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ABSTRACT

In a recent paper1, we have shown that:
(α) The Power-Zienau-Woolley hamiltonian2–6 cannot be derived from the minimal-coupling hamiltonian with the help of a
gauge transformation.
This result is the opposite to a few papers3,7 and many textbooks4–6,8 where it was shown the opposite, namely that the
Power-Zienau-Woolley hamiltonian effectively derived from the minimal-coupling hamiltonian with the help of a gauge
transformation.
Based on a detailed discussion, we have then shown1 that:
(β ) The Power-Zienau-Woolley hamiltonian mixes two gauge conditions. Indeed, the kinetic-energy term is written in the
Poincaré gauge9,10 whereas the electromagnetic-energy term is written in the Coulomb gauge.
This ill-defined gauge condition has consequences at the quantum level. Indeed,
(γ) As an operator the Power-Zienau-Woolley hamiltonian creates non-physical photons1.

As a comment to our paper, A. Vukics al.11 claim that the Power-Zienau-Woolley hamiltonian can be derived from the
minimal-coupling lagrangian (or hamiltonian) without refering to any gauge transformation: (quote) ” the Power-Zienau-Woolley
picture of the electrodynamics of nonrelativistic neutral particles (atoms) can be derived from a gauge-invariant Lagrangian
without making reference to any gauge whatsoever in the process.”. Note that, their claim does not contradict our
conclusion(α).Moreover,A. Vukics al. do not discuss nor refute our conclusions (β ) and (γ).

This paper is organized as follows.
In section (1) we summarize the main assumptions done by A. Vukics et al. to derive the Power-Zienau-Woolley hamiltonian.

In section (2), we prove unambiguously that A. Vukics et al. calculations are actually performed in the Coulomb gauge. As a
consequence they are not gauge-independent on the opposite to their claim.

In section (3) we hopefully end the debate by proving that the Power-Zienau-Woolley Hamiltonian is not equivalent to the
minimal-coupling hamiltonian. Indeed the correct dynamical equations for the charged particles can not be obtained from this
hamiltonian. This discrepancy is related to our initial claims (β ) that the Power-Zienau-Woolley Hamiltonian mixes different
gauge conditions.

Finally, in section(4), we question the validity of the assumptions done by A. Vukics et al. to model the interaction of punctual
charges with the electromagnetic field. We conclude that A. Vukics al. miss the harmonic forms because of incorrect
assumptions to model the physical system under consideration.
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1 Introduction: A. Vukics al. assumptions

In their comment, A. Vukics al.11 claim to have exhibited:

(i) A lagrangian and a hamiltonian formulation of the light-matter coupling that is gauge-independent. The corresponding
Hamiltonian is the Power-Zienau-Woolley Hamiltonian.

Their calculations are based on the following assumptions:

(ii) The fields are defined on R3 and
(iii) Vanish faster than 1/|r| as |r| →+∞.

As a consequence of these assumptions, any vector field V(x, t) can be uniquely decomposed as the sum of a transverse
component V⊥(x, t) and a longitudinal component V‖(x, t), i.e. V(x, t) = V⊥(x, t)+V‖(x, t) . This is the Helmholtz-Hodge
decomposition in R3.

Within this assumptions, A. Vuckis et al. derive the Power-Zienau-Woolley hamiltonian from the minimal-coupling
lagrangian. To do so, they have to:

(iv) consider the transverse component of the vector potential A⊥(x, t) and the transverse component of the electric field
E⊥(x, t) as the only dynamical variables for the electromagnetic field.

As a consequence:
(v) They have to postulate the value of the longitudinal-part of the electric field, E‖(x, t). This is done from the knowledge
of its value in the Coulomb gauge. It is worth emphasizing that on the opposite to the minimal-coupling hamiltonian the
longitudinal-part of the electric field cannot be found from the Power-Zienau-Woolley hamiltonian.
(vi) Nothing is said concerning the longitudinal part of the vector potential A‖(x, t). A minima, one can only speculate that it
remains undetermined but irrelevant for the charged-particles and the electromagnetic-field dynamics.

2 Gauge-independent calculations ?

A. Vukics et al.11 claim that their calculations are gauge independent. We do not agree with this statement. We prove in the
following that the starting point of A. Vukics al.11, namely eq.(VKD-13) in their paper, is actually written in the Coulomb
gauge. [We have added their initial ”VKD” before the equations number related to their paper.] As a consequence, the
lagrangian written by A. Vukics al. and the following calculations are not gauge-invariant. They are written and done
in the Coulomb gauge.

We follow their reasoning. The starting point is the minimal-coupling lagrangian:

L =
Z

∑
α=0

mα

2
ẋα(t)+

∫
R3

d3x[
ε0

2
E.E− 1

2µ0
B.B]+

∫
R3

d3xj.A−
∫
R3

d3xφρ (VKD-11)

We follow their assumptions and we assume that the fields are defined on R3 [assumption (ii)] and vanishes faster than 1/|r|
as |r| →+∞ [assumption (iii)]. These assumptions lead to the following decomposition for the vector fields: E = E⊥+E‖ ,
A = A⊥+A‖ , and j = j⊥+ j‖, where E, A and j are respectively the electric field, the vector potential and the current density.
This decomposition is unique.
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The following relations are satisfied:

∫
R3

d3xE⊥.E‖ = 0,
∫
R3

d3xA⊥.j‖ = 0,
∫
R3

d3xj⊥.A‖ = 0 (1)

With these equations, the equation (VKD-11) reads:

L =
Z

∑
α=0

mα

2
ẋα(t)+

ε0

2

∫
R3

d3xE‖.E‖+
∫
R3

d3x[
ε0

2
E⊥.E⊥− 1

2µ0
B.B]+

∫
R3

d3xj‖.A‖+
∫
R3

d3xj⊥.A⊥−
∫
R3

d3xφρ

Following A. Vukics al.11, the dynamical variables for the electromagnetic-field are assumed to be the transverse part of
the vector potential A⊥(~x, t). As an immediate consequence, as written above, the longitudinal component has then to be
postulated. A. Vukics al. assume the value of the longitudinal component to be E‖(x, t) =−∇φc(x) where

φc(x;xm) =
1

4πε0

Z

∑
α=1

qm

|x−xm(t)|
(2)

is the scalar potential in the Coulomb gauge, xα(t) being the position for the α ∈ {1, ...,Z} particle. Since the electric field
is gauge invariant so is its longitudinal part.

With this assumption, we have:∫
R3

d3xE‖.E‖ =
∫
R3

d3x(∇φc)
2 =−

∫
R3

d3xφc∆φc =
∫
R3

d3xφc(x, t;xm)
ρ(x, t;xn)

ε0
(3)

Where ρ(x, t;xn) = ∑
Z
n=1 qnδ (x−xn(t)) is the charge density.

With the help of equation (3), we can write the lagrangian as

L =
Z

∑
α=1

mα

2
ẋα(t)+

∫
R3

d3x[
ε0

2
E⊥.E⊥− 1

2µ0
B.B]+

∫
R3

d3xj⊥.A⊥+
∫
R3

d3xj‖.A‖+
∫
R3

d3x(
1
2

φc−φ)ρ (4)

This expression has to be compared with the eq:(VKD-13):

LV,K,D =
Z

∑
α=1

mα

2
ẋα(t)+

∫
R3

d3x[
ε0

2
E⊥.E⊥− 1

2µ0
B.B]+

∫
R3

d3xj⊥.A⊥−
∫
R3

d3x
1
2

φcρ (VKD-13)

To make easier the comparison between the eq:(VKD-13) and the eq:(4), we have used the following relation:

1
2

∫
R3

d3xφc(x, t;xm)ρ(x, t;xn) =
1
2

1
4πε0

Z

∑
m=1

Z

∑
n=1

qmqn

|xn(t)−xm(t)|
=

1
4πε0

Z

∑
m=1

Z

∑
n=α+1

qmqn

|xn(t)−xm(t)|

Our result eq:(4) differs from A. Vukics al. result eq:(VKD-13) by the last two terms. Without fixing the gauge, one has
the generic result that A‖ 6= 0 and φ 6= φc. So equation (4) does not reduce to equation eq:(VKD-13). As a consequence, we
conclude that equation (VKD-13) assumes A‖ = 0 and φ = φc, which is nothing else than the Coulomb-gauge condition..
Equation eq:(VKD-13) being the starting point for the derivation of the Power-Zienau-Woolley hamiltonian, this theory cannot
be claimed to be gauge independent.

This conclusion is strengthened by a comment explaining that the scalar potential does not depend on the gauge. Indeed,
the author wrote [11, p.6]: ”In fact, we could have solved the electrostatic part of the problem in any gauge, and arrive at the
same Lagrangian. The reason why the Coulomb gauge was invoked is solely because it is in this gauge that the electrostatic
problem is the easiest.”

The precise meaning of their sentences is hard to pin down. It seems like the authors identify the scalar potential to its value
in the Coulomb gauge φ = φc. However it is only in the Coulomb gauge that the scalar potential satisfies the Poisson equation.
Moreover they wrote:

E‖(x, t) =−∇φc(x, t)

But this is specific to the Coulomb gauge and in the generic case (gauge-independent case), it reads:

E‖(x, t) =−∇φ(x, t)−∂tA‖(x, t)
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This confirms that they assume that the vector potential is transverse A‖ = 0 and φ = φc.
As a consequence, they exclude de facto any other solutions than the Coulomb gauge solutions.
In the gauge-independent case, the longitudinal component of the vector potential compensates the contribution of the

scalar potential leading to the expected result E‖(x, t) =−∇φ(x, t)−∂tA‖(x, t) =−∇φc(x, t). In the literature a similar error
was done in12 where the authors report a lagrangian formulation of light-matter interaction alleged to be gauge-independent.
Actually they also did the calculations in the Coulomb gauge as proved in a subsequent comment13.

3 The equations of motion for the charged-particles from the Power-Zienau-Woolley hamil-
tonian

We now compute the equations of motion for the charged particles α = 1, ...,Z from the Hamilton equations and the Power-
Zienau-Woolley Hamiltonian [eq.(VKD-32) in A. Vukics et al. paper11]:

HPZW =
Z

∑
α=1

{
1

2mα

[pα +qα xα ×
∫ 1

0
sdsB(sxα , t)]2+∫

R3
d3x[

1
2ε0

D2(x, t)+
1

2µ0
B2(x, t)]−

∫
R3

d3x[
1
ε0

P⊥(x, t).D⊥(x, t)+
∫
R3

d3x[
1

2ε0
P2(x, t)

}
(VKD-32)

In the following we prove that the equations of motion for the charged particles are not the ones expected from
Newton equation.

The first Hamilton equation reads as

ẋα =
∂

∂pα

Hpzw =
1

mα

[pα +qα xα ×
∫ 1

0
dsB(sxα)] =

1
mα

[pα −qα Y(xα , t)] (5)

In order to simplify the notations, we have defined

Y(xα , t) =−xα ×
∫ 1

0
sdsB(sxα , t) (6)

The equation of motion eq:(5) for the particle ”α” velocity is the expected one if and only if one identifies the quantity
Y(xα , t) to the vector potential [14, p.299]. This is then the vector potential in the Poincaré gauge Y(xα , t) ≡ Ap(xα , t).
The longitudinal part of this vector potential A‖p(xα , t) is not null but its value cannot be found from the PZW-theory since
the perpendicular component is the only dynamical variable. Moreover the quantity Ap(xα , t) appears in the hamiltonian
HPZW eq:(VKD-32). Therefore contrarily to the claim by Vukics et al. p.12 that: (The PWZ hamiltonian) ”is free from an
electric A-square term (the magnetic contribution to the particle kinetic term is the so-called Röntgen term that vanishes in
electric-dipole order)”, eq:(VKD-32) has a A2-term just as to the minimal-coupling hamiltonian.

Now we want to compute the second Hamilton equation ṗpzw,α =− ∂

∂xα
Hpzw.

In order to simplify the calculations, we shown that the following term simplifies as eq:(8):

T =
∫
R3

d3x[
1

2ε0
D2 +

1
2µ0

B2]− 1
ε0

∫
R3

d3xD.P+
1

2ε0

∫
R3

d3xP2 (7)

To see that, first note that:

1
2ε0

∫
R3

d3xP2 =
1

2ε0

∫
R3

d3xP⊥2
+

1
2ε0

∫
R3

d3xP‖
2

Then using the definition of D(x, t) = ε0E⊥(x, t)+P⊥(x, t) [eq.(KVD-iv) in Vukics et al.11], we obtain:

− 1
ε0

∫
R3

d3xD.P =−
∫
R3

d3xE⊥.P⊥− 1
ε0

∫
R3

d3xP⊥2

And:∫
R3

d3x
1

2ε0
D2 =

∫
R3

d3x[
ε0

2
E⊥2

(x, t)+E⊥.P⊥+
1

2ε0
P⊥2

(x, t)]
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As a consequence, the term T simplifies as:

T =
∫
R3

d3x[
ε0

2
E⊥2

(x, t)+
1

2µ0
B2]+

1
2ε0

∫
R3

d3xP‖
2

(8)

From the Maxwell-Gauss equation ∇.E(x, t) = ρ(x, t)/ε0 and the Polarization field as defined by Vukics et al. satisfying
∇.P(x, t) =−ρ(x, t), one concludes that P‖(x, t) =−ε0E‖(x, t). As a consequence, the following equality holds:

1
2ε0

∫
R3

d3xP‖
2
(x) =

ε0

2

∫
R3

d3xE‖
2
(x) =

1
2

∫
R3

d3xφc(x;xα)ρ(x;xn) =
1
2

1
4πε0

Z

∑
α=1

Z

∑
n=1

qα qn

|xα −xn|

We can now compute the time evolution of the canonical momentum pα for the particle α from the Power-Zienau-Woolley
hamiltonian Hpzw given by:

Hpzw =
Z

∑
α=1

{
1

2mα

[pα +qα xα ×
∫ 1

0
sdsB(sxα , t)]2 +

∫
R3

d3x[
ε0

2
E⊥2

(x, t)+
1

2µ0
B2]+

1
2

Z

∑
n=1

qα qn

|xn−xα |

}
The Hamilton equation reads:

ṗα =− ∂

∂xα

Hpzw

The component ”i” reads:

ṗi
α =

qα

mα

[p−qα Y(xα , t)].∇i
xα

Y(xα , t)−qα ∇
i
xα
[

1
4πε0

Z

∑
n=1

qn

|xα −xn|
] (9)

where ∇i
xα

= ∂

∂xi
α

. In the following we will write φc(xα) =
1

4πε0
∑

Z
n=1

qn
|xα−xn| that is the expression of the scalar potential in

the Coulomb gauge.
Taking the time-derivative of the expression ẋα = 1

mα
[pα −qα Yα(xα , t)] leads to:

d
dt

pi
α = mα

d2xi
α

dt2 +qα

d
dt

Y i(xα , t) (10)

We can equate eq:(9) and eq:(10) and find:

mα

d2xi
α

dt2 +qα

d
dt

Y i(xα , t) =
qα

mα

[p−qα Y(xα , t)].∇i
xα

Y(xα , t)−qα ∇
i
xα
[φc(xα)]

The ”i” component of the linear momentum mα
d2xi

α

dt2 then reads:

mα

d2xi
α

dt2 =
qα

mα

[p−qα Y(xα , t)].∇i
xα

Y(xα , t)−qα ∇
i
xα
[φc(xα)]−qα

d
dt

Y i(xα , t)

Since d
dt Y(xα , t) = ∂

∂ t Y(xα , t)+(ẋα .∇xα
)Y(xα , t) and 1

mα
[pα −qα Yα(xα , t)] = ẋα ,we can write:

mα

d2xi
α

dt2 = qα ẋα .∇
i
xα

Y(xα , t)−qα ∇
i
xα
[φc(xα)]−qα

∂

∂ t
Y i(xα , t)−qα(ẋα .∇xα

)Y i(xα , t)

With the help of the relation ∇(ẋ.Y)− (ẋ.∇)Y = ẋ× (∇×Y), the equation of motion of the electric charge is:

mα

d2xi
α

dt2 = qα{ẋα × [∇xα
×Y(xα , t)]}i−qα ∇

i
xα
[φc(xα)]−qα

∂

∂ t
Y i(xα , t)
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A direct computation9 shows that ∇xα
×Y(xα , t) = B(xα , t)

mα

d2xi
α

dt2 = qα{ẋα ×B(xα , t)}i−qα ∇
i
xα
[φc(xα)]−qα

∂

∂ t
Y i

p(xα , t)

From the ref.9, − ∂

∂ t Y
i
p(xα , t) = E i(xα , t)−∇i

xα

[∫ 1
0 dsxα .E(sxα , t)

]
= E i(xα , t)+∇i

xα
φp(xα , t), where we have defined

φp(xα , t) =−
∫ 1

0 dsxα .E(sxα , t)
Finally the equation of motion for the particle α reads:

mα

d2xi
α

dt2 = qα{ẋα ×B(xα , t)}i +qα E i(xα , t)+qα ∇
i
xα
[φp(xα , t)−φc(xα)]

We can now make a few remarks:

1. This is not the expected equation of motion because φp(xα , t)− φc(xα) 6= 0. In the Power-Zienau-Woolley theory,
the longitudinal part of the vector potential is not compensated in the appropriate way by the scalar potential. As a
consequence, the term φp(xα , t)−φc(xα) appears in the equations of motion.

2. If we disregard the contribution φp(xα , t)−φc(xα) 6= 0, we can note that the Lorentz-force term qα{ẋα ×B(xα , t)}i +

qα E i(xα , t), i.e. the interaction term, arises from the term 1
2mα

[pα + qα xα ×
∫ 1

0 dsB(sxα)]
2 and not from the term

− 1
ε0

∫
R3 d3xD.P. Our conclusion is that Y(xα , t) = −xα ×

∫ 1
0 sdsB(sxα , t) = Ap(xα , t) is the vector potential in the

Poincaré gauge and describes the interaction of light and matter.

The statement p.12 in11:”the familiar PZW hamiltonian accounts for the light-matter interaction in the form of the D.P
term” is then incorrect.

To conclude, the Power-Zienau-Woolley hamiltonian can not be said to be equivalent to the minimal-coupling
hamiltonian since it does not reproduce the correct equations of motion.

4 The domain of definition of the fields and the Helmholtz-Hodge decomposition
We now comment on the set of assumptions (ii) and (iii) to model the interaction of charged particles with the electromagnetic
field.

Vukics et al.11 assume that the fields are defined on R3 in order to write the Helmholtz theorem as V(x, t) = V⊥(x, t)+
V‖(x, t). They model the electric charges as Dirac distributions, the charge density being ρ(x, t;xn) = ∑

Z
α=1 qnδ (x−xα(t)) in

their model. As a consequence, the electromagnetic fields are not defined at the positions of the charges xα . Therefore, the
domain of definition of the fields is R3\{xα} and not R3 as assumed by Vukics et al..

The sets R3 and R3\{xα} are not topologically equivalent. The Helmhotz-Hodge decomposition that these authors used
V(x, t) = V⊥(x, t)+V‖(x, t) is valid only in R3, which is a space whose cohomology ring is trivial, while HP(R3\{xα}) = R
when p = 0,2 (HP denotes the pth de Rahm cohomology space).

A more general theorem is (theorem 13 in15):
A smooth vector field V(x) defined on a bounded or an unbounded domain, can be uniquely decomposed into three components:
1) an irrotational component V⊥(x), which is normal to the boundary, 2) an incompressible component V‖(x), which is parallel
to the boundary, and 3) a harmonic component h(x):

V(x, t) = V⊥(x, t)+V‖(x, t)+h(x) (11)

Harmonic components are both irrotational and incompressible vectors satisfying ∇×h(x) = 0 and ∇.h(x) = 0. Harmonic
fields are null in case of compact space15.

Vukics et al.11 assume that the longitudinal part of the electric field is E‖(x) = 1
4πε0

∑
Z
m=1 qm

x(t)−xm
|x(t)−xm|3

. Actually this is not

the longitudinal part of the electric field but the harmonic form related to the Helmholtz-Hodge decomposition in R3\{xα}.
Indeed, ∇× [ 1

4πε0
∑

Z
m=1 qm

x(t)−xm
|x(t)−xm|3

] = 0 is obvious since its derives from the scalar potential in there Coulomb gauge.

Morevover ∂

∂xi
[∑Z

m=1
x(t)−xm
|x(t)−xm|3

] =∑
Z
m=1[

3(xi(t)−xi
m)

|x(t)−xm|5
− 1
|x(t)−xm|3

] for each component ”i”. So in R3\{xα}, ∇.[ 1
4πε0

∑
Z
m=1 qm

x(t)−xm
|x(t)−xm|3

] =

0.
h(x) = 1

4πε0
∑

Z
m=1 qm

x(t)−xm
|x(t)−xm|3

is a harmonic form in R3\{xα} not the longitudinal component of a vector.
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To conclude, the Helmholtz-Hodge decomposition used by Vukics et al.11 is not correct and misses the harmonic forms.
The set of assumptions (ii) and (iii) are not in adequacy with the physical system to be modeled. The theory presented by
Vukics et al.11 to recover the Power-Zienau-Woolley hamiltonian leaves indeterminate both the value of the longitudinal part of
the electric-field E‖(x) and its harmonic form h(x). One can postulate their values but such ambiguities are of course absent
from the minimal-coupling hamiltonian indicating the inequivalence between both hamiltonians.
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