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Abstract—System tracking is an old problem and has been
heavily optimized throughout the past. However, in High En-
ergy Physics, many small systems are tracked in real-time
using Kalman filtering and no implementation satisfying those
constraints currently exists. In this paper, we present a code
generator used to speed up Cholesky Factorization and Kalman
Filter for small matrices. The generator is easy to use and
produces portable and heavily optimized code. We focus on
current SIMD architectures (SSE, AVX, AVX512, Neon, SVE,
Altivec and VSX). Our Cholesky factorization outperforms any
existing libraries: from ×3 to ×10 faster than MKL. The
Kalman Filter is also faster than existing implementations, and
achieves 4 · 109 iter/s on a 2×24C Intel Xeon.

I. INTRODUCTION

The goal of the paper is to present a code generator and
optimizations to get a fast reconstruction of a system trajec-
tory (tracking) using Kalman filtering for SIMD multi-core
architectures, for which it exists no efficient implementation.
The constraints are strong: few milliseconds to track thousands
of particles. Right now, the choice was to focus on general-
purpose processors (GPP) as SIMD extensions are present in
every system (so all CERN researcher could benefit of it).
GPUs were not selected when the work started in 2015 as the
transfer time (through PCI) between the host and the GPU was
longer than the amount of time allocated to the computation.
With the rise of the last generation of GPU connected to a
CPU with a high bandwidth bus, it becomes worth evaluating
them.

Even though optimizing Kalman filter tracking is an old
problem [21], existing implementations are not efficient for
many small systems.

The code generator uses the template engine Jinja2 [13]
and implements high level and low level optimizations. It is
used to produce a fast Cholesky factorization routine and a
fast Kalman filter in C. The generated code is completely
generic and can be used with any system. It also supports
many SIMD architectures: SSE, AVX, AVX512, Neon, SVE,
Altivec and VSX. In order to have a representative Kalman
filter and validate its implementation, a basic 4×4 system was
selected. Depending on the experiment the matrix size can
change. Some specific variants can also exist: 5×5 systems for
High Energy Physics [9], using three steps: forward, backward,
smoother.

This work will be used in the next upgrade of the LHCb
experiment to achieve real-time event reconstruction.

Algorithm 1: Cholesky system solving A ·X = R
// Factorization

1 for j = 0 : n− 1 do
2 s← A(j, j)
3 for k = 0 : j − 1 do
4 s← s− L(j, k)2

5 Lj,j ←
√
s

6 for i = j + 1 : n− 1 do
7 s← A(i, j)
8 for k = 0 : j − 1 do
9 s← s− L(i, k) · L(j, k)

10 L(i, j)← s/L(j, j)

// Forward substitution
11 for i = 0 : n− 1 do
12 s← R(i)
13 for j = 0 : i− 1 do
14 s← s− L(i, j) · Y (j)

15 Y (i)← s/L(i, i)

// Backward substitution
16 for i = n− 1 : 0 do
17 s← Y (i)
18 for j = i+ 1 : n− 1 do
19 s← s− L(j, i) ·X(j)

20 X(i)← s/L(i, i)

TABLE I: Arithmetic Intensity (AI)
version flop load + store AI
classic 1

6

(
2n3 + 15n2 + 7n

) 1
6

(
2n3 + 12n2 + 40n

)
∼1

scalarized 1
2

(
n2 + 6n

)
∼2n/3

In this paper, we will first present Cholesky Factorization,
the optimizations we applied to it, and their performance
impact. Then, we will present Kalman Filter, its optimizations
and their performance impact.

II. CHOLESKY FACTORIZATION

A. Algorithm
Cholesky Factorization (also known as Cholesky Decomposi-
tion) is a linear algebra algorithm used to express a symmetric
positive-definite matrix as the product of a triangular matrix
with its transposed matrix: A = L · LT . It can be combined
with forward and backward substitutions to solve a linear
system (algorithm 1).

Cholesky Factorization of a n×n matrix has a complexity in
terms of floating-point operations of n3/3 that is half of the
LU one (2n3/3), and is numerically more stable [11], [12].
This algorithm is naturally in-place as every input element is
accessed only once and before writing the associated element
of the output: L and A can use the same storage. It requires
n square roots and (n2 + 3n)/2 divisions for n×n matrices
which are slow operations especially on double precision.



With small matrices, parallelization is not efficient as there
is no long dimension. Therefore, matrices are grouped by
batches in order to efficiently parallelize along this new
dimension. The principle is to have a for-loop iterating over
the matrices, and within this loop, compute the factorization
of the matrix. This is also the approach used in [5].

B. Transformations
Improving the performance of software requires transforma-
tions of the code, especially High Level Transforms (HLT).
For Cholesky, we made the following transforms:
• High Level Transforms: memory layout [1] and fast square

root (the latter is detailed in II-C),
• loop transforms (loop unwinding [16] and unroll&jam),
• Architectural transforms: SIMDization.

1) Memory Layout Transform: The memory layout trans-
form is the first transform to address as the other ones rely on
it. The default memory layout in C is Array of Structure (AoS),
but is not suited for SIMD. In order to enable SIMD, the layout
should be modified into Structure of Arrays (SoA). A hybrid
memory layout (AoSoA) is preferred to avoid systematic cache
evictions.

The alignment of the data is also crucial. Aligned memory
allocations should be enforced by specific functions like
posix_memalign, _mm_malloc or aligned_alloc
(in C11). One might also want to align data with the cache
line size (usually 64 bytes). This may improve cache hits by
avoiding data being split into multiple cache lines when they fit
within one cache line and avoid false sharing between threads.

2) Loop unwinding: Loop unwinding is the special case of
loop unrolling where the loop is entirely unrolled. it has several
advantages, especially for small matrices:
• it avoids branching,
• it allows to keep temporaries into registers (scalarization),
• it helps out-of-order processors to efficiently reschedule

instructions.
This transform is very important as the algorithm is memory
bound. One can see that the arithmetic intensity of the scalar-
ized version is higher. This leads to algorithm 2 and reduces
the amount of memory accesses (Table I).

The register pressure is higher and the compiler may gen-
erate spill code to temporarily store variables into memory.

3) Loop Unroll & Jam: Cholesky Factorization of n×n
matrices involves n square roots + n divisions for a total
of ∼n3/3 floating-point operations (see Table I). The time
before the execution of two data independent instructions (also
known as throughput) is smaller than the latency. The latency
of pipelined instructions can be hidden by executing another
instruction in the pipeline without any data-dependence with
the previous one. The ipc (instructions per cycle) is then
limited by the throughputof the instruction and not by its
latency.

Current processors are Out-of-Order. But they are limited
by the size of their rescheduling window. In order to help

Algorithm 2: Cholesky system solving A ·X = R
unwound and scalarized for 4×4 matrices

// Load A into registers
1 a00 ← A(0, 0)
2 a10 ← A(1, 0) a11 ← A(1, 1)
3 a20 ← A(2, 0) a21 ← A(2, 1) a22 ← A(2, 2)
4 a30 ← A(3, 0) a31 ← A(3, 1) a32 ← A(3, 2) a33 ← A(3, 3)

// Load R into registers
5 r0 ← R(0) r1 ← R(1) r2 ← R(2) r3 ← R(3)

// Factorize A
6 l00 ←

√
a00

7 l10 ← a10/l00
8 l20 ← a20/l00
9 l30 ← a30/l00

10 l11 ←
√
a11 − l102

11 l21 ← (a21 − l20 · l10) /l11
12 l31 ← (a31 − l30 · l10) /l11
13 l22 ←

√
a22 − l202 − l212

14 l32 ← (a32 − l30 · l20 − l31 · l21) /l22
15 l33 ←

√
a33 − l302 − l312 − l322

// Forward substitution
16 y0 ← r0/l00
17 y1 ← (r1 − l10 · y0) /l11
18 y2 ← (r2 − l20 · y0 − l21 · y1) /l22
19 y3 ← (r3 − l30 · y0 − l31 · y1 − l32 · y1) /l33

// Backward substitution
20 x3 ← y3/l33
21 x2 ← (y2 − l32 · x3) /l22
22 x1 ← (y1 − l21 · x2 − l31 · x3) /l11
23 x0 ← (y0 − l10 · x1 − l20 · x2 − l30 · x3) /l00

// Store X into memory
24 X(3)← x3 X(2)← x2 X(1)← x1 X(0)← x0

the processor to pipeline instructions, it is possible to unroll
loops and to interleave instructions of data-independent loops
(Unroll&Jam). Here, Unroll&Jam of factor 2, 4 and 8 is
applied to the outer loop over the array of matrices. Its
efficiency is limited by the throughput of the unrolled loop
instructions and the register pressure.

C. Precision and Accuracy
Cholesky Factorization requires n square roots and (n2 +
3n)/2 divisions for a n×n matrix. But these arithmetic oper-
ations are slow, especially for double precision (see [7]) and
usually not fully pipelined. Thus, square roots and divisions
limit the overall Cholesky throughput.

It is possible in hardware to compute them faster with less
accuracy [23]. That is why reciprocal functions are available:
they are faster but have a lower accuracy: usually 12 bits for
a 23-bit mantissa in single precision.

The accuracy is measured in ulp (Unit in Last Place).

1) Memorization of the reciprocal value: In the algorithm,
a square root is needed to compute L(i, i). But L(i, i) is used
in the algorithm only with divisions. The algorithm needs(
n2 + 3n

)
/2 of these divisions per n×n matrix.

Instead of computing x/L(i, i), one can compute x ·
L(i, i)−1. The algorithm then needs only n divisions.

2) Fast square root reciprocal estimation: The algorithm
performs a division by a square root and therefore needs to



Listing 1: Simple C loop
1 for (int i = 0; i < 4; i++) {
2 s = B[i] + C[i];
3 A[i] = s / 2;
4 }

Listing 2: Simple Jinja loop
1 {% f o r i in range ( 4 ) %}
2 s{{ i }} = B[{{ i }}] + C[{{ i }}];
3 A[{{ i }}] = s{{ i }} / 2;
4 {% en d f or %}

compute f(x) = 1/
√
x. There are some ways to compute an

estimation of this function depending on the precision.
Most of current CPUs have a specific instruction to compute

an estimation of the square root reciprocal in single precision.
In fact, some ISA (Instruction Set Architecture) like Neon
and Altivec VMX do not have any SIMD instruction for the
square root and the division, but do have an instruction for a
square root reciprocal estimation. On x86, ARM and Power,
this instruction is as fast as the multiplication and gives an
estimation with 12-bit accuracy. Unlike regular square root and
division, this instruction is fully pipelined (throughput = 1)
and thus avoids pipeline stall.

3) Accuracy recovering: Depending on the application, the
previous techniques might not be accurate enough. The accu-
racy recovering (if needed) can be done with Newton-Raphson
method or Householder’s. All current SIMD architectures have
FMAs instruction to apply those methods quickly. See [17] for
more details.

D. Code generation
In order to help writing many different versions of the code,
we used Jinja2 [13]: a template engine in Python. Using
this tool, we can easily implement unrolling (both unwinding
and unroll&jam) and intrinsics code. The syntax uses custom
tags/tokens that control what is being output. As it is text
substitution, it is possible to manipulate new identifiers.

The generated code features all transformations and all sizes
from 3×3 up to 12×12 for all the architectures supported and
all SIMD wrappers. There is no actual limit for the unrolled
size, but the bigger the matrices, the longer the compilation.
This could be replaced by a C++ template metaprogram
like in [19]. The use of Jinja2 instead of more common
metaprogramming methods allows us to have full access and
control over the generated code. In some applicative domains,
it is crucial to have access to the source code before the
compilation in order to quickly track bugs.

1) unrolling: Unwinding can be done in Jinja by replacing
the C for-loop (Listing 1) into a Jinja for-loop (Listing 2).
The output of the template is the C code the compiler will see
(Listing 3).

Unroll&Jam uses a Jinja filter: a filter is a section that is
interpreted by Jinja as usual, but the output is then passed to a
function to transform it directly in Python. The unrollNjam

Listing 3: Simple Jinja loop output
1 s0 = B[0] + C[0];
2 A[0] = s0 / 2;
3 s1 = B[1] + C[1];
4 A[1] = s1 / 2;
5 s2 = B[2] + C[2];
6 A[2] = s2 / 2;
7 s3 = B[3] + C[3];
8 A[3] = s3 / 2;

filter duplicates lines with the symbol @, and replace the @ by
0, 1, 2. . . The template code in Listing 4 generates the code
in Listing 5.

2) SIMD: The SIMD generation is handled via a custom C-
like preprocessor written in Python. The interface consists in
custom Python objects accessible from Jinja.

When a Python macro is used within Jinja (Listing 6), it is
replaced by a unique name that is detected by our preprocessor.
It then acts like a regular C-preprocessor and replaces the
macro call by its definition from the Python class (Listing 7).

It is important to have a preprocessor as all the architecture
intrinsics differ not only by their name, but also by their
signature. The Altivec code (Listing 8) looks completely
different from for SSE despite being generated from the same
template (with VSX, the output would involve vec_mul
instead of vec_madd). This tool can also be used to generate
code for C++ SIMD wrappers.

3) SIMD wrappers: In order to see if it is worth writing
intrinsics, SIMD wrappers have been integrated into the code
and compared to the intrinsics and scalar code. The following
libraries have been tested: Boost.SIMD [6], libsimdpp [18],
MIPP [3], UME::SIMD [14], vcl [8].

Eigen has also been tested but is unable to compile Cholesky
Factorization when the element type is an array. It would have
been possible to write manually the factorization array element
type, but this would defeat the whole point of Eigen.

More libraries and tools exist like CilkPlus, Cyme, ispc [22],
Sierra or VC [15]. CilkPlus, Cyme and Sierra appear not to
be maintained anymore. VC and ispc did not fit into our test
code base without a lot of efforts, thus were not tested.

Listing 4: Unroll&Jam in Jinja
1 {% f i l t e r u n r o l l N j a m ( range ( 4 ) ) %}
2 s@ = B[@] + C[@];
3 A[@] = s@ / 2;
4 {% e n d f i l t e r %}

Listing 5: Unroll&Jam output
1 s0 = B[0] + C[0];
2 s1 = B[1] + C[1];
3 s2 = B[2] + C[2];
4 s3 = B[3] + C[3];
5 A[0] = s0 / 2;
6 A[1] = s1 / 2;
7 A[2] = s2 / 2;
8 A[3] = s3 / 2;



Listing 6: Macro usage
1 {{ vec }} h, a, b;

2 h = {{ vec ( 0 . 5 ) }};
3 a = {{ vec . l oad }}(&A[i]);
4 b = {{ vec . mul}}(a, h);

5 {{ vec . s t o r e }}(&B[i], b);

Listing 7: Macro output (SSE)
1 __m128 h, a, b;

2 h = _mm_set1_ps(0.5f);

3 a = _mm_load_ps(&A[i]);

4 b = _mm_mul_ps(a, h);

5 _mm_store_ps(&B[i], b);

SIMD wrappers in C++ are much longer to compile than
plain C with intrinsics. The biggest file took more than 30
hours and required more than 10 GB of memory to compile.
Thus, it was decided to stop the generation of unrolled code
for matrices bigger than 12×12.

E. Benchmarks
1) Benchmark protocol: In order to evaluate the impact of
the transforms, we used exhaustive benchmarks.

The algorithms were benchmarked on six machines whose
specifications are provided in Table II.

On x86, the code has been compiled with Intel icc
v18.0 with the following options: -std=c99 -O3 -vec

-ansi-alias. The time is measured in cycles with
_rdtsc().

On other architectures, gcc 7.2 has been used with
the following options: -std=c99 -O3 -ffast-math

-fstrict-aliasing. Time is measured with
clock_gettime(CLOCK_MONOTONIC, . . .).

In all the cases, the code is run multiple times with multiple
batch sizes, and the best time is kept.

The plots use the following conventions:
• scalar: scalar code. The SoA versions are vectorized by

the compiler though.
• SIMD: SIMD intrinsics code executed on the machine.
• unwind: inner loops unwound+scalarized (ie: fully un-

rolled).
• legacy: no reciprocal storing (base version).
• fast: use of fast square root reciprocal estimation.
• fastest: “fast” without any accuracy recovering.
• ×k: order of the outer loop unrolling (unroll&jam)

We focus our explanations on the HSW machine and single
precision as the accuracy is enough. See [17] for the analysis
of the double precision computation. All the machines have
similar behaviors unless explicitly specified otherwise.

We first present the impact of the transforms on perfor-
mance. Then, we compare our best version written in intrinsics
with SIMD wrappers and MKL [20]. Finally, we show the
performance on multiple machines.

Listing 8: Macro output (Altivec)
1 vector float h, a, b;

2 h = ((vector float){0.5f, 0.5f, 0.5f, 0.5f});

3 a = vec_ld(0, &A[i]);

4 b = vec_madd(a, h, (vector float)vec_splat_u32(0));
5 vec_st(b, 0, &B[i]);

2) Incremental speedup: Figure 1 gives the speedup of
each transformation in the following order: unwinding, SoA
+ SIMD, fast square root, unroll&jam. The speedup of a
transformation is dependent of the transformations already
applied: the order is significant.

If we look at the speedups on HSW (Figure 1a), we can
see that unwinding the inner loops improves the performance
well: from ×2 to ×3. Unwinding impact decreases when the
matrix size increases: the register pressure is higher.

SIMD gives a sub-linear speedup: from ×3.2 to ×6. In
fact, SIMD instructions cannot be fully efficient on this
function without fast square root (see subsubsection II-C2).
With further analysis, we can see that the speedup of SIMD
+ fast square root is almost constant around ×6. The impact
of the fast square root decreases as their number becomes
negligible compared to the other floating-point operations.
For small matrices, unroll&jam allows to get the last part
of the expected SIMD speedup. SIMD + fast square root +
unroll&jam: from ×6.5 to ×9. Unroll&jam loses its efficiency
for larger matrices: the register pressure is higher.

Speedups on Power8 are similar: Figure 1b.

3) Impact of unrolling: Figure 2 shows the performance for
different AVX versions. Without any unrolling, all versions ex-
cept “legacy” have similar performance: performance seems to
be limited by the latency between data-dependent instructions.
Unwinding can help Out-of-Order engine and thus reduces
data-dependencies.

The performance of the “non-fast” and “legacy” versions are
limited by the square root and division instruction throughput.
The performance has reached a limit and cannot be improved
further this limitation, even with unrolling: both unwinding
and unroll&jam are inefficient in this case. The “legacy”
version is more limited as it requires more divisions.

unwinding SIMD fast SQRT unroll&jam
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Fig. 1: Speedups of the transformations for Cholesky



TABLE II: Benchmarked machines

CPU full name ISA
frequency

(GHz) cores/threads SIMD
width #FMA

SIMD SP
parallelism

(FLOP/cycle)

cache (KB)
per core per CPU

L1 L2 L3
HSW E5-2683 v3 a AVX2 2.0 2× 14/28 256 2 32 32 256 35840

i9 i9-7900Xa AVX512 3.3 10/20 512 2 64 32 1024 14080
SKX Platinum 8168 a AVX512 2.7 2× 24/48 512 2 64 32 1024 33792

EPYC EPYC 7351P b AVX2 2.4 16/32 256 1 16 32 512 65536
A72 Cortex A72 c Neon 2.4 2× 32/32 128 1 8 32 256 32768

Power8 Power 8 Turismo d VSX 3.0 4/32 128 2 16 64 512 8192
a Intel b AMD c ARM d IBM
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Fig. 2: Performance of loop and square root transforms for the
AVX 3×3 version of Cholesky on HSW
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Fig. 3: Performance comparison between intrinsics code and
SIMD wrappers for Cholesky on HSW

For “fast” versions, both unrolling are efficient. Unroll&jam
achieves a ×3 speedup on regular code and ×1.5 speedup
with unwinding. This transformation reduces pipeline stalls
between data-dependent instructions (subsubsection II-B3).
We can see that unroll&jam is less efficient when the code
is already unwound but keeps improving the performance.
Register pressure is higher when unrolling (unwinding or
unroll&jam).

The “unwind+fastest” versions give an important benefit. By
removing the accuracy recovering instructions, we save many
instructions (II-C3, Accuracy recovering).

For such large matrices, unroll&jam slows down the code
when it is already unwound because of the register pressure.

4) SIMD wrappers: Figure 3 shows the performance of
SIMD wrappers compared to the intrinsics version. Optimiza-
tions not related to SIMD are applied the same way on all
versions. With the default version, all the wrappers seem to
have the performance until a point depending on the wrapper.
The drop in performance is a bug of the compiler that stops
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SIMD 256 legacy
MKL compact
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Fig. 4: Performance comparison between intrinsics code and
MKL for Cholesky on HSW

inlining the wrapper functions when the outer function is too
big (unwinding+unroll&jam).

With the “fast” version, most wrappers have similar per-
formance in single precision. However, UME::SIMD does not
implement the square root reciprocal approximation (despite
being part of the interface). Moreover, only Boost.SIMD
supports the fast square root in double precision. In that case,
Boost.SIMD is a bit slower than the intrinsics code.

5) Comparison with MKL: The version 2018 now supports
the SoA memory layout. It is designated by compact within the
documentation. Figure 4 shows the performance comparison
between our implementation and MKL.

The compact layout improved the performance for small
matrices, compared to the old functions. However, it is still
slower than our version for matrices smaller than 90×90.

First, MKL does not store the reciprocal and has to compute
actual divisions during both factorization and substitution. This
can be compared to our “legacy” version.

Then, it uses a recursive algorithm for the substitution that
has some overhead.

6) Summary: Figure 5 shows the performance of our best
SIMD version against scalar versions and libraries (Eigen and
MKL) for HSW, SKX, EPYC and Power8. Due to licensing
limitations, MKL has only been tested on HSW.

On aarch64, gcc has a performance bug1 where the instrinsic
vmlsq_f32(a,b,c) = a − b · c is compiled into two
instructions instead of one. This bug also affects the instrinsic
vfmsq_f32. As Cholesky Factorization mainly uses the latter
intrinsic, the performance obtained on this machine has no
meaning and was not considered here.

1https://gcc.gnu.org/bugzilla/show bug.cgi?id=82074

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82074
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Fig. 5: Performance of Cholesky on HSW, SKX, EPYC and
Power8 machines, mono-core

Both Eigen and the classic routines of MKL are slower than
our scalar AoS code and are barely visible on the plots. The
“compact” routines of MKL are faster, but still much slower
than the SIMD version.

On SKX, the scalar SoA performance drops from 9×9
matrices. This is due to the compiler icc that stops vectorizing
the unwound scalar code from this point.

On all tested machines, the scaling is strong with a parallel
efficiency2 above 80%.

III. KALMAN FILTER

A. Kalman Filter algorithm
Kalman Filter is a well-known algorithm to estimate the state
of a system from noisy and/or incomplete measurements. It is
commonly used in High Energy Physics and Computer Vision
as a tracking algorithm (reconstruct the trajectory). It is also
used for positioning systems like GPS.

Kalman filtering involves few matrix multiplications and a
matrix inversion that can be done with Cholesky Factorization
(see algorithm 3).

2The parallel efficiency is defined as the speedup of the multi-core code
over the single core code divided by the number of cores.

Algorithm 3: Kalman Filter
in/out : x, P // state, covariance
input : u, z // control, measure
input : A, B, Q, H , R // Parameters of the Kalman filter

// Predict
1 x′ ← Ax+B u
2 P ′ ← AP A

ᵀ
+Q

// Innovation
3 ỹ ← z −H x′

4 S ← H P ′H
ᵀ
+R

// Kalman Gain
5 K ← P ′H

ᵀ
S−1

// Update
6 x← x′ +K ỹ
7 P ← (I −KH)P ′

We focus on 4×4 Kalman filtering in order to validate the
implementation while keeping a representative filter. However,
the code is not limited to 4×4 systems and actually supports
all sizes. The filtered system is an inertial point in 2D with
the following state: (x, y, ẋ, ẏ).

B. Transformations
All transformations applied to Cholesky Factorization have
been tested on Kalman Filter. A few other optimizations have
been implemented and tested: algebraic optimizations and
memory access optimizations.

1) Algebraic optimizations: When optimizing an algorithm
like Kalman filtering, one can try to optimize the mathematical
operations.

The first thing to consider is avoiding the recomputation of
temporaries that are used several times. For the Kalman filter
from algorithm 3, it is possible to keep the temporary product
P ′H

ᵀ (line 4) to compute K (line 5).
It is also possible to keep S in its factorized form and

expand the expression of K in the expression of x and P :
algorithm 4. This ends up being less arithmetic operations
as long as matrix-vector products are preferred over matrix-
matrix products.

Algorithm 4: Kalman filter Optimized
in/out : x, P // state, covariance
input : u, z // control, measure
input : A, B, Q, H , R // Parameters of the Kalman filter

// Predict
1 x′ ← Ax+B u
2 P ′ ← AP A

ᵀ
+Q

// Innovation
3 ỹ ← z −H x′

4 Γ ← P ′H
ᵀ

5 S ← H Γ +R

// “Kalman Gain”
6 L← cholesky(S)
7 M ← L−1 Γ

ᵀ

// Update
8 x← x′ + Γ L−1ᵀL−1ỹ
9 P ← P ′ −M ᵀ

M

2) Memory access of symmetric matrices: One can save
many memory loads and stores by accessing only half of
the symmetric matrices. Indeed, those matrices are used a lot
within Kalman filtering for covariance matrices.

When the matrices are in AoS, accessing only half of a
symmetric matrix decreases a lot the vectorization efficiency,
especially with small matrices. Indeed, the pattern to access
the near-diagonal elements is not regular.

However, when matrices are in SoA, there is no such penalty
as we always load entire registers. Therefore, the vectorization
efficiency is the same as for square matrices, except with fewer
operations and memory accesses.

C. Benchmarks
1) Benchmark protocol: We use essentially the same protocol
to test our Kalman filter as for the Cholesky factorization.
The Kalman filter considered has a 4-dimensional state space
(x, y, ẋ, ẏ). Many of these systems are tracked together. The
time is measured per iteration. The plots use the same con-
ventions as for Cholesky, plus these extra:



• v1: classic version of the algorithm (algorithm 3)
• v2: optimized version of the algorithm (algorithm 4)
• triangle: only half of symmetric matrices is accessed

2) Incremental speedup: Incremental speedups are reported
on Figure 6. Like with Cholesky, the speedup comes mainly
from unwinding and SoA memory layout that enables vec-
torization. The mathematical optimizations (v2+triangle)
give a total extra speedup about +40%.

Unlike with Cholesky, the fast square and unroll&jam give
no benefit except on Power8. Indeed, the proportion of square
roots and division is much lower on Kalman. Moreover,
the operations are more independent from each other (more
intrinsic parallelism). Therefore, unroll&jam is not efficient
here. However, it is still interesting without unwinding.

The last thing to notice is that writing SIMD intrinsics does
not improve the performance, except on Power8 where gcc
struggles to optimize for the Power architecture.

3) Overall performance: The machines available for testing
at CERN are very different: two high-end bi-socket (Intel,
ARM) and two mono-socket (AMD, Power). So in order to
provide fair comparisons, we have normalized the results to
focus on transform speedups, and not the raw performance.

Looking at Figure 7, it appears clearly that it is not worth
writing SIMD as compilers are able to vectorize the code.
We still have to supply #pragma omp simd to ensure
the vectorization. Otherwise, compiler heuristics would have
stopped vectorizing.

Doing that, the compiler is even able to provide slightly
better code than SIMD code. The instruction scheduling and
register allocation might be involved.

On A72, the SIMD code is even slower than vectorized
because of the gcc bug.

Like with the Cholesky factorization, the scaling is strong
with a parallel efficiency above 80%.

4) State-of-the-art: As previously said, each experiment im-
plements some specific version of Kalman filtering, direct
comparison cannot be done. Indeed, the problem dimensional-
ity is different and the steps are different. Moreover, each step
of the filter for HEP is lighter than the full Kalman filtering:
no control vector, one-dimension measurement space.
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Fig. 7: Overall normalized performance of the Kalman filter
TABLE III: Rough comparison with State-of-the-Art Kalman
filters for HEP

Implementation steps cycle/iter
our code (4×4) FWD 44
our code (5×5) FWD 74

CMS (5×5) FWD+BWD+smooth 520
CBM (5×5) FWD+BWD+smooth 550
LHCb (5×5) FWD+BWD+smooth 1440

Timing of other implementations have been estimated from their article

Nevertheless, the performance of the SIMD implementa-
tions for CMS [4], CBM [10] and LHCb [2] is between
500 and 1500 cycle/iter (all steps). Our 4×4 implementation
achieves 44 cycle/iter (Table III). This is an order of magnitude
faster than existing implementations.

As a matter of fact, the SKX machine reaches an overall
performance of 4 · 109 iter/s.

CONCLUSION

In this paper, we have presented a code generator used
to create an efficient and portable SIMD implementation of
Cholesky Factorization for small matrices (6 12×12) and
Kalman Filter for 4×4 systems. The generated code supports
many SIMD architectures, and is AVX512/SVE ready. Being
completely general, it can be used with any system and is not
limited to 4×4 systems.

Our Cholesky factorization outperforms any existing li-
braries. Even if there are some improvements with MKL, we
are still ×3 up to ×10 faster on small matrices.

Our Kalman filter implementation is not directly comparable
to the State-of-the-Art because of its general form, but appears
to be one order of magnitude faster. With this, we are able to
reach 4 · 109 iter/s on a high-end Intel Xeon 2×24C.

To reach such a high level of performance, the proposed
implementation combines high level transforms (fast square
root and memory layout), low level transforms (loop unrolling
and loop unwinding), hardware optimizations (SIMD and
OPENMP multithreading) and linear algebra optimizations.
The code was automatically generated using Jinja2 to provide
strong optimizations with simple source code. SIMD wrappers



allow to write portable SIMD code, but require extra optimiza-
tions handled by our code generator.

With GPUs directly connected to the main memory, the
transfer bandwidth is much higher; thus, it would be worth
considering GPUs for future work.
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