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Numerical solutions of a 2D fluid problem coupled to a
nonlinear non-local reaction-advection-diffusion problem for cell

crawling migration in a discoidal domain

Christèle Etchegaray∗ Nicolas Meunier†

Abstract

In this work, we present a numerical scheme for the approximate solutions of a 2D crawling
cell migration problem. The model, defined on a non-deformable discoidal domain, consists in a
Darcy fluid problem coupled with a Poisson problem and a reaction-advection-diffusion problem.
Moreover, the advection velocity depends on boundary values, making the problem nonlinear
and non local.

For a discoidal domain, numerical solutions can be obtained using the finite volume method
on the polar formulation of the model. Simulations show that different migration behaviours
can be captured.

Keywords: 2D cell migration, Darcy fluid, nonlinear non-local reaction-advection-diffusion
problem, finite volume method.

1 Introduction

Cell migration ensures fundamental functions in the body (embryogenesis, immune system),
but is also involved in the development of pathologies such as tumor metastasis, arising large
research efforts (Bravo-Cordero et al., 2012). However, the responsible intracellular mechanisms
involve multiscale interaction in time and space, so that modelling cell migration is challenging
and produces interesting problems to study.

For 2D cells crawling on a surface, the motion is friction-based and results from the activity
of the so-called actin cytoskeleton, that is a dynamics mesh of actin filaments. They are polar:
they polymerize at one end and depolymerize at the other end, under the molecular regulation
of signalling loops. Overall, the actin mesh can be approximated by an active fluid in our setting
(Kruse et al., 2005; Joanny and Prost, 2009).

The mesh grows preferentially at the cell membrane, and shrinks inside the cell body, gener-
ating inward actin flows from the membrane. Its mechanical connection to the adhesive substrate
generates the friction forces responsible for the cell’s displacement.

Modelling this process is a difficult task, because of the large time and space scales, and
also because of the large number of effectors of the dynamics. Following key physical ideas
of Blanch-Mercader and Casademunt (2013); Maiuri et al. (2015), we proposed in Etchegaray
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(2016); Etchegaray et al. (2017b,a) a minimal multiscale model for 2D crawling migration, that
we recall now.

The cell domain is a non deformable disc Ω, and the problem is formulated in the cell’s frame
of reference (the domain does not move). First, the actin cytoskeleton is approximated by a
Darcy fluid (Blanch-Mercader and Casademunt, 2013), and its dynamics in a crawling situation
is modelled by a Poisson problem on the fluid pressure (Etchegaray et al., 2017b). More precisely,
for u : R+ × Ω→ R2 the fluid velocity, p : R+ × Ω→ R its pressure, we have{

−∆p(t,x) = −kd in Ω ,

p(t,x) = kp(t,x) on ∂Ω ,
(1)

for kd the actin depolymerization rate, and kp : R+ × Ω → R the polymerization function rate
at the boundary. The fluid velocity writes

u(t,x) = −∇p(t,x)− v(t) on Ω , (2)

with for γ ∈ R+ the domain velocity

v(t) = γ

∫
Ω
∇p(t,x) dx = γ

∫
∂Ω
p(t,x)nx dx , (3)

for nx the unit normal vector to ∂Ω at point x ∈ ∂Ω0.
These equations show that the actin polymerization at the boundary and depolymerization

inside the domain may drive a pressure gradient leading to the cell motion. Note that the
dynamics therefore arises from the activity at the boundary, and that the cell velocity is nonlocal.

Now, the interaction with the molecular scale consists in studying the dynamics of a molecular
inhibitor to polymerization. The molecules diffuse freely inside the cell in a inactive form. They
may bind actin filaments and be carryied by their flow. Moreover, if activated at the cell
membrane, they become able to locally inhibit actin polymerization. Write c : R+ × Ω → R
the concentration in an inactive form, and µ : R+ × ∂Ω→ R the activated concentration at the
boundary. Then,

→ the inactive molecules follow an advection-diffusion dynamics with advection velocity u,

→ there is an exchange dynamics on ∂Ω between active and inactive forms,

→ kp is a decreasing function of µ.

For D the diffusion coefficient, and kon/off the activation/desactivation rates, the correspond-
ing problem writes

∂tc(t,x) + div (c(t,x)u(t,x)−D∇c(t,x)) = 0 in Ω ,

(D∇c(t,x)− c(t,x)u(t,x)) · nx = −konc(t,x) + koffµ(t,x) on ∂Ω ,
∂
∂tµ(t,x) = konc(t,x)− koffµ(t,x) on ∂Ω .

(4)

Note that the boundary condition ensures mass conservation:

d
dt

(∫
Ω
c(t,x)dx +

∫
∂Ω
µ(t,x)dx

)
= 0 . (5)

Some remarks can be made to highlight the difficulties in the analysis of the model. The
fluid velocity rewrites

u(t,x) = −∇p(t,x)− γ
∫
∂Ω
kp(t,x)nx dx . (6)
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We notice that this expression depends on the concentration in activated molecules µ from
the pressure boundary term kp, so that the reaction-advection-diffusion problem is nonlinear.
Moreover, the integral term makes it also non-local.

The corresponding 1D model in a special case without activation at the boundary and for
a linear kp writes as a nonlinear non-local advection-diffusion problem, and has been studied in
Etchegaray et al. (2017b). The analysis shows the existence of different asymptotic solutions,
describing both motile and non motile behaviours. Moreover, for a subcritical mass of molecules,
the global weak existence of solutions is established, along with their convergence to a non motile
gaussian profile at explicit rate. Finally, under conditions on the initial condition, it is shown
that solutions blow up in finite time.

Since the model carries non trivial behaviours, computing numerical solutions is of particular
interest. In the following, we develop a finite volume method for the polar formulation of the
problem (1)-(2)-(4), since the domain Ω is a disc.

2 Numerical method

We introduce now the finite volume discretization of the model. We assume that the cytokeleton
domain is an annulus Ω = B(0, R)\B(0, Rmin) ⊂ R2, where B(0, Rmin) accounts for the nucleus.
We consider a zero-flux boundary condition for the molecular concentration on C(0, Rmin), the
circle of center (0, 0) and radius Rmin. As a consequence, it will be natural to study the problem
in polar coordinates.

2.1 Polar formulation

Reaction-advection-diffusion problem

Let x = (r cos(θ), r sin(θ)) ∈ Ω, and c̃ (similarly µ̃) the polar function such that 1
r c̃(t, r, θ) =

c(t,x) with (r, θ) ∈ [Rmin, R]× R/2πZ. Then, the problem on the molecular specie writes

∂tc̃(t, r, θ) = ∂r

(
Dr∂r

(
c̃(t, r, θ)

r

)
− c̃(t, r, θ)ur(t, r, θ)

)
+ ∂θ

(
1

r2
(D∂θ c̃(t, r, θ)− c̃(t, r, θ)uθ(t, r, θ))

)
in Ω , (7)

koffµ̃(t, R, θ)− konc̃(t, R, θ) = DR∂r

(
c̃(t, R, θ)

R

)
− c̃(t, R, θ)ur(t, R, θ), on C(0, R) , (8)

0 = DRmin∂r

(
c̃(t, Rmin, θ)

Rmin

)
− c̃(t, Rmin, θ)ur(t, Rmin, θ), on C(0, Rmin) ,

(9)
∂tµ̃(t, R, θ) = konc̃(t, R, θ)− koffµ̃(t, R, θ) , on C(0, R) . (10)

Poisson problem on p

For the polymerization function kp, let us choose a simple form, that is

kp(t,x) = [1− δµ(t,x)]+ , (11)

with δ > 0 and x ∈ ∂Ω.
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The pressure p is solution of the following problem:

−∆p(t,x) = −kd, in Ω , (12)
p(t,x) = [1− δµ(t,x)]+, on C(0, R) , (13)

p(t,x) = 0, on C(0, Rmin) , (14)

where the pressure condition on C(0, Rmin) is arbitrary, and fix the pressure values. Let us
consider these equations in polar coordinates with 1

r p̃(t, r, θ) = p(t,x) for (r, θ) ∈ [Rmin, R] ×
R/2πZ. We have

−∂r
(
r∂r

(
p̃(r, θ)

r

))
− 1

r2
∂θθp̃(r, θ) = −kd r, in Ω, (15)

p̃(t, R, θ) = R

[
1− δ µ̃(t, R, θ)

R

]
+

on C(0, R), (16)

p̃(t, Rmin, θ) = 0 on C(0, Rmin). (17)

2.2 Discretization

Let tn = n∆t be the time discretization, and {rj = Rmin + (j− 1
2) ∆r, j ∈ {1, ..., Nr}} the space

discretization of the bounded interval [Rmin, R], such that rNr+ 1
2

= R, (therefore NR = R−Rmin
∆r ).

Similarly, {θk = k∆θ, k ∈ {1, ..., Nθ}} is the space discretization of the periodic interval R/2πZ.
We introduce the control volumes W(j,k) ⊂ R2 and Vk ⊂ R/2πZ with

Vk =
(
θk− 1

2
, θk+ 1

2

)
,

W(j,k) =
(
rj− 1

2
, rj+ 1

2

)
× Vk .

Let c̃n(j,k) (resp. µ̃nk) be the approximated value of the exact solution c̃(tn, rj , θk) (resp.
µ̃(tn, θk)), and p̃n(j,k) be the approximated value of the exact solution p̃(tn, rj , θk):

c̃n(j,k) '
1

∆r∆θ

∫∫
W (j,k)

c̃(tn, r, θ)drdθ ,

µ̃nk ' 1

∆θ

∫
Vk

µ̃(tn, θ)dθ ,

p̃n(j,k) '
1

∆r∆θ

∫∫
W (j,k)

p̃(tn, r, θ)drdθ .

Moreover, we write un and vn the corresponding discretized velocity functions at time tn.
The resolution is made as follows: for n ≥ 0, knowing (c̃n, µ̃n) allows to compute p̃n, then

(un,vn). Finally, (c̃n+1, µ̃n+1) is computed using un, and so on.

Problem on p̃

The pressure problem is time-dependent because of the Dirichlet boundary condition. Therefore,
it is solved explicitly in time. Write F for the numerical flux. Then, we have the following scheme
for equation (15): for (j, k) ∈ {1, ..., Nr} × {1, ..., Nθ},

−

(
F(j+ 1

2
,k) −F(j− 1

2
,k)

∆r
+
F(j,k+ 1

2
) −F(j,k− 1

2
)

∆θ

)
= −kdrj .
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The finite volume numerical fluxes are defined by

F(j+ 1
2
,k) = rj+ 1

2

p̃(j+1,k)

rj+1
− p̃(j,k)

rj

∆r
, F(j− 1

2
,k) = rj− 1

2

p̃(j,k)
rj
− p̃(j−1,k)

rj−1

∆r
,

F(j,k+ 1
2

) =
1

r2
j

p̃(j,k+1) − p̃(j,k)

∆θ
, F(j,k− 1

2
) =

1

r2
j

p̃(j,k) − p̃(j,k−1)

∆θ
.

The Dirichlet boundary conditions (16)-(17) are imposed using ghost values p̃(0,k) and p̃n(Nr+1,k).
For k ∈ {1, ..., Nθ},

F( 1
2
,k) =

r 1
2

r1

p̃(1,k)

∆r
,

since p̃(0,k) = 0. Now, p̃n(Nr+1,k) = rNr

[
1− δ

µ̃n
(Nr,k)

rNr

]
+
, the corresponding flux writes

F(Nr+
1
2
,k) = rNr+ 1

2

rNr
rNr+1

(
1− δ

µ̃n
(Nr,k)

rNr

)
− p̃(Nr,k)

rNr

∆r
.

Therefore, the term
rNr rNr+1

2
rNr+1∆r

[
1− δ

µ̃n
(Nr,k)

rNr

]
+

will be included in the right hand side of the
matricial problem.

Similarly, the periodic conditions impose for j ∈ {1, ..., Nr},

F(j,Nθ+ 1
2

) = F(j, 1
2

) =
1

r2
j

p̃(j,1) − p̃(j,Nθ)

∆θ
.

As a consequence, we write the corresponding system, where the terms in bold account for
the boundary conditions. Note also that each equation is written for k ∈ {1, ..., Nθ} with the
convention that if k = 1, then k − 1 = Nθ and k − 1

2 = 1
2 . Similarly, if k = Nθ, then k + 1 = 1

and k + 1
2 = 1

2 .
For j = 1, we write

1

∆r2

[
r 3

2

(
p̃(2,k)

r2
−
p̃(1,k)

r1

)
−

r1
2

r1
p̃(1,k)

]
+
p̃(1,k+1) − 2p̃(1,k) + p̃(1,k−1)

r2
1∆θ2

= kdr1 . (18)

or equivalently

1

∆r2

[r 1
2

+ r 3
2

r1
p̃(1,k) −

r 3
2

r2
p̃(2,k)

]
+
−p̃(1,k−1) + 2p̃(1,k) − p̃(1,k+1)

r2
1∆θ2

= −kdr1 . (19)

For j ∈ {2, ..., Nθ − 1}, we write for k ∈ {1, ..., Nθ},

1

∆r2

[
rj+ 1

2

(
p̃(j+1,k)

rj+1
−
p̃(j,k)

rj

)
− rj− 1

2

(
p̃(j,k)

rj
−
p̃(j−1,k)

rj−1

)]
+
p̃(j,k+1) − 2p̃(j,k) + p̃(j,k−1)

r2
j∆θ

2
= kdrj .

(20)
or equivalently

1

∆r2

[
−
rj− 1

2

rj−1
p̃(j−1,k) +

rj+ 1
2

+ rj− 1
2

rj
p̃(j,k) −

rj+ 1
2

rj+1
p̃(j+1,k)

]
+
−p̃(j,k−1) + 2p̃(j,k) − p̃(j,k+1)

r2
j∆θ

2
= −kdrj .

(21)
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Finally, for j = Nr, we write for k ∈ {1, ..., Nθ},

1

∆r2

[
−
rNr+1

2

rNr

p̃(Nr,k) − rNr− 1
2

(
p̃(Nr,k)

rNr
−
p̃(Nr−1,k)

rNr−1

)]
+
p̃(Nr,k+1) − 2p̃(Nr,k) + p̃(Nr,k−1)

r2
j∆θ

2
= kdrNr

−
rNrrNr+ 1

2

rNr+1∆r

[
1− δ

µ̃nNr,k
rNr

]
+

.

(22)
or equivalently

1

∆r2

[
−
rNr− 1

2

rNr−1
p̃(Nr−1,k) +

rNr− 1
2

+ rNr+ 1
2

rNr
p̃(Nr,k)

]
+
−p̃(Nr,k−1) + 2p̃(Nr,k) − p̃(Nr,k+1)

r2
j∆θ

2
= −kdrNr

+
rNrrNr+ 1

2

rNr+1∆r

[
1− δ

µ̃nNr,k
rNr

]
,

(23)
Let us now write the corresponding matricial problem. We define the column vector P by

P(k + (j − 1)Nθ) = p̃(j,k) with (j, k) ∈ {1, ..., Nr} × {1, ..., Nθ}:

P =
(
p̃(1,1) . . . p̃(1,Nθ) p̃(2,1) . . . p̃(2,Nθ) . . . p̃(Nr,Nθ)

)T
For ∆r = ∆θ the stiffness matrix Ap is defined by

Ap =



r1/2+r1+1/2

r1
INθ −

r
1+1

2
r2

INθ

. . . . . . . . .

−
r
j− 1

2
rj−1

INθ
r
j− 1

2
+r

j+1
2

rj
INθ −

r
j+1

2
rj+1

INθ
. . . . . . . . .

−
r
Nr− 1

2
rNr−1

INθ
r
Nr− 1

2
+r

Nr+
1
2

rNr
INθ



+



1
r21
A

1
r22
A

. . .
1

r2Nr−1
A

1
r2Nr

A


, (24)

where the second matrix accounts for the angular diffusion, with A ∈ MNθ(R) the classical
diffusion matrix with periodic flux boundary conditions:

A =



2 −1 −1

−1 2
. . .

. . . . . . . . .
. . . 2 −1

−1 −1 2


. (25)
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The right-hand side in (15) and the flux boundary condition (16) on C(0, Rmax) imposes this
right hand side column vector of length NrNθ:

Rnp = −kd


(r1)k
...

(rj)k
...

(rNr)k

+
rNrrNr+ 1

2

rNr+1∆r


0
...
0[

1− δ µ̃
n
Nr,k

rNr

]
+

 .

We use a standard numerical method to invert the symmetric positive definite matrix 1
∆r2
Ap

and then resolve at each time step

P =

(
1

∆r2
Ap
)−1

Rnp .

Equations for u and v

The velocities u and v depend on the pressure p, which is obtained through a time explicit
scheme. Therefore, they also depend explicitly in time on the concentration.

The equation on v in polar coordinates writes

v(t) = γ

∫ 2π

0

[
1− δ µ̃(t, R, θ)

R

]
+

ndθ . (26)

We compute numerically the velocity in cartesian coordinates vncart := (vnx , v
n
y )T :

vnx = γ∆θ

Nθ∑
k=1

[
1− δ

µ̃n(Nr,k)

R

]
+

cos(θk) , (27)

vny = γ∆θ

Nθ∑
k=1

[
1− δ

µ̃n(Nr,k)

R

]
+

sin(θk) . (28)

Then, a polar change of coordinates leads to vn := (vnr , v
n
θ )T .

For the fluid velocity, we have

u(t,x) = −∇p(t,x)− v(t) , (29)

that rewrites

u(t, r, θ) = −
(
∂r

(
p̃(t, r, θ)

r

)
+ vr

)
~er −

(
1

r
∂θp̃(t, r, θ) + vθ

)
~eθ , (30)

since ur = u(t,x) · ~er and uθ = ru(t,x) · ~eθ. We define at time tn

un
(j+ 1

2
,k)

= −
p̃(j+1,k)

rj+1
− p̃(j,k)

rj

∆r
− vnr , un

(j− 1
2
,k)

= −
p̃(j,k)
rj
− p̃(j−1,k)

rj−1

∆r
− vnr ,

un
(j,k+ 1

2
)

= − 1

rj

p̃(j,k+1) − p̃(j,k)

∆θ
− vnθ , un

(j,k− 1
2

)
= − 1

rj

p̃(j,k) − p̃(j,k−1)

∆θ
− vnθ .
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2.2.1 Problem for c̃ and µ̃

For simplicity, we call again F the numerical fluxes. We can write the following scheme for
equation (7): for (j, k) ∈ {1, ..., Nr} × {1, ..., Nθ},

c̃n+1
(j,k) − c̃

n
(j,k)

∆t
=
F(j+ 1

2
,k) −F(j− 1

2
,k)

∆r
+
F(j,k+ 1

2
) −F(j,k− 1

2
)

∆θ
.

We define now the numerical fluxes. The diffusion part is implicit, so that no CFL condition is
needed (Allaire, 2005), while the advection is explicit due to the nonlinearity in the expression
of v.

We have:

F(j+ 1
2
,k) = D rj+ 1

2

c̃n+1
(j+1,k)

rj+1
−

c̃n+1
(j,k)

rj

∆r
−Aup

(
un

(j+ 1
2
,k)
, c̃n(j,k), c̃

n
(j+1,k)

)
,

F(j− 1
2
,k) = D rj− 1

2

c̃n+1
(j,k)

rj
−

c̃n+1
(j−1,k)

rj−1

∆r
−Aup

(
un

(j− 1
2
,k)
, c̃n(j−1,k), c̃

n
(j,k)

)
,

F(j,k+ 1
2

) =
1

r2
j

(
D
c̃n+1

(j,k+1) − c̃
n+1
(j,k)

∆θ
−Aup

(
un

(j,k+ 1
2

)
, c̃n(j,k), c̃

n
(j,k+1)

))
,

F(j,k+ 1
2

) =
1

r2
j

(
D
c̃n+1

(j,k) − c̃
n+1
(j,k−1)

∆θ
−Aup

(
un

(j,k− 1
2

)
, c̃n(j,k−1), c̃

n
(j,k)

))
,

where Aup is the advection term expressed by

Aup(u, x−, x+) =

{
ux−, if u > 0,

ux+, if u < 0.
(31)

The external boundary condition (8) yields

F(Nr+
1
2
,k) = koff µ

n+1
k − kon c̃n+1

Nr,k

for k ∈ {1, ..., Nθ}. The zero flux boundary condition (9) imposes that F( 1
2
,k) = 0 for k ∈

{1, ..., Nθ}. Similarly, the periodic conditions impose for j ∈ {1, ..., Nr}

F(j,Nθ+ 1
2

) = F(j, 1
2

) =
1

r2
j

(
D
c̃n+1

(j,1) − c̃
n+1
(j,Nθ)

∆θ
−Aup

(
un

(j, 1
2

)
, c̃n(j,Nθ), c̃

n
(j,1)

))
.

We write the corresponding scheme and group the implicit (resp. explicit) terms on the
left-hand-side (resp. right-hand-side). Note also that each equation is written for k ∈ {1, ..., Nθ}
with the convention that if k = 1, then k − 1 = Nθ and k − 1

2 = 1
2 . Similarly, if k = Nθ, then

k + 1 = 1 and k + 1
2 = 1

2 .
For j = 1, we have(

1 +
D∆t

∆r2

r1+ 1
2

r1

)
c̃n+1

(1,k) −
D∆t

∆r2

r1+ 1
2

r2
c̃n+1

(2,k) +
D∆t

r2
1∆θ2

(
−c̃n+1

(1,k−1) + 2c̃n+1
(1,k) − c̃

n+1
(1,k+1)

)
= c̃n(1,k) −

∆t

∆r
Aup

(
un

(1+ 1
2
,k)
, c̃n(1,k), c̃

n
(2,k)

)
+

∆t

r2
1∆θ

(
Aup

(
un

(1,k− 1
2

)
, c̃n(1,k−1), c̃

n
(1,k)

)
−Aup

(
un

(1,k+ 1
2

)
, c̃n(1,k), c̃

n
(1,k+1)

))
.

(32)
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Now, for j ∈ 2, ..., Nr − 1, we obtain

c̃n+1
(j,k) +

D∆t

∆r2

(
−
rj− 1

2

rj−1
c̃n+1

(j−1,k) +
rj− 1

2
+ rj+ 1

2

rj
c̃n+1

(j,k) −
rj+ 1

2

rj+1
c̃n+1

(j+1,k)

)
+

D∆t

r2
j∆θ

2

(
−c̃n+1

(j,k−1) + 2c̃n+1
(j,k) − c̃

n+1
(j,k+1)

)
= c̃n(j,k) +

∆t

∆r

(
Aup

(
un

(j− 1
2
,k)
, c̃n(j−1,k), c̃

n
(j,k)

)
−Aup

(
un

(j+ 1
2
,k)
, c̃n(j,k), c̃

n
(j+1,k)

))
+

∆t

r2
j∆θ

(
Aup

(
un

(j,k− 1
2

)
, c̃n(j,k−1), c̃

n
(j,k)

)
−Aup

(
un

(j,k+ 1
2

)
, c̃n(j,k), c̃

n
(j,k+1)

))
.

(33)
Finally, for j = Nr, we get

−koff∆t

∆r
µn+1
k

(
1 +

kon∆t

∆r
+
D∆t

∆r2

rNr− 1
2

rNr

)
c̃n+1

(Nr,k) −
D∆t

∆r2

rNr− 1
2

rNr−1
c̃n+1

(Nr−1,k)

+
D∆t

r2
Nr

∆θ2

(
−c̃n+1

(Nr,k−1) + 2c̃n+1
(Nr,k) − c̃

n+1
(Nr,k+1)

)
= c̃n(Nr,k) +

∆t

∆r

(
Aup

(
un

(Nr− 1
2
,k)
, c̃n(Nr−1,k), c̃

n
(Nr,k)

))
+

∆t

r2
Nr

∆θ

(
Aup

(
un

(Nr,k− 1
2

)
, c̃n(Nr,k−1), c̃

n
(Nr,k)

)
−Aup

(
un

(Nr,k+ 1
2

)
, c̃n(Nr,k), c̃

n
(Nr,k+1)

))
.

(34)
The membrane activation equation writes in polar coordinates

∂tµ(t, R, θ) = konc(t, R, θ)− koffµ(t, R, θ) , on C(0, R) . (35)

At each time step, the implicit discretization of equation (35) for k ∈ {1, ..., Nθ} writes

−∆tkonc̃
n+1
k + (1 + ∆t koff)µn+1

k = µnk . (36)

For simplicity, we treat both the free and activated concentrations in the same linear problem
of unknown

En =
(
c̃n(1,1) . . . c̃

n
(1,Nθ) c̃

n
(2,1) . . . c̃

n
(2,Nθ) . . . c̃

n
(Nr,Nθ) µ̃

n
1 . . . µ̃

n
Nθ

)T
.

We have at each time step(
I(Nr+1)Nθ +

∆t

∆r2
A
)
En+1 =

(
I(Nr+1)Nθ −

∆t

∆r
Bn
)
En ,

where A is the diffusion matrix, and Bn the advection matrix.
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The diffusion matrix writes

A =



r1/2
r1
INθ −

r
1+1

2
r2

INθ

. . . . . . . . .

−
r
j− 1

2
rj−1

INθ
r
j− 1

2
+r

j+1
2

rj
INθ −

r
j+1

2
rj+1

INθ
. . . . . . . . .

−
r
Nr− 1

2
rNr−1

INθ

( r
Nr+

1
2

rNr
+ ∆rkon

)
INθ −∆rkoffINθ

−∆r2konINθ ∆r2koffINθ



+



1
r21
A

1
r22
A

. . .
1

r2Nr−1
A

1
r2Nr

A

0Nθ


,(37)

where the second matrix accounts for the angular diffusion, with A ∈ MNθ(R) the classical
diffusion matrix with periodic flux boundary conditions:

A =



2 −1 −1

−1 2
. . .

. . . . . . . . .
. . . 2 −1

−1 −1 2


. (38)

Now, for the advection term Aup defined by equation (31), we write (u)+ = max(u, 0) and
(u)− = min(u, 0) so that Aup(u, c̃j,k, c̃j,k+1) = (u)+cj,k + (u)−cj,k+1. Therefore, we introduce
the following diagonal matrices for j ∈ {1, ..., Nr}, U+

j+ 1
2

∈MNθ(R) and U−
j+ 1

2

∈MNθ(R):

U±
j+ 1

2

=



. . .
(un

(j+ 1
2
,k−1)

)±

(un
(j+ 1

2
,k)

)±

(un
(j+ 1

2
,k+1)

)±

. . .


.
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Thus we can define the advection matrix:

Bn =



U+
3
2

U−
3
2

. . . . . .
U+
j+ 1

2

U−
j+ 1

2

. . . U−
Nr− 1

2

0
0Nθ


−



0

U+
3
2

. . .

U+
j− 1

2

U−
j− 1

2

. . . . . .
U+
Nr− 1

2

U−
Nr− 1

2

0Nθ



+



1
r21
Bn

1
r22
Bn

. . .
1

r2Nr−1
Bn

1
r2Nr

Bn

0Nθ


(39)

where the discrete advection matrix Bn ∈MNθ(R) with periodic flux condition on the boundary
is defined as in Allaire (2005)

Bn =



(
un3

2

)+ (
un3

2

)−
. . . . . .(

un
j+ 1

2

)+ (
un
j+ 1

2

)−
. . .

(
un
Nθ− 1

2

)−(
un
Nθ+ 1

2

)− (
un
Nθ+ 1

2

)+


(40)

−



(
un1

2

)− (
un1

2

)+(
un3

2

)+ . . .(
un
j− 1

2

)+ (
un
j− 1

2

)−
. . . . . .(

un
Nθ− 1

2

)+ (
un
Nθ− 1

2

)−


.

3 Results

The discretization scheme was implemented using MATLAB. We performed some numerical
simulations to test the scheme’s numerical convergence. Since the problem has a boundary
nonlinearity, comparing a numerical solution to an exact one is out of reach in general.

We consider the case of a polarised initial condition that writes c̃(0, r, θ) = cos(θ − π) + 1,
µ̃(0, θ) = 0.5c̃(0, R, θ). We fix some parameters: koff = D = kd = 1 ; δ = γ = 2.

Illustrative example

By changing the value of the activation rate kon, we observe qualitatively different stationary
solutions. The figure 1 shows the time evolution in the molecular concentration in the cell body
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in two characteristic cases. The left figure shows a typically non motile profile, while the right
figure displays a polarisation situation.

(a) kon = 0.3 (b) kon = 3

Figure 1: Numerical simulation of the evolution in the molecular concentration over time. Dis-
cretization parameters: ∆t = 10−2, ∆r = ∆θ = 2π/120 ' 5.3 ∗ 10−2. Parameters: R = 1.5,
koff = D = kd = 1 ; δ = γ = 2. Initial condition: c̃(0, r, θ) = cos(θ−π)+1, µ̃(0, θ) = 0.5c̃(0, R, θ).

Note that for kon = 0, it is clear that the stationary concentration in activated molecules is
0 everywhere on the boundary, so that v = 0 and the nonlinearity disappears. In the following,
we rather focus on cases where the stationary state can be asymmetric.

Non-zero stationary polarisation

We also performed the same simulation for kon = 0.3 and R = 1, with an angular discretization
step ∆θ = 2π/160 ' 3.9 ∗ 10−2, and varying values for ∆r and ∆t. The system is considered at
numerical steady state when the concentration µ in activated molecules has stayed unchanged for
1 numerical hour. Then, we obtain the time to attain the steady state, as well as the stationary
polarisation of the system, quantified up to a constant by the cell velocity vector.

We consider the following parameter values:

∆r 5 ∗ 10−3 10−2 2 ∗ 10−2 2.5 ∗ 10−2

∆t 10−3 2 ∗ 10−3 5 ∗ 10−3 10−2 1.5 ∗ 10−2

The figure 2 shows that the time to attain the stationary state is a consequence of the
polarisation state of the stationary solution. Indeed, considering that the initial condition is
polarised, and the simulation shows the system’s depolarisation towards a less polarised steady
state, then the more polarised it is, the sooner it is attained.

We also clearly notice that the smaller ∆t gets, the more polarised the stationary state gets.
This trend can be distinguished independently of ∆r. The radial step has a smaller effect, but
more precise grids are correlated with lower polarised solutions.

Overall, the simulations show that a fine time step is fundamental to catch the relevant
stationary type of behaviour. The polarisation module being decreasing with the time step, we
can infer that the numerical solution approach a polarised state. However, this also shows that
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Figure 2: Left: Time to attain the stationary state and Right: stationary polarisation module
for varying ∆r and ∆t, and kon = 0.3.

the previous numerical simulations are better understood in a qualitative sense rather than for
quantitative purposes.

Low stationary polarisation

Finally, we perform the same numerical test with kon = 0.1 to check how the discretization steps
may generate an error between a polarised and a non polarised stationary solution. We obtain
the values depicted in figure 3.

We can see that the stationary polarisation levels are very low compared to the case where
kon = 0.3. The same trend appears for the effect of ∆t, while the effect of ∆r is less visible since
the nonlinear term is small.

To determine if these polarisation levels could be comparable to a true symmetric stationary
state, we performed the same simulation for kon = 0 and for the most precise time-space grid.
The stationary polarisation module was approximately equal to 1.63 ∗ 10−4, so that no clear
distinction can be made between these cases.

4 Conclusion

In this work, we have presented the finite volume discretization of a multiscale model for 2D cell
crawling migration consisting in a Darcy fluid dynamics coupled to a Poisson problem and to a
nonlinear and non-local reaction-advection-diffusion problem for the concentration in a molecular
specie. The simulation of numerical solutions of this type of problems is very useful since the
mathematical analysis is necessarily limited, whereas the model show varied behaviours.

The discretization method showed good qualitative numerical result. In particular, the
molecular mass is preserved numerically. However, in critical cases, the scheme seems not able
to make the distinction between polarised and unpolarised states. A natural continuation will
consist in taking into account the interaction with the environment (chemical signal, mechanical
obstacle) as a bias for motion. Finally, further studies should be based on an implicit treatment
of the nonlinearity Cancès et al. (2017b,a).
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Figure 3: Left: Time to attain the stationary state and Right: stationary polarisation module
for varying ∆r and ∆t and kon = 0.1.
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