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Abstract

Given two couplings between “primal” and “dual” sets, we prove a general implica-
tion that relates an inequality involving “primal” sets to a reverse inequality involving
the “dual” sets. More precisely, let be given two “primal” sets X, Y and two “dual”

sets X], Y], together with two coupling functions X c↔ X] and Y d↔ Y]. We define
a new coupling c ·+ d between the “primal” product set X × Y and the “dual” prod-
uct set X] × Y]. Then, we consider any bivariate function K : X × Y → [−∞,+∞]
and univariate functions f : X → [−∞,+∞] and g : Y → [−∞,+∞], all defined

on the “primal” sets. We prove that f(x) ≥ infy∈Y

(
K(x, y) u g(y)

)
⇒ f c(x]) ≤

infy]∈Y]

(
Kc ·+d(x], y])u g−d(y])

)
, where we stress that the Fenchel-Moreau conjugates

f c and g−d are not necessarily taken with the same coupling. We study the equality
case. We display several applications. We provide a new formula for the Fenchel-
Moreau conjugate of a generalized inf-convolution. We obtain formulas with partial
Fenchel-Moreau conjugates. Finally, we consider the Bellman equation in stochastic
dynamic programming and we provide a “Bellman-like” equation for the Fenchel con-
jugates of the value functions.

1 Introduction

In convex analysis, the Fenchel conjugacy plays a central role. It is involved in many equal-
ities and inequalities, like the well known Fenchel (in)equalities or the Fenchel conjugate
of an inf-convolution. The classical Fenchel conjugate was extended by J. J. Moreau [10],
by replacing the bilinear pairing, between a vector space and its dual, with a more gen-
eral coupling. This gives the so-called Fenchel-Moreau conjugate (see Chapter 11L and the
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Commentary in [16] with a brief historical perspective and references). In abstract convex-
ity [18, 21, 11, 9], affine functions are replaced by another class of functions (related to the
coupling), and so are convex functions (replaced by so-called abstract convex functions), by
taking the supremum. In this way, generalized Fenchel conjugation formulas are obtained,
as well as duality for abstract convex functions. Generalized Fenchel conjugation also ap-
pears in the dual formulation of optimal transport problems [7, 19]. Calculus with different
couplings can be found in [4].

In this paper, we provide a main Fenchel-Moreau conjugation inequality with three cou-
plings, and applications. In Sect. 2, we establish our main inequality. Then, we provide suf-
ficient conditions for the equality case. In Sect. 3, we display several applications. First, we
provide a definition of a generalized inf-convolution, and new formulas for its Fenchel-Moreau
conjugate (inequality and equality). Second, we obtain formulas with partial Fenchel-Moreau
conjugates. Finally, we consider the Bellman equation in stochastic dynamic programming
and we provide a “Bellman-like” equation for the Fenchel conjugates of the value functions.

2 Duality inequality with three Fenchel-Moreau con-

jugates

Given two couplings between “primal” and “dual” sets, we prove a general implication that
relates an inequality involving “primal” sets to a reverse inequality involving the “dual” sets.

In what follows, we rely upon background on J. J. Moreau lower and upper additions and
on Fenchel-Moreau conjugacy with respect to a coupling, that can be found in Appendix A.

2.1 Main duality inequality

Let be given two “primal” sets X, Y and two “dual” sets X], Y], together with two coupling
functions

c : X× X] → [−∞,+∞] , d : Y× Y] → [−∞,+∞] . (1)

We will call X and Y “primal” sets, whereas X] and Y] are “dual” sets.
We define the sum coupling c ·+ d — coupling the “primal” product set X× Y with the

“dual” product set X] × Y] — by

c ·+ d :
(
X× Y

)
×
(
X] × Y]

)
→ [−∞,+∞] , (2a)(

(x, y), (x], y])
)

7→ c(x, x]) ·+ d(y, y]) . (2b)

With any bivariate function K : X × Y → [−∞,+∞], defined on the “primal” product
set X × Y, we associate the conjugate, with respect to the coupling c ·+ d, defined on the
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Figure 1: A kernel K, two couplings c and d, and a new kernel Kc ·+d

“dual” product set X] × Y], by:

Kc ·+d(x], y]) = sup
x∈X,y∈Y

((
c ·+ d

)(
(x, y), (x], y])

)
·+
(
−K(x, y)

))
(3a)

= sup
x∈X,y∈Y

(
c(x, x]) ·+ d(y, y]) ·+

(
−K(x, y)

))
(3b)

∀(x], y]) ∈ X] × Y] .

In what follows, we will call the function K a kernel (or a potential). Indeed, consider
the expression in the left hand side assumption in (4). If we translate it from the (min,+)
algebra to the usual (+,×) algebra, it stands as an integration with respect to a kernel.

Theorem 1 For any bivariate function K : X × Y → [−∞,+∞] and univariate functions
f : X→ [−∞,+∞] and g : Y→ [−∞,+∞], all defined on the “primal” sets, we have that

f(x) ≥ inf
y∈Y

(
K(x, y)u g(y)

)
, ∀x ∈ X⇒

f c(x]) ≤ inf
y]∈Y]

(
Kc ·+d(x], y])u g−d(y])

)
, ∀x] ∈ X] . (4)

Notice that the left hand side assumption in (4) is a rather weak inequality (upper bound
for an infimum), whereas the right hand side assumption in (4) is a rather strong inequality
(lower bound for an infimum).

Proof.

f c(x]) = sup
x∈X

(
c(x, x]) ·+

(
− f(x)

))
by definition (52) of the conjugate f c(x])

≤ sup
x∈X

(
c(x, x]) ·+

(
− inf

y∈Y

(
K(x, y)u g(y)

)))
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by the left hand side assumption in (4) and by the property (48b) that the operator ·+ is monotone
[this inequality is an equality when the left hand side assumption in (4) is an equality]

= sup
x∈X

(
c(x, x]) ·+ sup

y∈Y

(
−
(
K(x, y)u g(y)

)))
by − inf = sup−

= sup
x∈X,y∈Y

(
c(x, x]) ·+

(
−
(
K(x, y)u g(y)

)))
by the property (48e) that the operator sup is “distributive” with respect to ·+

≤ sup
x∈X,y∈Y

(
c(x, x]) ·+

(
−
(
K(x, y)u g(−d)(−d)′(y)

)))
because g(−d)(−d)′ ≤ g by (54) and by the property (48b) that the operator ·+ is monotone

[this inequality is an equality when g(−d)(−d)′ = g ]

= sup
x∈X,y∈Y

(
c(x, x]) ·+

(
−
(
K(x, y)u

(
sup
y]∈Y]

((
− d(y, y])

)
·+
(
− g−d(y])

))))))

by definition (53) of the biconjugate g(−d)(−d)′

≤ sup
x∈X,y∈Y

(
c(x, x]) ·+

(
− sup

y]∈Y]

(
K(x, y)u

(
− d(y, y]) ·+

(
− g−d(y])

)))))

by the property (49f) that the operator sup is ”subdistributive” with respect to u, and by the
property (49b) that the operator u is monotone
[this inequality is an equality when −∞ < K(x, y) by (49g)]

= sup
x∈X,y∈Y

(
c(x, x]) ·+ inf

y]∈Y]
−
(
K(x, y)u

((
− d(y, y])

)
·+
(
− g−d(y])

))))

by − sup = inf −

≤ sup
x∈X,y∈Y

inf
y]∈Y]

(
c(x, x]) ·+

(
−
(
K(x, y)u

((
− d(y, y])

)
·+
(
− g−d(y])

)))))

by the property (48f) that the operator inf is ”subdistributive” with respect to ·+
[this inequality is an equality when c(x, x]) < +∞ by (48g)]

= sup
x∈X,y∈Y

inf
y]∈Y]

(
c(x, x]) ·+

(
−K(x, y)

)
·+
(
−
((
− d(y, y])

)
·+
(
− g−d(y])

))))
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by the correspondence (50b) between ·+ and u by means of a 7→ −a

= sup
x∈X,y∈Y

inf
y]∈Y]

(
c(x, x]) ·+

(
−K(x, y)

)
·+
(
d(y, y])u g−d(y])

))

by the correspondence (50b) between ·+ and u by means of a 7→ −a

= sup
x∈X,y∈Y

inf
y]∈Y]

((
c(x, x]) ·+

(
−K(x, y)

))
·+
(
d(y, y])u g−d(y])

))

by associativity of ·+

≤ sup
x∈X,y∈Y

inf
y]∈Y]

(((
c(x, x]) ·+

(
−K(x, y)

))
·+ d(y, y])

)
u g−d(y])

)

by the inequality (50c)
[this inequality is an equality when −∞ < c(x, x]) ·+

(
−K(x, y)

)
< +∞ and −∞ < d(y, y]) < +∞]

= sup
x∈X,y∈Y

inf
y]∈Y]

((
c(x, x]) ·+

(
−K(x, y)

)
·+ d(y, y])

)
u g−d(y])

)
(5a)

by associativity of ·+

≤ inf
y]∈Y]

sup
x∈X,y∈Y

((
c(x, x]) ·+

(
−K(x, y)

)
·+ d(y, y])

)
u g−d(y])

)
(5b)

by sup inf ≤ inf sup

= inf
y]∈Y]

(
sup

x∈X,y∈Y

(
c(x, x]) ·+

(
−K(x, y)

)
·+ d(y, y])

)
u g−d(y])

)

by the property (48e) that the operator sup is ”subdistributive” with respect to ·+

= inf
y]∈Y]

(
Kc ·+d(x], y])u g−d(y])

)
.

by the definition (3) of Kc ·+d.

This ends the proof. �

2.2 The duality equality case

The equality case in (4) is the property that

f(x) = inf
y∈Y

(
K(x, y)u g(y)

)
, ∀x ∈ X⇒

f c(x]) = inf
y]∈Y]

(
Kc ·+d(x], y])u g−d(y])

)
, ∀x] ∈ X] . (6)
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We will now provide sufficient conditions under which the equality case (6) holds true in
different cases: with real-valued couplings and real-valued kernel; with extended couplings
and extended kernel; with one bilinear coupling and extended kernel.

2.2.1 With real-valued couplings and real-valued kernel

We consider the case where both the couplings and the kernel take real values, whereas all
the other functions can take extended values.

Corollary 2 Consider any bivariate function K : X×Y→ [−∞,+∞] and univariate func-
tions f : X→ [−∞,+∞] and g : Y→ [−∞,+∞], all defined on the “primal” sets. Suppose
that

1. g(−d)(−d)′ = g;

2. we have strong duality

sup
x∈X,y∈Y

inf
y]∈Y]

((
c(x, x]) ·+

(
−K(x, y)

)
·+ d(y, y])

)
u g−d(y])

)
= inf

y]∈Y]
sup

x∈X,y∈Y

((
c(x, x]) ·+

(
−K(x, y)

)
·+ d(y, y])

)
u g−d(y])

)
, (7)

for all x] ∈ X];

3. the two coupling functions c : X × X] → R and d : Y × Y] → R, and the kernel
K : X× Y→ R all take finite values.

Then, the equality case (6) holds true.

Proof. Following the proof of Theorem 1, all but one inequality — namely sup inf ≤ inf sup

between (5a) and (5b) — become equalities when the functions c : X×X] → R, d : Y×Y] → R and

K : X× Y→ R take real values and when g(−d)(−d)′ = g. Once we have the equality between (5a)

and (5b), we obtain that the equality case (6) holds true. �

2.2.2 With extended couplings and extended kernel

We consider the case where the couplings, the kernel and all the other functions can take
extended values.

Corollary 3 Consider any bivariate function K : X×Y→ [−∞,+∞] and univariate func-
tions f : X → [−∞,+∞] and g : Y → [−∞,+∞], all defined on the “primal” sets. We
define

Kx](y) = −
(
K(·, y)c(x])

)
= inf

x∈X

((
− c(x, x])

)
uK(x, y)

)
, ∀(x], y) ∈ X] × Y . (8)
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Suppose that

sup
y∈Y

((
−Kx](y)

)
·+
(
− g(y)

))
= inf

y]∈Y]

(
Kd

x](y
])u g−d(y])

)
. (9)

Then, the equality case (6) holds true.

Proof. First, to prove the equality result (6), we start by stating the so-called Fenchel inequal-
ity, but with a general coupling: for any two functions h : Y→ [−∞,+∞] and g : Y→ [−∞,+∞],
we have that

sup
y∈Y

((
− h(y)

)
·+
(
− g(y)

))
≤ inf

y]∈Y]

(
hd(y])u g−d(y])

)
. (10)

The proof easily follows from the definition of the Fenchel-Moreau conjugate in (52). It is also a
corollary of Theorem 1 when we take singleton sets X = {x} and X] = {x]}, with the null coupling
c(x, x]) = 0.

Second, we give a new proof of (4) in Theorem 1.

f c(x]) = sup
x∈X

(
c(x, x]) ·+

(
− f(x)

))
by definition (52) of the conjugate f c(x])

≤ sup
x∈X

(
c(x, x]) ·+

(
− inf

y∈Y

(
K(x, y)u g(y)

)))
(11a)

by the left hand side assumption in (4) and by the property (48b) that the operator ·+ is monotone

= sup
x∈X

(
c(x, x]) ·+ sup

y∈Y

(
−
(
K(x, y)u g(y)

)))
by − inf = sup−

= sup
x∈X,y∈Y

(
c(x, x]) ·+

(
−
(
K(x, y)u g(y)

)))
by the property (48e) that the operator sup is “distributive” with respect to ·+

= sup
x∈X,y∈Y

((
c(x, x]) ·+

(
−K(x, y)

))
·+
(
− g(y)

))
by (50b) and by associativity of ·+

= sup
y∈Y

(
sup
x∈X

(
c(x, x]) ·+

(
−K(x, y)

))
·+
(
− g(y)

))

7



by the property (48e) that the operator sup is “distributive” with respect to ·+

= sup
y∈Y

((
−Kx](y)

)
·+
(
− g(y)

))

as Kx](y) = − supx∈X

(
c(x, x]) ·+

(
−K(x, y)

))
by (8)

≤ inf
y]∈Y]

(
Kd

x](y
])u g−d(y])

)
(11b)

by Fenchel inequality (10) where h(y) = Kx](y)

= inf
y]∈Y]

(
sup
y∈Y

(
d(y, y]) ·+

(
−Kx](y)

))
u g−d(y])

)
by definition (52) of the Fenchel-Moreau d-conjugate of Kx]

= inf
y]∈Y]

(
sup
y∈Y

(
d(y, y]) ·+ sup

x∈X

(
c(x, x]) ·+

(
−K(x, y)

)))
u g−d(y])

)

as −Kx](y) = supx∈X

(
c(x, x]) ·+

(
−K(x, y)

))
by (8)

= inf
y]∈Y]

(
sup

x∈X,y∈Y

(
d(y, y]) ·+ c(x, x]) ·+

(
−K(x, y)

))
u g−d(y])

)
by the property (48e) that the operator sup is “distributive” with respect to ·+, and by associativity
of ·+

= inf
y]∈Y]

(
Kc ·+d(x], y])u g−d(y])

)
by the definition (3) of Kc ·+d. This ends the new proof of Theorem 1.

Third, to end the proof of Corollary 3, we just check two points. That inequality (11a) is an

equality, by the left hand side assumption in (6). That inequality (11b) is also an equality by

assumption (9). �

2.2.3 With one bilinear coupling and extended kernel

We consider the case where one of the two couplings is bilinear, whereas the other coupling,
the kernel and all the other functions can take extended values.

Let Y be a locally convex Hausdorff topological vector space over the real numbers R,
with its topological dual Y] made of continuous linear forms on Y. The coupling is the
duality bilinear form 〈 , 〉, and the conjugacy operator on functions is denoted by ?. Let be
given X and X], two sets.

8



Corollary 4 Consider any bivariate function K : X×Y→ [−∞,+∞] and univariate func-
tions f : X → [−∞,+∞] and g : Y →] − ∞,+∞], all defined on the “primal” sets. Let
c : X× X] → [−∞,+∞] be a coupling function. Suppose that

1. the coupling d : Y×Y] → R is the duality bilinear form 〈 , 〉 between Y and its topological
dual Y],

2. the function g is a proper1 convex function,

3. for any x] ∈ X], the function Kx] in (8) is a proper convex function,

4. for any x] ∈ X], the function g is continuous at some point where Kx] is finite.

Then, the equality case (6) holds true.

Proof. The equality case (6) follows by checking that the inequalities (11a) and (11b) turn out
to be equalities, under the assumptions of Corollary 4. Indeed, the left hand equality in (6) gives
an equality in (11a). The equality in (11b) is a consequence of the equality

inf
y∈Y

(
Kx](y)u g(y)

)
= − inf

y]∈Y]

(
Kd

x](y
])u g−d(y])

)
,

which holds true by [14, Theorem 1], under the assumptions made on the functions g and Kx] ,

where the coupling d : Y× Y] → R is the duality bilinear form 〈 , 〉 between Y and its dual Y]. �

Remark 5 We can weaken the assumptions in Corollary 4 in two ways.

• Some of the assumptions in item 3 in Corollary 4 — that bear on the marginal func-
tion Kx] in (8) — can be obtained from assumptions on the basic elements K (kernel)
and c (coupling). Indeed, if both the functions K : X × Y → [−∞,+∞] and c(·, x]) :
X→ [−∞,+∞] are convex, for any x] ∈ X], then the function Kx] in (8) is convex.

• The assumptions in item 4 in Corollary 4 can be replaced by the following assumptions
(using [2, Proposition 15.13]): g is a proper l.s.c. (lower semi continuous) convex
function, the marginal function Kx] in (8) is a proper l.s.c. convex function, and
0 ∈ sri

(
dom(Kx]) − dom(g)

)
, for any x] ∈ X]. Moreover, for any given x] ∈ X], the

marginal function Kx] in (8) is a l.s.c. convex function under the following assumptions
(see [1]): the function K is l.s.c. convex: the function c(·, x]) is proper u.s.c. (upper
semi continuous), and the minimization in the definition (8) of Kx] is performed on a
compact set.

1The function g never takes the value −∞ and is not identicaly equal to +∞.
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3 Applications

We now display three applications of our main result in Theorem 1. We provide a new formula
for the Fenchel-Moreau conjugate of a generalized inf-convolution. We obtain formulas with
partial Fenchel-Moreau conjugates. Finally, we consider the Bellman equation in stochastic
dynamic programming and we provide a “Bellman-like” equation for the Fenchel conjugates
of the value functions.

3.1 Fenchel-Moreau conjugate of generalized inf-convolution

We generalize the inf-convolution, and provide an inequality and an equality with Fenchel-
Moreau conjugates involving three coupling functions.

Definition 6 Let be given three sets X, Y1 and Y2. For any trivariate convoluting function

I : Y1 × X× Y2 → [−∞,+∞] , (12)

we define the I-inf-convolution of two functions g1 : Y1 → [−∞,+∞] and g2 : Y2 →
[−∞,+∞] by

(
g1

I
�g2

)
(x) = inf

y1∈Y1,y2∈Y2

(
g1(y1)u I(y1, x, y2)u g2(y2)

)
, ∀x ∈ X . (13)

To any convoluting function I in (12), we can easily attach

1. a coupling function I : X× (Y1×Y2)→ [−∞,+∞] between X and Y1×Y2 defined by

I
(
x, (y1, y2)

)
= I(y1, x, y2) , ∀(x, y1, y2) ∈ X× Y1 × Y2 , (14)

2. a kernel function I : X× Y1 × Y2 → [−∞,+∞] defined by

I(x, y1, y2) = I(y1, x, y2) , ∀(x, y1, y2) ∈ X× Y1 × Y2 . (15)

We provide an inequality with Fenchel-Moreau conjugates involving three coupling func-
tions.

Proposition 7 Let be given three “primal” sets X, Y1, Y2 and three “dual” sets X], Y]
1, Y]

2,
together with three coupling functions

c : X× X] → [−∞,+∞] , d1 : Y1 × Y]
1 → [−∞,+∞] , d2 : Y2 × Y]

2 → [−∞,+∞] . (16)

For any univariate functions f : X → [−∞,+∞], g1 : Y1 → [−∞,+∞] and g2 : Y2 →
[−∞,+∞], all defined on the “primal” sets, we have that

f(x) ≥
(
g1

I
�g2

)
(x) , ∀x ∈ X⇒ f c(x]) ≤

(
g

(−d1)
1

I]
�g(−d2)

2

)
(x]) , ∀x] ∈ X] , (17)

10



where the convoluting function I] on the “dual” sets is given by

I] = Ic ·+d1 ·+d2 , (18a)

(where the kernel I is defined in (15)), that is, by

I](y]1, x], y
]
2) =

sup
(y1,x,y2)∈Y1×X×Y2

(
c(x, x]) ·+ d1(y1, y

]
1) ·+ d2(y2, y

]
2) ·+

(
− I(y1, x, y2)

))
. (18b)

Proof. The left hand side assumption in (17) can be rewritten as

f(x) ≥ inf
y1∈Y1,y2∈Y2

(
I
(
x, y1, y2

)
u
(
g1(y1)u g2(y2)

))
, ∀x ∈ X . (19)

Now, we apply Theorem 1 with

Y = Y1 × Y2 , Y] = Y]
1 × Y]

2

d
(
(y1, y2), (y]1, y

]
2)
)

= d1(y1, y
]
1) ·+ d2(y2, y

]
2)

g(y1, y2) = g1(y1)u g2(y2) and K = I by (15).

We first prove that

g−(d1 ·+d2)(y]1, y
]
2) ≤

(
g

(−d1)
1 (y]1)u g

(−d2)
2 (y]2)

)
. (20)

For this, we let the reader check that the following preliminary inequality always holds true(
− (u1 ·+ u2)

)
·+
(
− (v1 u v2)

)
≤
(
(−u1) ·+ (−v1)

)
u
(
(−u2) ·+ (−v2)

)
. (21)

Then, we have that

g−(d1 ·+d2)(y]1, y
]
2) = sup

y1∈Y1,y2∈Y2

((
−
(
d1(y1, y

]
1) ·+ d2(y2, y

]
2)
))
·+
(
−
(
g1(y1)u g2(y2)

)))
≤ sup

y1∈Y1

((
− d1(y1, y

]
1)
)
·+
(
− g1(y1)

))
u sup

y2∈Y2

((
− d2(y2, y

]
2) ·+

(
− g2(y2)

)))
by the preliminary inequality (21)

= g
(−d1)
1 (y]1)u g

(−d2)
2 (y]2) .

We now obtain, by (4) applied with (19),

f c(x]) ≤ inf
y]1∈Y

]
1,y

]
2∈Y

]
2

(
Ic ·+(d1 ·+d2)(x], y]1, y

]
2)u g−(d1 ·+d2)(y]1, y

]
2)

)
≤ inf

y]1∈Y
]
1,y

]
2∈Y

]
2

(
Ic ·+(d1 ·+d2)(x], y]1, y

]
2)u

(
g

(−d1)
1 (y]1)u g

(−d2)
2 (y]2)

))
(by (20))

=
(
g

(−d1)
1

I]
�g(−d2)

2

)
(x])
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by definition (13) of the generalized inf-convolution, and where the kernel I is defined in (15).

This ends the proof. �

We check our result in Theorem 1 on the classical inf-convolution. Suppose that X =
Y = Rn and X] = Y] = Rn equipped with the scalar product 〈 , 〉. The conjugacy operator
on functions is denoted by ?. For the characteristic function of a subset W ⊂W of a set W,
we adopt the notation

δW : W→ {0,+∞} , δW (w) =

{
0 if w ∈ W ,

+∞ if w 6∈ W .
(23)

Now, when we take

I(y1, x, y2) = δy1uy2(x) , c(x, x]) =
〈
x , x]

〉
, di(yi, y

]
i) = −

〈
yi , y

]
i

〉
, i = 1, 2 , (24a)

we find that, by (18b)

I](y]1, x], y
]
2) = δy]1

(x]) ·+ δy]1
(x]) ,

(
g

(−d1)
1

I]
�g(−d2)

2

)
(x]) = g?1(x])u g?2(x]) . (24b)

We conclude with (17) that we indeed obtain the well known property of the inf-convolution:
f ≥ g1�g2 ⇒ f ? ≤ (g1�g2)? = g?1 + g?2.

To end up, we provide an expression of the inf-convolution as a Fenchel-Moreau conju-
gate, and we obtain an equality with Fenchel-Moreau conjugates involving three coupling
functions.

Proposition 8 The I-inf-convolution in (13) is given by

g1

I
�g2 = −(g1 u g2)−I . (25)

Proof. For any x ∈ X, we have that(
g1

I
�g2

)
(x) = inf

y1∈Y1,y2∈Y2

(
g1(y1)u I(y1, x, y2)u g2(y2)

)
by definition (13) of the generalized inf-convolution

= inf
y1∈Y1,y2∈Y2

(
I
(
x, (y1, y2)

)
u
(
g1(y1)u g2(y2)

))
by definition (14) of the coupling function I

= − sup
y1∈Y1,y2∈Y2

((
− I

(
x, (y1, y2)

))
·+
(
−
(
g1(y1)u g2(y2)

)))
= −

(
(g1 u g2)−I

)
(x) .

This ends the proof. �
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Proposition 9 If there exist two coupling functions

Γ1 : X] × Y1 → [−∞,+∞] , Γ2 : X] × Y2 → [−∞,+∞] , (27)

such that the c-Fenchel-Moreau conjugate of the convoluting function I splits as

I(y1, ·, y2)c(x]) = Γ1(x], y1) ·+ Γ2(x], y2) , ∀(x], y1, y2) ∈ X] × Y1 × Y2 , (28)

then the c-Fenchel-Moreau conjugate of the inf-convolution g1

I
�g2 is given by a sum as(

g1

I
�g2

)c
= gΓ1

1 ·+ gΓ2
2 . (29)

Proof. We have that(
g1

I
�g2

)c
(x]) =

(
− (g1 u g2)−I

)c
(x]) (by (25))

= (g1 u g2)(−I) ·+c(x]) (by (58))

= sup
(y1,x,y2)∈Y1×X×Y2

((
− I(y1, x, y2)

)
·+ c(x, x]) ·+

(
−
(
g1(y1)u g2(y2)

)))

= sup
(y1,y2)∈Y1×Y2

(
sup
x∈X

((
− I(y1, x, y2)

)
·+ c(x, x])

)
·+
(
−
(
g1(y1)u g2(y2)

)))

= sup
(y1,y2)∈Y1×Y2

(
I(y1, ·, y2)c(x]) ·+

(
−
(
g1(y1)u g2(y2)

)))

= sup
(y1,y2)∈Y1×Y2

((
Γ1(x], y1) ·+ Γ2(x], y2)

)
·+
(
−
(
g1(y1)u g2(y2)

)))
(by assumption (28))

= sup
(y1,y2)∈Y1×Y2

(
Γ1(x], y1) ·+ Γ2(x], y2) ·+

(
− g1(y1)

)
·+
(
− g2(y2)

))
= gΓ1

1 (x]) ·+ gΓ2
2 (x]) .

This ends the proof. �

3.2 Exchanging partial Fenchel-Moreau conjugates

Let be given two “primal” sets X, Y and two “dual” sets X], Y], together with two coupling
functions

c : X× X] → [−∞,+∞] , d : Y× Y] → [−∞,+∞] . (31)

In (4), all Fenchel-Moreau conjugates stand on the right side of the implication. We show
formulas where they appear on both sides. For this purpose, for any exchange function

E : X× Y] → [−∞,+∞] , (32a)
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we introduce the partial Fenchel-Moreau conjugates(
− E(x, ·)

)d
(y) = sup

y]∈Y]

(
d(y, y]) ·+ E(x, y])

)
, ∀(x, y) ∈ X× Y , (32b)

E(·, y])c(x]) = sup
x∈X

(
c(x, x]) ·+

(
− E(x, y])

))
, ∀(x], y]) ∈ X] × Y] . (32c)

We prove the following implication.

Proposition 10 For any function E : X× Y] → [−∞,+∞], we have that

f(x) ≥ inf
y∈Y

(
E(x, ·)d(y)u g(y)

)
, ∀x ∈ X⇒

f c(x]) ≤ inf
y]∈Y]

((
− E(·, y])

)c
(x])u g−d(y])

)
, ∀x] ∈ X] . (33)

Proof. We use the following Lemma 11. We apply Theorem 1 with the function K(x, y) =(
− E(x, ·)

)d
(y) defined by equality in the left hand side inequality in (34). Then, we insert the

right hand side inequality in (34) into implication (4). �

Lemma 11 For any function E : X× Y] → [−∞,+∞], we have that

K(x, y) ≥
(
− E(x, ·)

)d
(y) , ∀(x, y) ∈ X× Y⇒

Kc ·+d(x], y]) ≤ E(·, y])c(x]) , ∀(x], y]) ∈ X] × Y] . (34)

Proof. Supposing that

K(x, y) ≥
(
− E(x, ·)

)d
(y) , ∀(x, y) ∈ X× Y , (35)

we calculate, for all (x], y]) ∈ X] × Y],

Kc ·+d(x], y]) = sup
x∈X,y∈Y

(
c(x, x]) ·+ d(y, y]) ·+

(
−K(x, y)

))
by the definition (3) of Kc ·+d

≤ sup
x∈X,y∈Y

(
c(x, x]) ·+ d(y, y]) ·+ E(x, ·)d(y)

)
by inequality (35) for K

= sup
x∈X

(
c(x, x]) ·+ sup

y∈Y

(
d(y, y]) ·+

(
−
(
− E(x, ·)d(y)

))))
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by the property (48e) that the operator sup is “distributive” with respect to ·+

= sup
x∈X

(
c(x, x]) ·+

(
− E(x, ·)

)dd
(y])

)
by definition (53) of the biconjugate

≤ sup
x∈X

(
c(x, x]) ·+

(
− E(x, y])

))
by the inequality (54) between a function and its biconjugate, and by the property (48b) that the

operator ·+ is monotone

= E(·, y])c(x])

by the definition (32c) of partial Fenchel-Moreau conjugate. �

3.3 Fenchel conjugates of Bellman functions

We consider the Bellman equation in stochastic dynamic programming and we provide a
“Bellman-like” equation for the Fenchel conjugates of the value functions. Related works
are [17] and [12].

3.3.1 Basic sets and couplings

Let (Ω,F ,P) be a probability space. Let 1 ≤ p < +∞ and q be defined by 1/p + 1/q = 1.
Adopting the notation of Sect. 2, we put X = RnX and Y = Lp

(
(Ω,F ,P),RnX

)
the space

of p-integrable random variables with values in RnX . Elements of Y, that is, p-integrable
random variables with values in X, will be denoted by bold letters like X and elements of
Y] = Lq

(
(Ω,F ,P),RnX

)
by X].

The coupling c between X = RnX and X] = RnX is the usual scalar product 〈 , 〉. The
coupling d between Y = Lp

(
(Ω,F ,P),RnX

)
and Y] = Lq

(
(Ω,F ,P),RnX

)
is naturally derived

in such a way that

c(x, x]) =
〈
x , x]

〉
, ∀(x, x]) ∈ X× X] , (37a)

d(X,X]) = E
[ 〈

X ,X]
〉 ]

, ∀(X,X]) ∈ Y× Y] . (37b)

In that case, the conjugates f c, gd, g−d and Kc ·+(−d) are denoted by f ?, g?, g(−?) and K? ·+(−?).
One can find such a difference coupling in [22].
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3.3.2 Bellman functions and Bellman equation

Let time t = 0, 1, . . . , T be discrete, with T ∈ N∗. Consider a stochastic optimal control
problem with state space X = RnX , control space U = RnU , noise process {Wt}t=1,...,T taking
values in W = RnW and defined over the probability space (Ω,F ,P).

For each time t = 0, 1, . . . , T − 1, we have a dynamics ft : X × U ×W → X and an
instantaneous cost Lt : X×U×W→]−∞,+∞]; we also have a final cost K : X→]−∞,+∞].
These two costs can take the value +∞, so that we can easily handle state and control
constraints.

Assumption 1 We make the following assumptions:

1. for any (x, u) ∈ X × U, the RnX-valued random variable ft(x, u,Wt+1) belongs to
Lp
(
(Ω,F ,P),RnX

)
,

2. the instantaneous costs Lt : X× U×W→ [0,+∞], for t = 0, . . . , T − 1, and the final
cost K : X→ [0,+∞] are nonnegative2 measurable functions.

By item 2 in Assumption 1, we can define Bellman functions by, for all x ∈ X,

VT (x) = K(x) , (38a)

Vt(x) = inf
X,U

E
[ T−1∑

s=t

Ls(Xs,Us,Ws+1)uK(XT )
]
, t = T − 1, . . . , 0 , (38b)

where Xt = x ∈ X, Xs+1 = fs(Xs,Us,Ws+1) and σ(Us) ⊂ σ(Xs), for s = t, . . . , T − 1. In
addition, the Bellman functions are nonnegative.

Assumption 2 We suppose that the Bellman functions in (38) are measurable and satisfy
the backward Bellman equation

Vt(x) = inf
u∈U

E
[
Lt(x, u,Wt+1)u Vt+1

(
ft(x, u,Wt+1)

)]
, t = T − 1, . . . , 0 . (39)

This is the case when the noise process {Wt}t=1,...,T is a white noise and under technical
assumptions [3, 5].

3.3.3 Fenchel conjugates of the Bellman functions

Now, we provide a “Bellman-like” equation for the Fenchel conjugates of the value functions
(see [12] for related considerations).

2We could also consider functions that are uniformly bounded below. However, for the sake of simplicity,
and without loss of generality, we will deal with nonnegative functions.
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Proposition 12 The Bellman functions in (38) satisfy the backward equalities

Vt(x) = inf
X∈Y

(
inf
u∈U

((
−H(x, u, ·)

)(−?)
(X)

)
u E

[
Vt+1(X)

])
, ∀t = T − 1, . . . , 0 , (40)

where the Hamiltonian H is defined by

H(x, u,X]) = E
[
Lt(x, u,Wt+1)u

〈
ft(x, u,Wt+1) ,X]

〉 ]
, ∀(x, u,X]) ∈ X×U×Y] . (41)

Moreover, letting
{
V ?
t

}
t=0,1,...,T

be the Fenchel conjugates of the Bellman functions, we have,

for all x] ∈ X],

V ?
t (x]) ≤ inf

X]

(
sup
u∈U

(
H(·, u,X])?(x])

)
u E

[
V ?
t+1(X])

])
, ∀t = T − 1, . . . , 0 . (42)

Proof. In what follows, we will manipulate mathematical expectations of random variables
that are either nonnegative (by item 2 in Assumption 1), or nonpositive (by taking the opposite),
or integrable (by item 1 in Assumption 1, giving random variables resulting from a scalar product
between an element of Lp

(
(Ω,F ,P),RnX

)
and one of Lq

(
(Ω,F ,P),RnX

)
). We will be careful to

remain in the conditions where the usual rules of algebra apply [8].
By the Bellman equation (39), we have that

Vt(x) = inf
X∈Y,u∈U

E
[
Lt(x, u,Wt+1)u Vt+1(X)

]
s.t. X = ft(x, u,Wt+1)

= inf
X∈Y,u∈U

sup
X]∈Y]

(
E
[
Lt(x, u,Wt+1)u Vt+1(X)u

〈
ft(x, u,Wt+1)−X ,X]

〉 ])
by using item 1 in Assumption 1

= inf
X∈Y,u∈U

(
sup

X]∈Y]

(
E
[
Lt(x, u,Wt+1)u

〈
ft(x, u,Wt+1)−X ,X]

〉 ])
u E

[
Vt+1(X)

])

by (49g) with 0 ≤ E
[
Vt+1(X)

]
since the Bellman functions are nonnegative, and as E and u

commute because, by Assumption 1, all terms inside the expectation E are either nonnegative or
integrable

= inf
X∈Y,u∈U

(
sup

X]∈Y]

(
E
[ 〈
−X ,X]

〉 ]
uH(x, u,X])

)
u E

[
Vt+1(X)

])

by definition (41) of the Hamiltonian

= inf
X∈Y,u∈U

(
sup

X]∈Y]

(
E
[ 〈
−X ,X]

〉 ]
·+ H(x, u,X])

)
u E

[
Vt+1(X)

])
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as Moreau upper and lower additions coincide above because −∞ < E
[ 〈
−X ,X]

〉 ]
< +∞ by

definition of the spaces Y and Y] and of the coupling (37) between them

= inf
X∈Y,u∈U

(
sup

X]∈Y]

(
E
[ 〈
−X ,X]

〉 ]
·+
(
−
(
−H(x, u,X])

)))
u E

[
Vt+1(X)

])
= inf

X∈Y,u∈U

((
−H(x, u, ·)

)(−?)
(X)u E

[
Vt+1(X)

])
by definition of the Fenchel conjugate of X] 7→ −H(x, u, ·) with respect to the opposite coupling

(−?) defined by (X,X]) 7→ E
[ 〈
−X ,X]

〉 ]
, so that we have proven (40)

= inf
X∈Y

(
inf
u∈U

((
−H(x, u, ·)

)(−?)
(X)

)
u E

[
Vt+1(X)

])
by the property (49e) that the operator inf is “distributive” with respect to u

= inf
X∈Y

(
inf
u∈U
Ku(x,X)u E

[
Vt+1(X)

])
,

where we have defined

Ku(x,X) =
(
−H(x, u, ·)

)(−?)
(X) , ∀u ∈ U , ∀(x,X) ∈ X× Y . (43)

By (34), we obtain that

K? ·+(−?)
u (x],X]) ≤ H(·, u,X])?(x]) , ∀u ∈ U , ∀(x],X]) ∈ X] × Y] . (44)

Therefore, as we have just established that Vt(x) = infX∈Y

(
infu∈UKu(x,X) u E

[
Vt+1(X)

])
, we

deduce from implication (4) that

V ?
t (x]) ≤ inf

X]

((
inf
u∈U
Ku

)? ·+(−?)
(x],X])u E

[
Vt+1(·)

]?
(X])

)
= inf

X]

(
sup
u∈U

(
K? ·+(−?)

u (x],X])
)
u E

[
Vt+1(·)

]?
(X])

)

since
(

infu∈UKu

)? ·+(−?)
= supu∈UK

? ·+(−?)
u by the formula (56b)

≤ inf
X]

(
sup
u∈U

(
H(·, u,X])?(x])

)
u E

[
Vt+1(·)

]?
(X])

)
as K? ·+(−?)

u (x],X]) ≤ H(·, u,X])?(x]) by (44)

≤ inf
X]

(
sup
u∈U

(
H(·, u,X])?(x])

)
u E

[
V ?
t+1(X])

])
,

as soon as we prove that E
[
Vt+1(·)

]?
(X]) ≤ E

[
V ?
t+1(X])

]
.
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Indeed, we have that

E
[
Vt+1(·)

]?
(X]) = sup

X∈Y

(
E
[ 〈

X ,X]
〉 ]
·+
(
− E

[
Vt+1(X)

]))
= sup

X∈Y

(
E
[ 〈

X ,X]
〉
·+
(
− Vt+1(X)

)])
because −∞ < E

[ 〈
−X ,X]

〉 ]
< +∞ by definition of the spaces Y and Y] and of the coupling (37)

between them

≤ E
[

sup
X∈Y

(〈
X ,X]

〉
·+
(
− Vt+1(X)

))]
= E

[
V ?
t+1(X])

]
,

by definition of V ?
t+1(X]). This ends the proof. �

Proposition 12 may be useful to obtain upper and lower estimates in approximations of
Bellman functions. We just provide a sketch of the argument.

1. Suppose that the Bellman functions {Vt}t=0,1,...,T satisfy the Bellman equation (39) and
are convex l.s.c.. This is the case in Stochastic Dual Dynamic Programming (SDDP),
when the dynamics ft are jointly linear in state and control, the instantaneous costs Lt

are jointly convex in state and control, the final cost K is convex, together with tech-
nical assumptions (see details in [20, 6] and references therein).

2. The Fenchel conjugates {V ?
t }t=0,1,...,T of the Bellman functions are convex l.s.c., by

construction. Suppose that they satisfy a “Bellman like” equation

V ?
t (x]) = inf

X]

(
sup
u∈U

(
H(·, u,X])?(x])

)
u E

[
V ?
t+1(X])

])
, ∀t = T − 1, . . . , 0 , (45)

which is (42), where the inequality is an equality. For this, one needs assumptions
of the kind described in §2.2, as well as the equality E

[
Vt+1(·)

]?
(X]) = E

[
V ?
t+1(X])

]
(see [13, 15]).

3. With the Bellman operators deduced from the Bellman equation (39) and “Bellman
like” equation (42), one can easily produce piecewise linear lower bound functions

V t,(k) ≤ V t,(k+1) ≤ Vt and Ṽ t,(k) ≤ Ṽ t,(k+1) ≤ V ?
t , for k ∈ N, by a proper algorithm (like

the SDDP algorithm).

4. Since the Bellman functions {Vt}t=0,1,...,T are convex l.s.c. and proper3, we deduce that

V t,(k) ≤ V t,(k+1) ≤ Vt = V ??
t ≤ Ṽ

?

t,(k+1) ≤ Ṽ
?

t,(k) . (46)

Thus, we can control the evolution of the algorithm.

3They are nonnegative and we exclude the degenerate case where they would have an empty domain.
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4 Conclusion

Working on Fenchel conjugates of Bellman functions, we obtained Inequality (42). This was
our impetus to investigate inequalities with more than one coupling. The sum coupling c ·+ d
in (2) leads to other nice formulas like the following one (with obvious notations)

h(x, y) = inf
u∈U

(
L(x, u)uM(u, y)

)
⇒ hc ·+d(x], y]) = sup

u∈U

(
Lc(x], u) ·+M

d(u, y])
)
, (47)

where the conjugates Lc and Md are partial.
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Volle, for their comments on first versions of this work.

A Appendix

A.1 Background on J. J. Moreau lower and upper additions

When we manipulate functions with values in R = [−∞,+∞], we adopt the following Moreau
lower addition or upper addition, depending on whether we deal with sup or inf operations.
We follow [10]. In the sequel, u, v and w are any elements of R.

Moreau lower addition

The Moreau lower addition extends the usual addition with

(+∞) ·+ (−∞) = (−∞) ·+ (+∞) = −∞ . (48a)

With the lower addition, (R, ·+) is a convex cone, with ·+ commutative and associative. The
lower addition displays the following properties:

u ≤ u′ , v ≤ v′ ⇒ u ·+ v ≤ u′ ·+ v′ , (48b)

(−u) ·+ (−v) ≤ −(u ·+ v) , (48c)

(−u) ·+ u ≤ 0 , (48d)

sup
a∈A

f(a) ·+ sup
b∈B

g(b) = sup
a∈A,b∈B

(
f(a) ·+ g(b)

)
, (48e)

inf
a∈A

f(a) ·+ inf
b∈B

g(b) ≤ inf
a∈A,b∈B

(
f(a) ·+ g(b)

)
, (48f)

t < +∞⇒ inf
a∈A

f(a) ·+ t = inf
a∈A

(
f(a) ·+ t

)
. (48g)
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Moreau upper addition

The Moreau upper addition extends the usual addition with

(+∞)u (−∞) = (−∞)u (+∞) = +∞ . (49a)

With the upper addition, (R,u) is a convex cone, with u commutative and associative. The
upper addition displays the following properties:

u ≤ u′ , v ≤ v′ ⇒ uu v ≤ u′ u v′ , (49b)

(−u)u (−v) ≥ −(uu v) , (49c)

(−u)u u ≥ 0 , (49d)

inf
a∈A

f(a)u inf
b∈B

g(b) = inf
a∈A,b∈B

(
f(a)u g(b)

)
, (49e)

sup
a∈A

f(a)u sup
b∈B

g(b) ≥ sup
a∈A,b∈B

(
f(a)u g(b)

)
, (49f)

−∞ < t⇒ sup
a∈A

f(a)u t = sup
a∈A

(
f(a)u t

)
. (49g)

Joint properties of the Moreau lower and upper addition

We obviously have that
u ·+ v ≤ uu v . (50a)

The Moreau lower and upper additions are related by

−(uu v) = (−u) ·+ (−v) , −(u ·+ v) = (−u)u (−v) . (50b)

They satisfy the inequality
(uu v) ·+ w ≤ uu (v ·+ w) . (50c)

with

(uuv) ·+ w < uu(v ·+ w) ⇐⇒


u = +∞ and w = −∞ ,

or

u = −∞ and w = +∞ and −∞ < v < +∞ .

(50d)

Finally, we have that

u ·+ (−v) ≤ 0 ⇐⇒ u ≤ v ⇐⇒ 0 ≤ v u (−u) , (50e)

u ·+ (−v) ≤ w ⇐⇒ u ≤ v u w ⇐⇒ u ·+ (−w) ≤ v , (50f)

w ≤ v u (−u) ⇐⇒ u ·+ w ≤ v ⇐⇒ u ≤ v u (−w) . (50g)
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A.2 Background on Fenchel-Moreau conjugacy with respect to a
coupling

Let be given two sets X and X]. Consider a coupling function c : X× X] → [−∞,+∞]. We
also use the notation X c↔ X] for a coupling, so that

X c↔ X] ⇐⇒ c : X× X] → [−∞,+∞] . (51)

Definition 13 The Fenchel-Moreau conjugate of a function f : X → [−∞,+∞], with
respect to the coupling c in (51), is the function f c : X] → [−∞,+∞] defined by

f c(x]) = sup
x∈X

(
c(x, x]) ·+

(
− f(x)

))
, ∀x] ∈ X] . (52)

We associate with the coupling c the coupling c′ : X]×X→ [−∞,+∞] defined by c′(x], x) =
c(x, x]). The Fenchel-Moreau biconjugate is the function f cc′ : X→ [−∞,+∞] defined by

f cc′(x) = (f c)c
′
(x) = sup

x]∈X]

(
c(x, x]) ·+

(
− f c(x])

))
, ∀x ∈ X . (53)

The following property is well known.

Proposition 14 For any function f : X→ [−∞,+∞], we have that

f cc′(x) ≤ f(x) . (54)

Proof. We prove (54) as follows.

f cc′(x) ·+
(
− f(x)

)
= sup

x]∈X]

(
c(x, x]) ·+

(
− f c(x])

))
·+
(
− f(x)

)
(by (53) and (48e))

= sup
x]∈X]

((
c(x, x]) ·+

(
− f c(x])

))
·+
(
− f(x)

))
(by (48e))

= sup
x]∈X]

(
c(x, x]) ·+

(
− f c(x])

)
·+
(
− f(x)

))
(by associativity of ·+)

= sup
x]∈X]

(
c(x, x]) ·+

(
− f(x)

)
·+
(
− f c(x])

))
(by commutativity of ·+)

≤ sup
x]∈X]

(
sup
x∈X

(
c(x, x]) ·+

(
− f(x)

))
·+
(
− f c(x])

))
(by (48b))

= sup
x]∈X]

(
f c(x]) ·+

(
− f c(x])

))
(by (52))

≤ 0 . (by (48d))

We have obtained that f cc′(x) ·+
(
− f(x)

)
≤ 0. Now, using (50e), we obtain (54). This ends the

proof. �

The following properties are easy to establish.
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Proposition 15 For any family {fu}u∈U of functions fu : X→ [−∞,+∞], we have that(
inf
u∈U

fu
)c

(x) = sup
u∈U

f c
u(x) (56a)

−
(

inf
u∈U

fu
)c

(x) = inf
u∈U

(
− f c

u(x)
)
. (56b)

Proposition 16 Let be given two “primal” sets X, Y and two “dual” sets X], Y], together
with two coupling functions

c : X× X] → [−∞,+∞] , d : Y× Y] → [−∞,+∞] . (57)

For any bivariate function K : X× Y→ [−∞,+∞], we have that(
−
(
x 7→ K(x, ·)d

))c
= Kc ·+d =

(
−
(
y 7→ K(·, y)c

))d
. (58)
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