since that is all it can have), but not in G. Similarly, R-NSim-Sim applies when
we have between x and y both a positive similarity except in F , and a negated
similarity except in G. We simplify this by keeping the positive similarity, and
replacing the negated similarity by stating that x and y differ at a feature that
is in F (since these are the only features where they may differ) but not in G.
Finally, R-NSim-Fen applies when we have a fence F for x, and a negated similarity
with y except in G. Note that for any F and G, Gc = (F ∪G)c∪ (F \G). Hence,
the negated similarity is equivalent to saying that either y has a feature outside
F ∪ G, which is the only possibility to have a difference with x outside F ∪ G
since x has already fence F , or the difference is in the finite set F \G.

Finally, we have the two enlargement rules E-NFen and E-NSim. Their sole
purpose is to ensure (by enlarging the negated fence or the index of a negated
similarity) that the rules in Figure 5 can be applied when we have a similarity in
conjunction with a negated fence or a negated similarity. The correctness proof of

these rules is similar to the three previous rules. In fact, the similarity between x
and y is not needed for the correctness of these two rules and serves only for the
termination proof since the requirement of a context x ∼F y excludes arbitrary
enlargements.

P-NFen x ∼F y ∧ ¬x[G] ∧ c ⇒ x ∼F y ∧ ¬x[G] ∧ ¬y[G] ∧ c (F ⊆ G)
P-NSim x ∼F y ∧ x 6∼G z ∧ c ⇒ x ∼F y ∧ x 6∼G z ∧ y 6∼G z ∧ c (F ⊆ G)

Fig. 5. Propagation rules for the general case.

The two rules in Figure 5 may propagate a negated fence or a negated sim-
ilarity through a similarity. In fact, if x and y coincide outside F and F ⊆ G,
then x and y also coincide outside G. Hence, if x has a feature outside G then so
does y (P-NFen), and if x differs from z at some feature outside G then so does y
(P-NSim).

We define the set of rules R1 as the union of all the transformation rules of
Figures 3 and 4, and R2 as the set of the two transformation rules of Figure 5.

function normalize(c: clause)

d := {c}
Vo := V(c1) where c = ∃X.c1
while exists c ∈ d to which some rule r ∈ R1 applies

d := (d \ {c}) ∪ dnf(r(c))
while exists c ∈ d to which r ∈ R2 applies

d := (d \ {c}) ∪ {r(c)}
return(d)

The function normalize normalizes first by rule set R1, and then by rule set R2.
This decomposition is necessary to ensure termination. It also makes sense since
application of rules R2 conserves normal forms with respect to R1.

Lemma 4. The output of normalize is a dnf where each conjunction is in nor-
mal form for R1 ∪R2.

Proof (sketch). We have to prove that the application of one of the rules in R2

to a normal form with respect to R1 does not produce a redex for any of the
rules in R1. Assume, for instance that the application of P-NFen to c introduces a
redex of R-NFen-Fen. This means that the negative fence constraint introduced for
y will react with a positive fence constraint (for y) that was already present in
c. Since c is in normal form with respect to P-Fen, x must have a fence constraint
in c. This yields a contradiction since then c is not in normal form with respect
to R-NFen-Fen. The other cases are similar (details can be found in appendix B).

Lemma 5. The function normalize, when applied to a clause c, terminates and
yields a dnf d such that FT |= ∀̃(c↔ d).

Proof (sketch). Equivalence of c and d follows from the fact that each trans-
formation rule is an equivalence in FT . Termination is shown by defining a
well-founded order on clauses such that each rule transforms a clause into a set
of stricter smaller clauses. The termination order on dnf formulas is the multiset
extension [8] of this order.

This order is a lexicographic order over twelve different measures that de-
crease with the applications of the rules. We can for instance handle the rules
R-NEq, R-NFeat and R-NAbs first by saying that they decrease the number of negated
equalities, feature constraints or absences. Since nothing introduces those liter-
als, this is already a good start.

The first main difficulty in finding that order comes from the fact that all
the propagation rules are trying to saturate the clause. A good measure that
decreases with them is then the set of all possible atoms that are not in the
formula. For P-Feat, for instance: {(x[f]y) | x, y ∈ V(c); f ∈ F(c); (x[f]y) /∈ c}.
That would make a good measure if V(c) could not increase with the application
of other rules such as R-NSim-Fen. We have thus to handle these other rules first,
which leads us to another main difficulty.

The second main difficulty comes from the negated similarities. Indeed, while
all other literals may only move “horizontally” following the similarities, negated
similarities may “descend” in the constraint, creating variables and feature con-
straints if needed. It is not obvious when it will stop, and in particular to find a
bound on the number of variables introduced.

Let us consider the following example constraint and one of its reduction
paths (that is, the reduction may create several branches in the dnf, and we take
only the one we are interested in):

x0[f]x1 ∧ x1[f]y0 ∧x0[{f}] ∧ x1[{f}] ∧x0 6∼∅ y0
By R-NSim-Fen:

∃y1, z1. x0[f]x1 ∧ x1[f]y0 ∧ x0[f]z1 ∧ y0[f]y1 ∧x0[{f}] ∧ x1[{f}] ∧z1 6∼∅ y1
By S-Feats:

∃y1. x0[f]x1 ∧ x1[f]y0 ∧ y0[f]y1 ∧x0[{f}] ∧ x1[{f}] ∧x1 6∼∅ y1

In two rules, we created a new variable y1, and removed a negated similarity
just to put it again somewhere else. Note in particular that R-NSim-Fen can still
apply, because x1 has now a fence and a negative similarity. In fact, if, instead
of two, we take a number n of variables xi, we can extend that example into one
that always doubles the number of variables.

The key to our solution to this problem is that rules that make negative
similarities descend, thus introducing feature constraints and new variables, need
some “fuel”, which is the presence of positive fences or similarities. We define
the original variables as the variables that were in the clause at the begining of
normalize. Then, we show that

1. the number of original variables cannot grow;
2. there are never feature constraints from non-original variables towards orig-

inal ones;
3. the positive fences and similarities can only be present on original variables.

It remains the problem that negative similarities can descend. At some point,
they will necessarily go too deep and leave the area where the original variables
may live. By doing so, they loose the positive fences and similarities that they
need to keep descending, and the process stops.

The full proof, including the lemmas corresponding to the points (1), (2)
and (3), the definition of the measures and the technical details can be found
in appendix A.

This is also where we make use of the quantifier elimination procedure for D-
formulas. Given a quantifier-free clause c, we define D-part(c) as the conjunction
of all D-literals of c.

Lemma 6. Let the function normalize return a dnf which contains a clause
∃X.c. Let (gc, lc) be the decomposition of c, and d = D-elim(∃X.D-part(c)). If c
contains no atom x[f]y with x /∈ X and y ∈ X then

FT |= ∀̃((∃X.c)↔ gc ∧ d)

The proof can be found in appendix B.
We call a clause normalized when it is an element of a dnf returned as result

of function normalize.

4.4 Quantifier Elimination

In order to eliminate a block of existential quantifiers from a clause we apply
iteratively the following rule:

Feat-Fun ∃X,x.(y[f]x ∧ c) ⇒ ¬y[f] ↑ ∧∀x. (y[f]x→ ∃X. (y[f]x ∧ c))
(y /∈ X, y 6= x)

This rule follows the idea of [13], and was already applied to feature constraints
in [17]. The correctness of this transformation is shown by the following chain
of equivalences in the model FT :

∃X,x.(y[f]x ∧ c)
∃x.(y[f]x ∧ ∃X.c) since x, y 6∈ X
¬y[f] ↑ ∧∀x. (y[f]x→ ∃X.c) since features are functional
¬y[f] ↑ ∧∀x. (y[f]x→ ∃X. (y[f]x ∧ c))

The last step is very important, because it ensures that, if y[f]x ∧ c is in
normal form, then the right part of the implication is also in normal form. This
will be important for the function defined below.

The function switch defined below iterates this replacement for all local
variables x that occur in the form y[f]x where y is not local: the function applies
the transformation Feat-Fun, and then recursively applies itself on the result.
When there remains no more feature constraint y[f]x from a global variable to
a local variable in the normalized clause c, we meet the hypotheses of Lemma 6.
We then return the conjunction of the global part gc of the normalized clause,
and of the D-part of the local part lc from which we have eliminated the block
of existential quantifiers.

recursive function switch(c: normalized clause)

if ∃X,x.(y[f]x ∧ c′) matches c and y 6∈ X:

return(¬y[f] ↑ ∧ ∀x.(y[f]x → switch(∃X.y[f]x ∧ c′)))
else:

(gc,lc) := decomposition(c)
d := D-elim(∃X.D-part(lc))
return(gc ∧ d)

Example 2. When given the following formula

∃v, w.(y[f]v ∧ v[f]w ∧ w[f]z ∧ w[{f, g}] ∧ y ∼∅ z)

the function switch returns

¬y[f] ↑ ∧∀v.(y[f]v → (¬v[f] ↑ ∧∀w.(v[f]w → (w[f]z ∧ y ∼∅ z))))

Lemma 7. Given a normalized clause c, switch(c) terminates and yields a
formula ψ such that

1. FT |= ∀̃(c↔ ψ);
2. V(ψ) ⊆ V(c);
3. ψ contains no existential quantifiers and only positive occurrences of univer-

sal quantifiers;
4. If V(c) = ∅ then ψ is quantifier-free.

We can now write a function that transforms a Σ1 formula into an equivalent
Π1 formula. For this we assume given a function pnf that transforms any formula
into its prenex normal form.

function solve(p: Σ1 formula)

let ∃X.q = p where q is quantifier -free

d := dnf(q)
dt :=

∨
c∈d normalize(∃X.c)

u :=
∨

c∈dt switch(c)
return(pnf(u))

Finally, the function decide takes a formula in prenex normal form and
returns an equivalent (in FT) formula without any quantifiers. If Q is a string
of quantifiers, then Q is the string of quantifiers obtained from Q by changing ∃
into ∀ and vice-versa. For instance, ∃x∀y∃z = ∀x∃y∀z.

recursive function decide(p: pnf)

if p is quantifier -free:

return(p)
else if p is Q.∃X.q

where q quantifier -free , Q does not end on ∃:
return(decide(Q. solve(∃X.q)))

else if p is Q.∀X.q
where q quantifier -free , Q does not end on ∀:
return(¬ decide(Q. solve(∃X.¬q)))

Theorem 1. Given a formula p in prenex normal form, decide(p) terminates
and yields a formula q such that

– FT |= ∀̃(p↔ q)
– V(q) ⊆ V(p)
– q is a Π1 formula, and quantifier-free in case V(p) = ∅

Proof (sketch). Termination follows from the fact that at each call to decide,
the number of quantifier alternations in the pnf decreases.

If we apply decide to a closed formula, we hence obtain an equivalent (in
FT) formula that contains no free variables and no quantifiers. Since the only
tree-terms are variables, we have obtained formula of the language D, for which
we can decide by assumption validity in D.

Corollary 1. The first order theory of FT is decidable.

5 Conclusion

We have presented a quantifier elimination procedure for a first-order theory
of feature trees with similarity constraints. Since update constraints can be ex-
pressed by similarity and feature constraints, this implies in particular that the
first-order theory of feature trees with update constraints is decidable.

Our model of feature trees is in several respects an abstraction of UNIX file
systems [2]. First, real file systems make a distinction between different kinds of
files (directories, regular files, various kinds of device files). This distinction is
omitted here just for the sake of presentation. More importantly, real file systems
are not really trees as they allow for multiple paths from the root to regular files
(which must be sinks), and they provide for symbolic links. Since extending the
model by any of these may lead to undecidability of the full first-order theory we
might have to look for smaller fragments which are sufficient for our application
to the symbolic execution of scripts.

Acknowledgments. The idea of investigating update constraints on feature trees
originates from discussions with Gert Smolka a long time ago. We would like to
thank the anonymous reviewers for their useful remarks and suggestions, and the
members of the CoLiS project for numerous discussions on tree constraints and
their use in modeling tree operations, in particular Claude Marché, Kim Nguyen,
Joachim Niehren, Yann Régis-Gianas, Sylvain Salvati, and Mihaela Sighireanu.

References

1. Aı̈t-Kaci, H., Podelski, A., Smolka, G.: A feature-based constraint system for logic
programming with entailment. Theor. Comput. Sci. 122(1–2), 263–283 (Jan 1994)

2. Bach, M.: The Design of the UNIX Operating System. Prentice-Hall (1986)
3. Backofen, R.: A complete axiomatization of a theory with feature and arity con-

straints. Journal of Logic Programming 24(1&2), 37–71 (Jul/Aug 1995)

4. Backofen, R., Smolka, G.: A complete and recursive feature theory. Theor. Comput.
Sci. 146(1–2), 243–268 (Jul 1995)

5. Backofen, R., Treinen, R.: How to win a game with features. Information and
Computation 142(1), 76–101 (Apr 1998)

6. Comon, H., Lescanne, P.: Equational problems and disunification. Journal of Sym-
bolic Computation 7, 371–425 (1989)

7. Debian Policy Mailing List: Debian Policy Manual, version 4.1.3. Debian (Dec
2017), https://www.debian.org/doc/debian-policy/

8. Dershowitz, N., Manna, Z.: Proving termination with multiset orderings. Commu-
nication of the ACM 22(8), 465–476 (1979)

9. Hodges, W.: Model Theory, Encyclopedia of Mathematics and its Applications,
vol. 42. Cambridge University Press (1993)

10. Jeannerod, N., Marché, C., Treinen, R.: A formally verified interpreter for a shell-
like programming language. In: Paskevich, A., Wies, T. (eds.) Verified Software.
Theories, Tools, and Experiments. LNCS, vol. 10712, pp. 1–18. Springer, Heidel-
berg, Germany (Jul 2017)

11. Jeannerod, N., Treinen, R.: Deciding the first-order theory of an algebra of feature
trees with updates. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR’18.
LNCS, Springer, Oxford, UK (Jul 2018)

12. Maher, M.J.: Complete axiomatizations of the algebras of finite, rational and infi-
nite trees. In: LICS. pp. 348–357. IEEE, Edinburgh, Scotland, UK (Jul 1988)

13. Malc’ev, A.I.: Axiomatizable classes of locally free algebras of various type. In:
Benjamin Franklin Wells, I. (ed.) The Metamathematics of Algebraic Systems:
Collected Papers 1936–1967, chap. 23, pp. 262–281. North Holland (1971)

14. Smolka, G.: Feature constraint logics for unification grammars. Journal of Logic
Programming 12, 51–87 (1992)

15. Smolka, G., Treinen, R.: Records for logic programming. Journal of Logic Pro-
gramming 18(3), 229–258 (Apr 1994)

16. Treinen, R.: Feature constraints with first-class features. In: Borzyszkowski, A.M.,
Soko lowski, S. (eds.) Mathematical Foundations of Computer Science. LNCS,
vol. 711, pp. 734–743. Springer (Aug/Sep 1993)

17. Treinen, R.: Feature trees over arbitrary structures. In: Blackburn, P., de Rijke,
M. (eds.) Specifying Syntactic Structures, chap. 7, pp. 185–211. CSLI Publications
and FoLLI (1997)

18. Vorobyov, S.: An improved lower bound for the elementary theories of trees. In:
McRobbie, M.A., Slaney, J.K. (eds.) CADE’96. LNCS, vol. 1104, pp. 275–287.
Springer, New Brunswick, NJ (Jul/Aug 1996)

A Proof of Lemma 5 (Termination)

A.1 Introduction and Example

To show the termination, we have to find a measure that decreases strictly at
each step of the while loop of the function normalize of Section 4.3. When
trying to find such an order one encounters quickly two problems:

– Some of the rules create new variables.

– Negated similarities cannot only be propagated horizontally (i.e., along simi-
larities x ∼F y) by rule P-NSim, but also descend vertically (i.e., along feature
constraints x[f]y), creating new feature constraints by R-NSim-Fen, R-NSim-Sim

and E-NSim.

Taken together, these two properties of the rule system pose a serious problem
for termination, since we have to assure that pushing downwards of negated
similarities terminates even when new variables and feature constraints may be
created.

The idea of the proof is to show that the descent of negated similarities is in
fact bounded. Let us first define a notion of depth of the variables in a clash-free
constraint:

dc(y) = max{1 + dc(x) | (x[f]y) ∈ c}

This definition of depth is valid because there are no cycles in the feature con-
straints in c. We want to show that, although the negated similarities are de-
scending, they cannot go too far, and that the process stops.

One might hope to find a bound on the depths of the variables in a clause.
However, it is not clear how this can be achieved. Here is an example where we
create variables and almost double the depth of the clause: ∧

0≤i<n

xi[f]xi+1 ∧ xi[{f}]

 ∧ x0 6∼∅ xn

Initially, all variables are at depth ≤ n. There is an occurrence of pattern
x0[{f}] ∧ x0 6∼∅ xn. We can thus apply R-NSim-Fen, and we get a set of clauses
that contains the following:

∃y1, z1.

 ∧
0≤i<n

xi[f]xi+1 ∧ xi[{f}]

 ∧ x0[f]z1 ∧ xn[f]y1 ∧ z1 6∼∅ y1

We have the pattern ∃z1.x0[f]x1 ∧ x0[f]z1 and we can thus apply S-Eq which
gives us:

∃y1.

 ∧
0≤i<n

xi[f]xi+1 ∧ xi[{f}]

 ∧ xn[f]y1 ∧ x1 6∼∅ y1

In two rule applications, we created a variable y1 of depth n+ 1, and we repro-
duced the pattern consisting of a fence and a negated similarity that was on x0
and xn to x1 and y1. We can keep doing this, and we obtain in the end:

∃(yi)1≤i≤n.

 ∧
0≤i<n

xi[f]xi+1 ∧ xi[{f}]

∧xn[f]y1∧

 ∧
1≤i<n

yi[f]yi+1

∧xn 6∼∅ yn

where the newly introduced variable yn is at depth 2n.

This shows that it is non trivial to have a bound on the depth of a clause,
and on the number of variables in it. Luckily, there is a variant of this argument
which we can prove. In fact, to descend and possibly create features, the negated
similarities need “fuel”, that fuel being the fences and positive similarities that
are necessary to trigger R-NSim-Fen, R-NSim-Sim or E-NSim. We can show that this
fuel can only be present on variables that were originaly present in the clause.
And since their number cannot grow and their depth is bounded, we get what
we want.

A.2 Technical Definitions

Let ∃Xo.co be a clash-free clause. This will be the input clause to which we apply
the function normalize. Define the original variables as:

Vo = V(co)

Note that Vo contains not only the free variables of the clause but also the
variables of Xo that are present in co. In the following, we take S-Feats to be
Vo-oriented. Also, we will only consider clauses that are descendants of this
clause co, that is, they are inhabitants at some point of the set d in the function
normalize(co). In particular, they are all clash-free.

Let us define the depth of a variable in a clause c by:

Definition 1.
dc(y) = max{1 + dc(x) | (x[f]y) ∈ c}

This definition is valid because c is clash-free, and in particular without cycles.
We have two important properties about dc:

Proposition 2. For any clause ∃X.c, and any variable in V(c), we have that
dc(x) < card(V(c)).

Proof. This is an immediate consequence of the fact that c is clash-free: no
variable may appear twice on a path leading to x.

Proposition 3. The depth of a variable cannot decrease. That is, for any clause
∃X1.c1 that transforms into ∃X2.c2 and any variable x in these two clauses,
dc1(x) ≤ dc2(x).

Proof. Consider clauses c1 and c2 and a variable x in both of them. There is a
path in c1 of length dc1(x) leading to x by definition of the depth. We will show
that this path is also present in c2, although it may be slightly changed.

Our system contains several rules that add feature constraint leading to new
variables, these rule do not modify any existing paths. There is only one rule that
may change the existing feature constraints: S-Feats. However, it only renames
one variable into an other, which means that all the features of our path are
still present in the new clause. Also note that since x ∈ V(x2), x cannot be the
variable that is renamed. As a consequence, the path of length dc1(x) in c1 to x
still leads to x in c2, that is dc2(x) ≥ dc1(c).

We will now show several properties on the variables of the clauses ∃X.c that
descend from co.

Proposition 4. For all ∃X.c and x ∈ V(c) \ Vo, x is local in c, that is x ∈ X.

Proof. The proof is induction on the rule sequence that was applied to obtain
∃X.c from c0. By inspecting the rules one verifies easily that any variable that
is introduced by any rule also is existentially quantified.

We now have three important properties that state that positive equalities,
similarities and fences cannot escape the set Vo of original variables. This means
in particular that, although the negated similarities may descend, only the orig-
inal variables have what is needed to trigger the rules R-NSim-Fen, R-NSim-Sim and
E-NSim.

Proposition 5. If (x
.
= y) ∈ c, then x, y ∈ Vo.

Proof. By induction on the rule sequence that led us there from co to c. This
is trivially verified in co by definition of Vo. The only rule that may introduce
equalities is S-Feats-Glob, that only adds equalities between global hence original
(Prop. 4) variables.

Proposition 6. If (x ∼F y) ∈ c, then x, y ∈ Vo.

Proof. By induction on the rule sequence that led us there from co to c. The
only rules that may modify similarities are

1. S-Sims which only changes the index of an already existing similarity between
the same variables,

2. P-Sim which creates a new similarity between two variables that each are
already in a similarity relation,

3. S-Eq which may rename the variables in an existing similarity. However, it is
only renaming original variables into original ones (Prop. 5).

4. S-Feats which may rename the variables in an existing similarity. However, if
a renaming of say z into y introduced a similarity for variable y 6∈ Vo then
we would have already a similarity for z, and z 6∈ Vo by the side condition
of (S-Feats), which a is contradiction to the induction hypothesis.

Proposition 7. If (x[F]) ∈ c, then x ∈ Vo.

Proof. By induction on the rule sequence that led us there from co to c. The
only rules that may modify fences are

1. P-Fen which creates a fence constraint for a variable that appears in a simi-
larity constraint and hence is, by Proposition 6, a variable of Vo,

2. S-Eq which may rename the variable in an existing fence constraint. However,
it only renames an original variable into an other original one.

3. S-Feats which may rename the variable in an existing fence constraint. How-
ever, if a renaming of say z into y introduced a fence constraint for variable
y 6∈ Vo then we would have already a fence constraint for z, and z 6∈ Vo
by the side condition of (S-Feats), which a is contradiction to the induction
hypothesis.

We now want to prove that the depth of original variables is bounded by
card(Vo). However, new variables may have been introduced, and in order to
prove our bound we have to assure that the introduction of new variables cannot
increase the depth of original variables. The two following propositions will allow
us to conclude that only original variables may occur on paths leading to original
variables, which is sufficient to show that the depth of original variables cannot
increase.

Let us first define the notion of fathers of a variable in a clause:

Definition 2.

fathersc(y) = {x | (x[f]y) ∈ c for some f}

Proposition 8. Let y ∈ V(c)\Vo. Then either fathersc(y) ⊆ Vo, or fathersc(y)
is a singleton. In that second case, the only father is not in Vo.

Proof. This proposition is shown by induction on the rule applications from co
that led to our constraint. The proposition is obviously true for co as there are
no non-original variables in it. Let us now consider a step in the transformation,
that is a rule that transformed a descendant ∃X1.c1 into ∃X2.c2. Assume that
the proposition holds for c1. There are several cases depending on the rule that
constitutes our step.

– S-Eq transforms c1 = ∃x. (x .
= y ∧ c) into c2 = c{x 7→ y}. From the side-

condition of the rule and Prop. 5, we know that x 6= y and that they are
both original variables.
The only variables whose fathers may have changed are y and the variables
that had x for a father in c1. y is not interesting for us here as it is an original
variable.
Say we have v non-original such that x ∈ fathersc1(v). Then fathersc2(v) =
fathersc1(v)\{x}∪{y}. Since x is original, by induction hypothesis, fathersc1(v) ⊆
Vo. And since y is original, fathersc2(v) ⊆ Vo.

– S-Feats transforms c1 = ∃z.x[f]y ∧ x[f]z ∧ c into c2 = x[f]y ∧ c{z 7→ y}.
The only variables whose fathers may have changed are y and the variables
that had z for a father in c1. Let us handle these two subcases:
• If y is original, then there is nothing to prove. Let us assume it is

not. Then, from the side-condition of S-Feats, we can tell that z is not
original either. From the clash-freeness of c1, we can deduce that y
and z are not in fathersc1(y) nor fathersc1(z). Then fathersc2(y) =
fathersc1(y) ∪ fathersc1(z). Since y and z are both non-original, the
induction hypothesis applies, and fathersc1(y) and fathersc1(z) are
either both included in Vo or both singletons containing only x. In both
cases, the invariant holds.

• Let v be a non-original variable such that z ∈ fathersc1(v). Then
fathersc2(v) = fathersc1(v)\{z}∪{y}. From the induction hypothesis,
we can say that either fathersc1(v) is a singleton containing only z, in
which case fathersc2(v) is a singleton too and the invariant holds; or
fathersc1(v) ⊆ Vo. In that second case, we understand that z is original.
From S-Feats’s side-condition, we deduce that y has to be original too,
and the invariant holds.

– P-Feat only adds one feature constraint y[f]z in a constraint where there are
x[f]z and x ∼F y, and thus only changes fathers(z) with fathersc2(z) =
fathersc1(z) ∪ {y}. Since we have a similarity between them, x and y
are originals (Proposition 6). But x is z’s father in c1, which means that
fathersc1(z) ⊆ Vo. Adding a new original father does not break the invari-
ant: fathersc2(z) ⊆ Vo.

– R-NFeat and R-NAbs both create one variable, but with only one father.

– R-NFen-Fen and E-NFen use the shortcut x〈F 〉 that contains a lot of variable
introductions, but every time with only one father.

– R-NSim-Fen, R-NSim-Sim and E-NSim use the shortcut x 6 .=F y that contains a lot
of variable introductions, but every time with only one father.

– S-Sims, P-Abs, P-Fen, P-Sim, R-NEq, P-NFen and P-NSim do not introduce variables
nor change the fathers of existing ones.

Now that we have proven this rather technical lemma, we can use it to prove
the following, which is more interesting and leads directly to what we want:

Proposition 9. If y ∈ Vo ∩V(c), then fathersc(y) ⊆ Vo. In other words, there
is no feature constraint from a non-original variable to an original variable.

Proof. This proposition is shown by induction on the transformation from co
that led to our clause. The proposition is obviously true for co as there are no
non-original variables. Let us now consider a step in the transformation, that
is a rule that transformed a descendant ∃X1.c1 into ∃X2.c2. Assume that the
proposition holds for c1. There are several cases depending on the rule that
constitutes our step.

– S-Eq is non applicable because there are no equalities involving local variables
in the constraints co and thus in c1.

– S-Feats transforms c1 = ∃z.x[f]y ∧ xfz ∧ c into c2 = x[f]y ∧ c{z 7→ y}. From
the side-condition and the clash-freeness of c1, we know that x 6= y, y 6= z
and x 6= z. There are four sub-cases depending on whether y and z are
originals.

• if y and z are originals, we can freely replace z by y in the feature
constraints without breaking the proposition for c2.

• if y and z are non-originals, there is by induction hypothesis no feature
constraint from any of them to an original variable in c1, so this is still
the case in c2.

• if y is original and z is non-original, then we obtain from the induction
hypothesis that fathersc1(y) ⊆ Vo. Since x ∈ fathersc1(y), we have
x ∈ Vo. Since x ∈ fathersc1(z) and x ∈ Vo, we obtain by Proposition 8
that fathersc1(z) ⊆ Vo. We conclude by fathersc2(y) = fathersc1(y)∪
fathersc1(z).

• if y is non-original and z is original, then we are in contradiction with
the side condition: this case cannot happen.

– P-Feat adds one feature constraint y[f]z to a constraint where there are x[f]z
and x ∼F y. y is original by Proposition 6. Adding a feature constraint y[f]z
where y ∈ Vo cannot invalidate the invariant.

– R-NFeat and R-NAbs both create one feature constraint but also introduce
the necessary variable. We are thus sure that the proposition holds, as the
introduced variable is non-original.

– R-NFen-Fen and E-Fen use the shortcut x〈F 〉 that contains a lot of feature con-
straints, but every time with a freshly created (thus non-original) variable.

– R-NSim-Fen, R-NSim-Sim and E-NSim use the shortcut x 6 .=F y that contains a lot of
feature constraints, but every time with a freshly created (thus non-original)
variable.

– S-Sims, P-Abs, P-Fen, P-Sim, R-NEq, P-NFen and P-NSim do not introduce nor remove
feature constraints.

As a consequence, no path leading to a original variable can contain a non-
original variable. This means that the directed acyclic graph of the father relation
has all the original variables in its top area, that is at a depth that is bounded by
card(Vo). Combined with the fact that the fences and similarities do not leave
this area, this will provide us with the weapons that we need to terminate our
proof.

Proposition 10. dc(x) < card(Vo) if x ∈ V(c) ∩ Vo.

We now define the depth of atoms: it is the minimum of the depths of the
variables involved. In particular, dc(x 6∼F y) = min(dc(x), dc(y)).

Proposition 11. dc(x 6∼F y) ≤ card(Vo)

Proof. We prove this property by induction on the transformation that led from
c0 to c. It is obviously true for c0 because there are no non-original variables in
c0. Now, assume that the last step of the transformation leads from ∃X1.c1 to
∃X2.c2.

By induction hypothesis, we have for each negated similarity x 6∼F y in
c1 only two possible cases: either dc1(x 6∼F y) < card(Vo) or dc1(x 6∼F y) =
card(Vo).

1. If (x 6∼F y) ∈ c1 with dc1(x 6∼F y) = card(Vo) then dc1(x), dc1(y) ≥
card(Vo), hence x, y 6∈ Vo by Proposition 10. By Proposition 6 there is
no similarity contraint for x or y in c1, and by Proposition 7 there is no
fence constraint for x or y in c1. Hence, no rule producing a new negated
similarity can apply to x 6∼F y.

2. If (x 6∼F y) ∈ c1 with dc1(x 6∼F y) < card(Vo) then the negated similarity
may either travel through a similarity with P-NSim, in which case it still
touches an original variable and its depth stays smaller than card(Vo), or it
can be rewritten with our rules R-NSim-Fen, R-NSim-Sim or E-NSim, in which case it
reaches a higher depth. However, each of these rules can produced a negated
similarity with depth at most dc1(x 6∼F y)+1. Since dc1(x 6∼F y) < card(Vo),
each of the newly produced negated similarities has a depth in c1 which is
≤ card(Vo).

A.3 A Decreasing Measure

S
-E

q

S
-F

e
a
t
s

S
-F

e
a
t
s-
G
l
o
b

S
-S
im

P
-F

e
a
t

P
-A

b
s

P
-F

e
n

P
-S
im

R
-N

E
q

R
-N

F
e
a
t

R
-N

A
b
s

R
-N

F
e
n
-F

e
n

R
-N

S
im

-F
e
n

R
-N

S
im

-S
im

E
-N

F
e
n

E
-N

S
im

1 Number of neg. eq. ≥ ≥ · · · · · · > · · · · · · ·
2 Number of neg. feat. constr. ≥ ≥ · · · · · · · > · · · · · ·
3 Number of neg. abs. ≥ ≥ · · · · · · · · > · · · · ·
4 Missing fences ≥ ≥ · · · · > · · · · · · · · ·
5 Combined sims. ≥ ≥ · · · · · > · · · · · · · ·
6 Depth of neg. sims. ≥ ≥ · · · · · · ≤ ≤ · · > > · · >
7 Missing feats. in neg. sims. ≥ ≥ · · · · · · ≤ ≤ · · ≥ ≥ · > ≥
8 Missing feats. in neg. fences ≥ ≥ · · · · · · · · · > ≤ · > ·
9 Missing equalities ≥ ≥ > · · · · · · < < ≤ ≤ ≤ ≤ ≤

10 Missing feature constraints ≥ ≥ < · > · · · · < < ≤ ≤ ≤ ≤ ≤
11 Missing absences ≥ ≥ · · · > · · · < < ≤ ≤ ≤ ≤ ≤
12 Number of literals > > · > < < < < · ≤ · · ≤ < · ≤

1. Nothing introduces negative equalities, ever. The only rule acting on them
is R-NEq that removes them.

2. Nothing introduces negative feature constraint. The only rule acting on them
is R-NFeat that removes them.

3. Nothing introduces negative absences. The only rule acting on them is R-NAbs

that removes them.

4. “Missing fences”

{(x, F) | x ∈ V(c) ∩ Vo; no x[F] in c}

This is the set of all the fences that could exist but that do not. This set
clearly diminishes when we apply P-Fen. It is not touched by the rules that
introduce variables, because those only introduce non original variables. It
cannot increase when applying S-Eq or S-Feats, although those may remove
may remove existing fences. However, when they do, this is because they
removed the original variable to which the fence was attached.

5. “Combined similarities”

(x, y) ∈ (V(c) ∩ Vo)
2 7→

⋂
(x∼F y)∈c

F

We consider that a function is strictly smaller than an other if its domain
is strictly included in the other’s domain, or if their domain are equal, all
values are smaller and at least one value is strictly smaller.
This function decreases with P-Sim but is left constant with S-Sim (it has been
crafted precisely for that). Once again, if S-Eq or S-Feats were to remove a
similarity and thus potentially change the values of these intersections, then
an original variable would have disappeared, strictly decreasing the domain.

6. “Depth of the negated similarities” of c

{{card(Vo)− dc(x 6∼F y) | (x 6∼F y) ∈ c}}

We consider as an order for these multisets the lifting of the order in natural
numbers: we allow ourselves to add a finite numbers to the multiset as long
as we remove a number that is strictly greater than all of them. This is a
well founded order if it is the lifting of a well founded order. And this is the
case, because Prop. 11 tells us that all the numbers in it are non-negative.
This multiset is increased by R-NEq and R-NFeat because they add a new nega-
tive similarity (It would be increased by P-NSim too). It decreases in R-NSim-Fen

and R-NSim-Sim because although we potentially add a negated similarity, we
remove one the is higher (and whose depth is thus smaller). The case of
E-NSim is a bit particular, because or measure stays constant in the first part
of the disjunction while it decreases in the second part. The next measure
will take care of that.

7. Missing features in negative similarities

{{F(c)− F | (x 6∼F y) ∈ c}}

By definition, all the sets of the negated similarities are included in F(c).
8. Missing features in negative fences

{{F(c)− F | (¬x[F]) ∈ c}}

This multiset decreases with the rules R-NFen-Fen because this one removes
an element, and with E-NFen because it either removes a negative fence or
replace it by a larger one.

9. Missing equalities
{(x, y) | (x .

= y) /∈ c}
This set decreases with S-Feats-Glob. It increases a lot with all the rules adding
variables, but they are no threat to us since we have already taken care of
them.

10. Missing feature constraints

{(x, f, y) | (x[f]y) /∈ c}

This set decreases with P-Feat.

11. Missing absences
{(x, f) | (x[f] ↑) /∈ c}

This set decreases with P-Abs.
12. Number of literals

This number decreases with S-Eq and S-Feats.

B Proof of Lemma 6 (Elimination)

B.1 Normal Form

Lemma 8. The output of normalize is a dnf where each conjunction is in nor-
mal form for R.

We have to prove that P-NFen and P-NSim, when provided with a clause that
is in normal form for the rules in R1, conserves the normal form.

Let us take a constraint in normal form for R1 and show that the application
of one of the two rules in R2 keeps it in normal form.

We will start with P-NFen. Clearly, since P-NFen only creates a new negative
fence, the only rules it could trigger are R-NFen-Fen and E-NFen. Let us then take
c1 = x ∼F y ∧ ¬x[G] ∧ c that rewrites into c2 = x ∼F y ∧ ¬x[G] ∧ ¬y[G] ∧ c.

– R-NFen-Fen: c1 is in normal form for R-NFen-Fen by hypothesis, so c cannot
contain a positive fence for x. c1 is also in normal form for P-Fen, so c cannot
contain a positive fence for y either. Hence, c2 is in normal form for R-NFen-

Fen.
– E-NFen: c1 is in normal form for P-Sim and S-Sim, so for each similarity y ∼H y′

in c there is an I such that x ∼I y
′ is in c. For the same reason, we have

that H ⊆ F ∪ I. Since c1 is in normal form for E-NFen, F ⊆ G and I ⊆ G.
Thus H ⊆ G, and c2 is in normal form for E-NFen.

Let us continue with P-NSim. Since it only creates a negative similarity, the
only rules it could trigger are R-NSim-Fen, R-NSim-Sim and E-NSim. Let us then take
c1 = x ∼F y ∧ x 6∼G z ∧ c that rewrites into c2 = x ∼F y ∧ x 6∼G z ∧ y 6∼G z ∧ c.

– R-NSim-Fen: c1 is in normal form for R-NSim-Fen by hypothesis, so c cannot
contain a positive fence for x. c1 is also in normal form for P-Fen, so c cannot
contain a positive fence for y either. Hence, c2 is in normal form for R-NSim-Fen.

– R-NSim-Sim: c1 is in normal form for R-NSim-Sim by hypothesis, so c cannot
contain a positive similarity for (x, z). c1 is also in normal form for P-Sim,
so c cannot contain a positive fence for (y, z) either. Hence, c2 is in normal
form for R-NSim-Sim.

– E-NSim: c1 is in normal form for P-Sim and S-Sim, so for each similarity y ∼H y′

in c there is an I such that x ∼I y
′ is in c. For the same reason, we have

that H ⊆ F ∪ I. Since c1 is in normal form for E-NSim, F ⊆ G and I ⊆ G.
Thus H ⊆ G, and c2 is in normal form for E-NSim.

Thus, in the following, we can consider that the output of normalize is in
normal form for all the rules.

B.2 Introduction to the Construction

Let ∃X.c be a clause, that is an element of a dnf returned by the function
normalize, and let (gc, lc) be the decomposition of c, that is in particular V(gc)∩
X = ∅. We also recall that D-part(lc) is the part of lc consisting of all its D-
literals, and that d = D-elim(∃X.D-part(lc)) is a quantifier-free formula that is
equivalent in FT to ∃X.D-part(lc), due to Proposition 1.

We have to show that

FT |= ∀̃(∃X.(gc ∧ lc)↔ (gc ∧ d))

Since V(gc) ∩X = ∅ it is sufficient to show that

FT |= ∀̃(∃X.lc ↔ d)

Since ∃X.D-part(lc) is a logical consequence of ∃X.lc, and since the formula
d = D-elim(∃X.D-part(lc)) is equivalent in FT to the former, it only remains
to show that

FT |= ∀̃(d→ ∃X.lc)

Let Y be the set of free variables of ∃X.lc, which be assumption on the quantifier
elimination procedure of D comprises the free variables of d, and assume a valu-
ation ρY : Y → FT . We will show that we can extend it to ρY ∪X : Y ∪X → FT
such that FT , ρY ∪X |= lc.

Note that lc cannot contain a conjunction x[f]y∧x[f]z. Otherwise, we obtain
a contradiction:

– If y, z 6∈ X then (S-Feats-Glob) applies.

– If y ∈ X and z 6∈ X, then z ∈ Vo (by Prop. 4 in App. A), hence (S-Feats)
applies. The same reasoning applies when y 6∈ X and z ∈ X.

– If y, z ∈ X then (S-Feats) applies since we can choose the replacement such
that the side condition is satisfied.

Recall that any clause in a dnf is clash-free. Since FT , ρY |= d, we have by
Proposition 1 that FT , ρy |= ∃X.D-part(lc). Hence, there is a variable assign-
ment β such that FT , ρY ∪ β |= D-part(lc).

In order to construct the extension of ρY to X, choose a strict total order @
over Y ∪X such that

1. y @ x whenever (x[f]y) ∈ c,
2. y @ x whenever y ∈ Y and x ∈ X.

This is possible because there are no feature cycles in c, due to clash pattern C-

Cycle. Hence we can start with the partial order defined by y @ x iff x[f]y ∈ c,
and complete it into a total order by taking care to range all global variables
before the local variables, which is possible due to the hypothesis of Lemma 6
that there is no feature from a global variable to a local variable.

B.3 Construction

We now define ρY ∪X by induction on X following @ ensuring that we keep
satisfied all the literals containing variables where our valuation is defined. The
base case of the induction is ρY , which is already defined and satisfies its literals
by hypothesis. In the induction case, we take x ∈ X, we define the set of variables
that are smaller than x, Z = {z ∈ Y ∪X | z @ x} and we assume that we have
ρZ already defined such that it satisfies all the literals about variables in Z.

We are going to extend it by defining ρZ∪{x}. We define the following partial
map mx for x:

mx = {(f, ρZ(y)) | (x[f]y) ∈ c}

Note that this defines a partial function, because there cannot be f , y and y′

such that (x[f]y) ∈ c, (x[f]y′) ∈ c and y 6= y′ due to clash pattern S-Feats.
Consider now the set of all the variables that are smaller than x and that are in
a similarity relation with x:

down(x) = {y | y @ x, (x ∼H y) ∈ c for some H}

We will now define m′x using mx and ρZ(y) for all the y ∈ down(x). There are
three cases depending on whether down(x) is empty, and depending on whether
there is a fence constraint for x.

1. If down(x) = ∅ and there is some fence constraint (x[F]) ∈ c, then we define
m′x = mx.

2. If down(x) = ∅ and there is no fence constraint (x[F]) ∈ c, then we choose
a fresh feature hx which
– does not occur in c (not even in a fence or similarity),

– does not occur in dom(
−−−→
ρY (y)), for any y ∈ Y ,

– is different from hz, for any z @ x.
This is possible since the mapping of a feature tree is required to have a finite
domain, and since we have an infinite supply of feature symbols. Hence, the
set

F \
⋃
y∈Y

dom(
−−−→
ρY (y))

is infinite. Let d ∈ D be some arbitrary node decoration. We define m′x =
mx ∪{(hx, (d, ∅))}, that is m′ is obtained from m by adding an edge labeled
hx going to the empty tree. This still defines a function because hx is different
from all the features encountered so far.

3. If down(x) 6= ∅ then we define

m′x = mx ∪
⋃
z@x

(x∼Hz)∈c

−−−→
ρZ(z)�Hc

where, when
−−−→
ρZ(z)�Hc is the restriction of

−−−→
ρZ(z) to the complement of H in

F . This union is not disjoint, so we have to show that m′x is well-defined as
a function.

(a) Assume that f ∈ dom(mx) and f ∈ dom(
−−−→
ρZ(z) �Hc), with z @ x and

(x ∼H z) ∈ c. By definition of mx, there must be a (x[f]y) ∈ c, with
y @ x and mx(f) = ρZ(y).

Since f ∈ dom(
−−−→
ρZ(z) �Hc), we have that f 6∈ H. By rule P-Feat, It must

be the case that (z[f]y) ∈ c. Since y, z @ x, we obtain by induction
hypothesis that FT , ρZ |= z[f]y, that is

−−−→
ρZ(z) �Hc (f) =

−−−→
ρZ(z)(f) = ρZ(y)

(b) Assume that f ∈ dom(
−−−→
ρZ(z) �Hc) and f ∈ dom(

−−−−→
ρZ(z′) �H′c), with z, z′ @

x, (x ∼H z) ∈ c, (x ∼H′ z′) ∈ c, and z 6= z′ or H 6= H ′.
By rule P-Sim, there is some I ⊆ H ∪ H ′ such that (z ∼I z

′) ∈ c. Since
f /∈ H,H ′, we also have that f /∈ I. Since z, z′ @ x, we have by induction
hypothesis that FT , ρZ |= z ∼I z

′. Since f 6∈ I, this means that

−−−→
ρZ(z)�Hc (f) =

−−−→
ρZ(z)(f)�Ic (f) =

−−−−→
ρZ(z′)(f)�Ic (f) =

−−−−→
ρZ(z′)�H′c (f)

Finally, we define

ρZ∪{x}(z) =

{
(β(x),m′x) if z = x
ρ(z) if z @ x

B.4 Verification

Let us now show that that the invariant is satisfied, that is that FT , ρZ∪{x} |= l
for every l ∈ c such that z @ x for every z ∈ V(c). By induction hypothesis, we
may restrict ourselves to the case where x ∈ V(c). We distinguish the different
possible forms of a literal c:

x
.
= y By rule S-Eq, this is only possible when x = y or when x and y are global.

The first case is always trivially satisfied, the second is satisfied by ρY by
hypothesis.

x 6 .= y Eliminated by the system (R-NEq).
x[f]y This is immediate considering the way m′x was defined.
¬x[f]y Eliminated by the system (R-NFeat).
x[f] ↑ We distinguish the three cases in the construction of m′x:

1. There cannot be a literal (x[f]y) ∈ c, thanks to rule (C-Feat-Abs). Thus,
mx is not defined for f .

2. In addition to case (1), note that f 6= hx due to the way hx was chosen.
Thus, m′x is not defined for f .

3. For all z @ x with (x ∼H z) ∈ c, if f /∈ H, then (z[f] ↑) ∈ c (P-Abs).

Since this last atom is satisfied by induction hypothesis, f /∈ dom(
−−−→
ρZ(z)).

That, combined with the point (1) gives us: f /∈ dom(
−−−−−−→
ρZ∪{x}(x)).

¬x[f] ↑ Eliminated by the system (R-NAbs).
x[F] We distinguish the three cases in the construction of ρ(x):

1. There cannot be a literal (x[f]y) ∈ c with f /∈ F for x (C-Feat-Fen). Thus,
dom(mx) ⊆ F .

2. Does not apply.
3. In addition to case (1), for all z @ x with (x ∼H z) ∈ c, we have that

(z[H ∪F]) ∈ c (P-Fen. Since it is satisfied by ρZ by induction hypothesis,

dom(
−−−→
ρZ(z)) ⊆ H∪F , and hence dom(

−−−→
ρZ(z)�Hc) ⊆ F . This, together with

the reasoning of case (1), give us dom(
−−−−−−→
ρZ∪{x}(x)) ⊆ F .

¬x[F] We distinguish the three cases in the construction of ρ(x).

1. This rule does not apply: By rule R-NFen-Fen, we cannot have both a
positive and negative fence constraint for the same variable.

2. In this case, dom(
−−−−−−→
ρZ∪{x}(x)) contains the fresh feature hx 6∈ F .

3. In this case there is a variable z @ x, such that (x ∼H z) ∈ c. By E-NFen

we must have that H ⊆ F (Note that this rule generates several alter-
natives: one containing an enlarged negative fence, and the other ones
where the negative fence is replaced by an absence constraint. Hence, in
presence of the negative fence, we must be in the first alternative). Then,
by P-NFen, (¬z[F]) ∈ c. By induction hypothesis, FT , ρZ |= ¬z[F], that

is there is f ∈ dom(
−−−→
ρZ(z)) with f 6∈ F , hence f 6∈ H. By construction of

m′x this means that f ∈ dom(
−−−−−−→
ρZ∪{x}(x)), that is FT , ρZ∪{x} |= ¬x[F].

x ∼F y Satisfied by construction.
x 6∼F y We distinguish the three cases in the construction of ρ(x).

1. This case does not apply, since by R-NSim-Fen, x cannot have both a
negated similarity and a fence constraint.

2. By construction, there is a fresh feature hx ∈ dom(
−−−−−−→
ρZ∪{x}(x)) Since y 6= x

(C-NSim-Refl) and since there is no similarity between x and y (R-NSim-

Sim), we have that hx 6∈ dom(
−−−→
ρZ(y)). Since hx 6∈ F , this means that

FT , ρZ∪{x} |= x 6∼F y.
3. In this case there is variable z @ x and H such that (x ∼H z) ∈ c. As

we have seen in the previous case, this means that

FT , ρZ∪{x} |= x ∼H z (1)

By (E-NSim) we must have that H ⊆ F (by the same reasoning as above,
we must be in the first of the alternatives introduced by this rule). Then,
by rule (P-NSim), H ⊆ F and (z 6∼F y) ∈ c. By induction hypothesis,

FT , ρZ |= z 6∼F y (2)

Since H ⊆ F , it follows from (1) that

FT , ρZ∪{x} |= x ∼F z (3)

Finally, we conclude from (3) and (2) that

FT , ρZ∪{x} |= x 6∼F y (4)

C Optimisation

We can add a few simplification rules that do not affect the outcome of the
algorithm nor its properties. See Fig. 6.

S-Eq-Glob x
.
= y ∧ c ⇒ x

.
= y ∧ c{x 7→ y} (x, y ∈ V(c))

S-Eq-Refl x
.
= x ∧ c ⇒ c

S-Sim-Refl x ∼F x ∧ c ⇒ c
S-Fens x[F] ∧ x[G] ∧ c ⇒ x[F ∩G] ∧ c
S-Fen-Abs x[F] ∧ x[f] ↑ ∧c ⇒ x[F \ {f}] ∧ c
S-NFen-Abs ¬x[F] ∧ x[f] ↑ ∧c ⇒ ¬x[F ∪ {f}] ∧ c
S-NFen-Feat ¬x[F] ∧ x[f]y ∧ c ⇒ x[f]y ∧ c (f /∈ F)
S-NFens ¬x[F] ∧ ¬x[G] ∧ c ⇒ ¬x[G] ∧ c (F ⊆ G)
S-NSims x 6∼F y ∧ x 6∼G y ∧ c ⇒ x 6∼G y ∧ c (F ⊆ G)

Fig. 6. Optional simplification rules.

D Examples

Let us apply decide to the following formula:

∀x · ∃y, z · (x[f] ↑ ∨ (x ∼g y ∧ y[f]z ∧ newer(x, y))) (D.1)

This formula is of the form Q · ∃X · q where q is quantifier-free and Q does
not end with ∃. We thus need to apply solve to

∃y, z · (x[f] ↑ ∨ (x ∼g y ∧ y[f]z ∧ newer(x, y))) (D.2)

and to replace it (D.2) by the result in D.1. In order to do that, we put D.2 in
disjunctive normal form and obtain:

∃y, z · x[f] ↑
∨ ∃y, z · (x ∼g y ∧ y[f]z ∧ newer(x, y))

(D.3)

The first clause is really simple and does not really change when we apply
normalize or switch, let us focus on the second one and apply normalize:

∃y, z · (x ∼g y ∧ x[f]z ∧ y[f]z ∧ newer(x, y)) (D.4)

We now apply switch. That will first change the existential quantifier for z
because of the feature x[f]z and give:

¬x[f] ↑ ∧∀z · (x[f]z → ∃y · (x ∼g y ∧ x[f]z ∧ y[f]z ∧ newer(x, y))) (D.5)

switch then applies the result of Lemma 6, considering that the elimination
of quantifiers on decorations gives us (∃y ·newer(x, y))↔ newer0(x) stating that
x’s timestamp is greater than 0. The result of switch is thus:

¬x[f] ↑ ∧∀z · (x[f]z → newer0(x)) (D.6)

or, if we replace the implication

¬x[f] ↑ ∧∀z · (¬x[f]z ∨ newer0(x)) (D.7)

After putting everything in prenex normal form, the result of solve is thus:

∀z · x[f] ↑
∨ ¬x[f] ↑ ∧ (¬x[f]z ∨ newer0(x))

(D.8)

This is one step of the decide function that removes a quantifier alternation
when the last bloc is made of existential quantifiers. We now have to decide:

∀x, z · x[f] ↑ ∨ (¬x[f] ↑ ∧ (¬x[f]z ∨ newer0(x))) (D.9)

and, to do that, we need to decide:

∃x, z · ¬x[f] ↑ ∧ (x[f] ↑ ∨ (x[f]z ∧ ¬newer0(x))) (D.10)

We apply solve that puts this formula in disjunctive normal form:

∃x, z · ¬x[f] ↑ ∧x[f] ↑
∨ ¬x[f] ↑ ∧x[f]z ∧ ¬newer0(x)

(D.11)

It then normalizes, which deletes the first clause and gives:

∃x, z · (x[f]z ∧ ¬newer0(x)) (D.12)

The function switch then applies Lemma 6 that removes x[f]z. The quan-
tifier elimination in decorations gives us (∃x · ¬newer0(x))↔ >, and the whole
formula reduces to >. Since there was a negation in decide, we conclude that
D.1 is equivalent to ⊥.

