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ABSTRACT
Today reducing power consumption is a major concern especially
when it concerns small embedded devices. Power optimization is
required all along the design flow but particularly in the first steps
where it has the strongest impact. In this work, we propose new
power models based on neural networks that predict the power
consumed by digital operators implemented on Field Programmable
Gate Arrays (FPGAs). These operators are interconnected and the
statistical information of data patterns are propagated among them.
The obtained results make an overall power estimation of a specific
design possible. A comparison is performed to evaluate the accuracy
of our power models against the estimations provided by the Xilinx
Power Analyzer (XPA) tool. Our approach is verified at system-
level where different processing systems are implemented. A mean
absolute percentage error which is less than 8% is shown versus
the Xilinx classic flow dedicated to power estimation.
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1 INTRODUCTION
Power consumption has become a critical performance metric in
a wide range of electronic devices, from autonomous embedded
systems based on batteries to systems requiring a high computing
power [10]. Moreover, a huge amount of these devices will clearly
have an impact on the environment and on the worldwide energy
consumption in particular. One attempt to reduce the consumed
power of such devices consists in exploring various hardware ar-
chitectures, very soon in the design process, in order to reach an
optimal architecture in terms of power consumption. Today, this

exploration is not sufficiently implemented in most of the design
tools.

For example, design flows for circuits such as FPGAs do not
natively take into consideration power issues at system level. The
exploration flow generally consists in implementing several ver-
sions of an architecture in the FPGA and get power estimation
results after the timing simulation step. Power estimation results
are obtained by presenting stimuli data to the circuit and by eval-
uating the activity of internal signals. Although very accurate in
practice, these results are obtained very late in the design process
and require a lot of previous implementation steps, which can be
very time consuming. It is also prohibitive when one wants to
rapidly test various architectures according to given parameters.

Avoiding hardware implementation for the purpose of estimating
the power at early design phases is the best switchable solution for
researchers and engineers demanding a faster power estimation at
high-level of abstraction. Unfortunately, High Level abstract models
are generally not accurate enough and prevent the evaluation and
comparison of different hardware solutions.

In our work, we aim to propose a new hardware exploration
methodology that tries to combine both accuracy and fast power
estimation. This is achieved by estimating the power of specific
operators after the hardware implementation on a real platform
and by exploiting this information in high-level models. These pre-
characterized models can be easily integrated and simulated to
estimate the power consumption of an overall design.

This paper particularly focuses on FPGAs targets but the pro-
posed methodology may also apply on other hardware targets such
as ASICs devices. In FPGAs, the total power consumption has two
main contributors i.e static power and dynamic power. Static power
is directly related to the transistors leakage current and thus com-
pletely technology-dependent. Dynamic power is the power con-
sumed in the logic design due to the charging and discharging
capacitances when transistors are switching, in addition to the
short circuit power. Dynamic power is proportional to the switch-
ing activity per clock cycle and is highly data and design dependent.
Switching activity has a significant impact on this dynamic power.
As in [4], switching activity is a key indicator of dynamic power.
The expression of the total power consumption is given in eq. 1

PTotal = PDyn + PStat = αCV 2
dd f +Vdd Ileakaдe (1)

where PDyn is the dynamic power that depends on the switching
activity factor α (average numbers of gate transitions per clock
cycle), the node capacitance C , the supply voltage Vdd , and the
clock frequency f . The static power PStat is estimated as Vdd
Ileakaдe , where Ileakaдe represents the leakage currents. C and
Ileakaдe are technology dependent.
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This paper is organized as follows. Section 2 describes the exist-
ing techniques to estimate power consumption. Section 3 describes
the proposed method to model and to estimate power. Section 4
illustrates the use of our methodology on different case-studies and
provides results and discussions. Finally, section 5 summarizes and
concludes the paper.

2 RELATEDWORKS
When dealing with design exploration, power modeling becomes
a fundamental step that is required for power estimation. Power
estimation techniques can be classified into two classes, high-level
and low-level approaches. High-level power estimations are based
on power models which are used to evaluate power consumption
without requiring any implementation and physical details. High-
level input parameters are sufficient to obtain a good estimate of
the power consumption. The other class deals with low-level power
estimation approaches that take into consideration all physical
details. These are generally far more accurate as described in [3].

In this paper, we focus on high-level power estimation. In [9], a
dynamic power estimation model for FPGA is proposed. It is based
on the analytical computation of the switching activity generated
inside the components and takes into consideration the correlation
between the inputs. A mean relative error of 9.32% for adders and
5.67% for multipliers are obtained compare to measures on a real
platform.

A hybrid power modeling approach that accurately and quickly
assesses gate-level power consumption is presented in [7]. It con-
sists in integrating valuable and accurate physical information with
a LUT-based power model to ensure that the correct optimization
techniques are implemented. The main disadvantages of the LUT-
based macro-modeling are the use of a huge amount of memory to
store the input-output statistics and the corresponding simulated
power values. Concerning the analytical power models, the main
drawback is the simulation time, thereby the need of the computa-
tion of the outputs statistics after a time consuming simulation.

Some previousworks have introduced artificial intelligence based
on neural networks for power estimation. These are described in
[2], [8] and [11]. In [2] the neural network is used to estimate the
output statistics and the power consumption of complementary
metal-oxide-semiconductor (CMOS) circuits. The average absolute
relative error of the proposed method is about 5.0%, at circuit level.
Using this method, a lot of circuits have to be simulated to cover
most applications. Therefore it lacks of generality. In [8], macro-
modeling based on neural networks has been applied to different
multipliers. A comparison of different models shows that neural
networks are the most accurate method over linear equations and
LUT-based power estimation models.

Our current work is inspired from [1], and in the continuity of
[5] and [6]. In [1] a power macro-model for (Intellectual Property)
IP power estimation is proposed that is based on lookup table (LUT)
power models. The IP power model used to estimate the power
consumption of an IP-based digital system which is based on signal
statistics propagation. In [5], IP power models based on neural
networks have been proposed. Compare to this previous study, our
work aims to consider only operators characterization instead. The
idea is to provide a more generic and flexible approach to estimate

power consumption by allowing the design of a complete system
from basic operators.

3 POWER ESTIMATION METHODOLOGY
3.1 Proposed approach
The proposed methodology is based on the assumption that any
hardware system can be represented by a set of hardware com-
ponents that are dedicated to a specific function. The main idea
consists in estimating the consumption of a global digital system,
based on an accurate power estimation of its sub-components. Each
component has been fully characterized and is available in a dedi-
cated library.

Once the components have been fully characterized and that
accurate models are built, designers have the possibility to construct
their architecture by connecting components in a design entry
tool that is similar to schematics or with a hardware description
language.

The full design may then be simulated at high level to evaluate
the performances and obtain an accurate evaluation of the design
power profile. Note that, our methodology makes it possible to
test various combinations of components and then of architectures
very easily, by simply modifying the components in the high level
design entry tool. Since our power models are not computation
intensive, the simulation results may be obtained very fast, which
allows designers to test a lot of configurations in few minutes.

This type of simulation is generally not possible using classical
tools since designers need to implement all designs from scratch
when a simple modification is performed on the architecture. This
may actually lead to several hours or days of simulations to get an
accurate power profile of a full design.

In this article, we will focus on describing the characterization
phase that aims to develop the power models of different compo-
nents. This is explained in the following section.

3.2 Model Definition
The purpose of the characterization phase is to develop a power
model of a component by extracting the relevant information that
has a direct impact on power. An example of such operator can
be a simple component such as an adder, multiplexer, multiplier,
decoder, etc. Each operator has its own size and a defined number
of inputs and outputs.

In order to evaluate the power consumption of a given circuit, we
propose to provide each operator with a power model that depends
on the activity rate of its inputs. Each operator model consists
actually of two sub-modelsM1 andM2 that are described in Fig. 1.
M1 constitutes a first model that predict the power consumption
for given (signal rates) SR or (α ) and (percentage logic high) PLH
or (p) of all inputs. The signal activity of the inputs is expressed
in terms of millions of transitions per second (Mtr/sec). For every
input, PLH refers to the percentage of time during which the signal
is at HIGH level, on a period of 1 s. The global model provides then
an average of the energy consumed during this period.

The second sub-model (M2) makes it possible to estimate the
signal activity of the outputs as well as the percentage logic high
according to the operator’s inputs. This secondmodel is particularly
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useful when designers want to propagate the signals’ activity as
well as the PLH among all connected operators in their design.

In order to obtain a global power estimation for the entire design,
it is then possible to sum-up the power contribution of each opera-
tor, at high level. With an accurate estimation of signals activity,
these models allow designers to obtain accurate results without
spending a lot of time in simulation processes.

As an example, let us consider a system composed of N opera-
tors, and let us assume that the switching activity rate is αi , and
that pi is the percentage logic high at the input opi of the opera-
tor. Therefore, (βi ,hi ) constitutes the output feature vector of the
operator.M1,i andM2,i corresponds to the two models for the opi
input. By propagating this information to the subsequent operators,
a global power value can be computed according to eq. 2.

PGlobal = M1,1(α1,p1) +
N−1∑
i=2

M1,i (βi−1,hi−1). (2)

Figure 1: Operator Model

3.3 Characterization Process
In order to obtain pertinent information regarding the power that
is consumed by a specific operator, a characterization phase has to
be performed. It consists in implementing the operator on a given
FPGA target and in obtaining power results after applying various
configurations of SR and PLH values at the operator inputs. This
process is performed at low-level of abstraction in order to get as
much technical details as possible and to obtain the best accuracy
in terms of power estimation. Tools such as XPA may be used to
build a huge database that takes into consideration all ranges of
signal rates and Percentage Logic High for every inputs. The power
characterization process at low-level is described in Fig. 2.

3.4 Neural Network Models
BothM1 andM2 sub-models have been implemented using neural
networks that are classical tools that have shown their efficiency in
lots of domains. They especially perform very well in classification
and also in non-linear regression problems.

Neural networks consist of processing units called neurons that
operate in parallel to solve computational problems. In this study,
we consider basic multi-layer perceptrons (MLP) feed forward net-
works, that permit to model complex behaviors and may perform
multi-dimensional functions approximation. Such networks have
one or more hidden layers composed of neurons with non linear
transfer function, and provide an output layer that implements

Hardware Description Language 
(HDL) of Digital Operators

Functional 
Simulation

Working?

No

Implementation on 
FPGA

Yes

10000 Samples of 
Random 

Generated Signal 
Rates (SR) & 

Percentage Logic 
High (PLH)

Tool Command Language (TCL) 
scripts to control & automate the 

characterization process  

XPower Analyzer

Arithmetic Operators Implemented 
on FPGA

Power values extracted from 
XPower Analyzer (10000 samples)

Samples corresponding to the 
10000 x (SR, PLH) 

Figure 2: Power characterization Process Description

output neurons with a linear activation function. Fig. 3 shows a
typical architecture of an MLP neural network.

In a first learning phase, the multiple layers with nonlinear ac-
tivation functions allow the network to learn the relationships
between inputs and outputs. This is performed by modifying the
weights value between different neurons. In a second phase (the
forward phase), the network may estimate the correct output for
any given input pattern.

In our models, three layers have been used. Each layer receives
its inputs from the precedent layer and forwards its outputs to the
subsequent. In the forward phase, the hidden layer weight matrix is
multiplied by the input vectorX = (x1,x2,x3, . . . ,xn )T , to compute
the hidden layer output, as expressed in equation 3.

yh, j = f

( Ni∑
i=1

wh, jixi − θ

)
(3)

where wh, ji is the weight connecting input i to unit j in the
hidden neuron layer. θ is an offset termed bias that is also connected
to each neuron. In order to train the networks, the well known back-
propagation algorithm has been used.

Figure 3: MLP Neural Network Architecture

4 EXPERIMENTS AND RESULTS
In order to demonstrate the feasibility of our approach and to quan-
tify the models accuracy, case studies have been performed on
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different arithmetic operators. A full design composed of basic arith-
metic operators (adders and multipliers) has been implemented on
a xc7z045ffg900 FPGA device.

Two types of power estimation have been performed. The first
corresponds to the classic power estimation that is achieved in the
last steps of an FPGA design flow (after place and route). Regarding
Xilinx FPGAs, this step is implemented using XPA. The second
power estimation has been performed using our neural networks
models. In this case, simulation is implemented in Matlab and takes
place at high-level. The idea is to guarantee a fair comparison
between the results obtained with our models and XPA.

Both power estimation types have been achieved on two types of
designs. The first consists of a single operator (adder or multiplier)
in our case, and the second consists of a more complex combination
of these operators i.e an arithmetic function. This aims to demon-
strate the use and propagation of signal rates throughout a full
design. The results are described in the following sections.

4.1 Per-operator Verification
At operator-level, a verification phase is performed to calculate the
accuracy of the proposed models. As shown in Fig. 4, XPA has been
used to estimate the power consumption of a 16 bit adder and a 16
bit multiplier. For the same operators, the MATLAB tool has then
been used to estimate the dynamic power consumption using the
neural approach.

By providing the 16 bit adder / 16 bit multiplier with 10000 sam-
ples of signal rates and PLH, then 10000 data-samples of dynamic
power have been extracted from XPA. The exact same inputs given
to XPA are also provided to the neural models to evaluate both
power consumption and the signal rate and PLH. BothM1 andM2
neural networks have thus 16 (bits) x 2 (inputs) x 2 (signal rates +
PLH) = 64 inputs. Both models respectively contains 100 and 150
nodes in their hidden layer. The training set of each neural network
consists of 64x10000 data-samples (80% for training, 10% for valida-
tion and 10% for testing) with different combinations of signal rates
and PLH. At the output of theM1 Neural Network, only one power
value is provided. The M2 Neural Network provides 16 (bits)x 2
(signal rates + PLH) = 32 outputs to propagate the signal activity to
other subsequent models. BothM1 andM2 models are grouped in
a single block that is described in Fig. 4.

Op

X1

X2

Data_out Neural Network 
Operator Model

Data_in_16-bit
32xSR_in

32xPLH_in

Estimated Power

16xSR_out

16xPLH_out

Figure 4: Neural network accuracy measurements

Table 1 shows the relative error at operator-level in terms of
power estimation. The relative error has been calculated according
to 10000 data samples.

The results shown in this table indicate a relative error that is
very small (around 0.01%). This shows that neural networks have
learned the behavior of XPA and are able to model it very accurately.

Operators Real Power Modeled Power Relative Error
(mW) (mW) (%)

Adder 1.7879 1.7881 0.0112
Multiplier 27.4147 27.4136 0.0040

Table 1: Power accuracy for the considered models

4.2 Per-system Verification
At system-level, verification of several scenarios have been per-
formed. Figure 5 describes a function composed of single operators.
As in the per-operator approach, XPA has been used to evaluate the
power of the global system as well as the SR and PLH parameters.
In parallel, another global model has been built under Matlab and
consists in interconnecting bothM1 andM2 models for each oper-
ator and perform an high-Level simulation. This simulation aims
to propagate the parameters throughout all operators and provides
an overall power estimation.

F=(x1+x2)op(x3+x4)

X1

X2

X3

X4

Op F

Neural 
Network Box
Adder Model

Neural 
Network Box
Adder Model

Neural 
Network Box

Operator 
Model

P_system=ΣPi=p1+p2+p3P1

P2

P3

16xPLH_out

16xPLH_out

16xSR_out32xSR_in

32xPLH_in

32xSR_in

32xPLH_in

16xSR_out

32xSR_in

32xPLH_in

Figure 5: System level power estimation XPA vs NN

For both simulations, the same inputs, signal rates and PLH
combinations of 5000 data-samples have been provided to both XPA
and neural models. 5000 data-samples of dynamic power values
have been extracted from XPA and from the global neural power
models. Note that two functions have been implemented : Fi = (a
op b) op (c op d), where op can either be an adder or a multiplier.

As in eq. 4, a mean absolute percentage error is calculated over
5000 data samples at system-level to evaluate the accuracy of the
approach. PXPA is the power consumption calculated using the
XPA tool and PNN is the power consumption estimated by the
power model.

%MAPESystem−level =
100
n

n∑
i=1

|PXPA − PNN |
PXPA

(4)

Arithmetic Function Neural models (MAPE %)
F1(op1=+, op2=+, op3=+) 7.3699
F2(op1=*, op2=*, op3=*) 3.5158

Table 2: Models Accuracy for Different Functions

According to the results given in Table 2, it can be seen that our
method provides a good accuracy at system-level with an error that
is less than 8%.

Table 3 shows the initial estimates that are based on the sum of
the total average power of each operator. These estimates exhibit
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Arithmetic XPA-based Initial Relative Error
Function (mw) Estimates (mw) (%)

F1 4.6282 5.3637 15.8965
F2 70.2986 82.2441 16.9925

Table 3: The effect of Signal Activity Propagation Versus Ini-
tial Estimates

low accurate results, with a relative error that is greater than 15%.
Two sources of errors can be identified :first, the SR modeling errors
propagate and accumulate through the full design. Second, in XPA,
the fact that operators are connected to several neighbors has a
direct impact on the impedance and thus on the power consumption.
Note that power consumption of the intra-connections (within an
operator) is taken into consideration in each neural model.

These results show that it is necessary to take into account signal
propagation between operators for more accurate estimation.

4.3 Exploration Time
The purpose of this section is demonstrate the feasibility of our ap-
proach that consists in using high-level models to improve designs’
exploration time.

We propose to compare our approach with the classic FPGA
design flow that makes it possible to obtain an accurate power
estimation of a full design. To this aim, we considered the simple
example that is provided in section 4.2. In order to underline the
impact of the exploration time, let us consider that designers decide
to start implementing arithmetic function F1. We would like to eval-
uate the overhead that is required to obtain new power estimation
results if the design is modified to implement another function, let
say, function F2.

Using the Xilinx classic design flow, designers have to re-run
the complete flow and run the XPA estimation tool for the new F2
version. In this case, the design entry has to be modified accordingly
and synthesis and implementation steps are required. Moreover,
designers have to run the XPA power estimation tool to get a new
power of estimation. Although quite fast in this simple example,
it is important to note that these steps may become prohibitive
when dealing with complex systems with a lot of components.
Changing a single component demands to run the complete flow
for the modified design.

With our approach, designers only need to modify the instances
in the design entry tool and perform a high-level simulation with
SystemC. No additional steps are required. Furthermore, power
estimation is completely integrated in the simulator tool that can
perform complex simulations in a very fast time (less than few
seconds).

The different design steps that need to be followed are summa-
rized in table 4.

5 CONCLUSION
In this work, we have presented a new methodology, in which neu-
ral networks are the key models used for High-Level estimation of
the consumed power. Two types of neural networks have been used
to estimate power and signal activity (signal rate and PLH). Both

Design steps Xilinx Vivado Proposed Approach
Design entry yes yes (very easy)
RTL synthesis yes not required
Implementation yes not required
Power Estimation yes yes

Table 4: Required design steps to switch from F1 to F2 con-
figurations

types show a very good accuracy when considering simple opera-
tors. When using these models to evaluate more complex functions,
the obtained results are less accurate on the power estimation due
to the fact of the modeling errors and the interconnections power.
In a near future, we aim to develop a library of high-level power
models dedicated to FPGAs that can be jointly used with high-
level design tools to help designers in optimizing their systems.
Our work will make it possible to simulate a design very rapidly
without implementing architectures from scratch. Moreover, a real
measurement bench will be constructed to measure the power con-
sumption on the FPGA core. Using the measured power values for
specific operators to model the power consumption will help us in
developing more accurate models.
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