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Abstract

Individual users often control a significant share of total traffic flows. Examples include

airlines, rail and maritime freight shippers, urban goods delivery companies and passenger

transportation network companies. These users have an incentive to internalize the conges-

tion delays their own vehicles impose on each other by adjusting the timing of their trips.

We investigate simultaneous trip-timing decisions by large users and small users in a dy-

namic model of congestion. Unlike previous work, we allow for heterogeneity of trip-timing

preferences and for the presence of small users such as individual commuters and fringe

airlines. We derive the optimal fleet departure schedule for a large user as a best-response

to the aggregate departure rate of other users. We show that when the vehicles in a large

user’s fleet have a sufficiently dispersed distribution of desired arrival times, there may exist

a pure-strategy Nash-equilibrium (PSNE) in which the large user schedules vehicles when

there is a queue. This resolves the problem of non-existence of a PSNE identified in Silva et

al. (2017) for the case of symmetric large users. We also develop some examples to identify

under what conditions a PSNE exists. The examples illustrate how self-internalization of

congestion by a large user can affect the nature of equilibrium and the travel costs that it

and other users incur.
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1. Introduction

Transportation congestion has been a growing problem for many years, and road traffic

congestion is now a blight in most large cities worldwide. Couture et al. (2016) estimate

that the deadweight loss from congestion is about US$30 billion per year in large US cities.1

Hymel (2009) shows that high levels of congestion dampen employment growth, and that

congestion pricing could yield substantial returns in restoring growth. Congestion delays

are also a problem at airports, on rail lines, at seaports and in the hinterland of major

transportation hubs. Ball et al. (2010) estimate that in 2007 air transportation delays in

the US imposed a cost of US$25 billion on passengers and airlines.

Research on congestion dates back to Pigou (1920). Yet most economic and engineering

models of congestible transportation facilities still assume that users are small in the sense

that each one controls a negligible fraction of total traffic (see, e.g., Melo, 2014). This is a

realistic assumption for passenger trips in private vehicles. Yet large users are prevalent in

all modes of transport. They include major airlines at their hub airports, railways, maritime

freight shippers, urban goods delivery companies, large taxi fleets and postal services. In

some cases large users account for an appreciable fraction of traffic.2 Furthermore, major

employers such as government departments, large corporations, and transportation service

providers can add substantially to traffic on certain roads at peak times.3 So can large

shopping centres, hotels, and major sporting events.4

Unlike small users, large users have an incentive to internalize the congestion delays

1Methods of estimating the costs of congestion differ, and results vary widely. The Texas Transportation

Institute estimated that in 2014, congestion in 471 urban areas of the US caused approximately 6.9 billion

hours of travel delay and 3.1 billion gallons of extra fuel consumption with an estimated total cost of

US$160 billion (Schrank et al., 2017). It is unclear how institutional and technological innovations such

as ridesharing, on-line shopping, electric vehicles, and automated vehicles will affect traffic volumes. The

possibility that automated vehicles will increase congestion is raised in National Academies of Sciences,

Engineering, and Medicine (2017) and The Economist (2018).
2For example, the world market for shipping is relatively concentrated. According to Statista (2017), as

of December 31, 2017, the top five shipping operators accounted for 61.5% of the world liner fleet. The top

ten accounted for 77.7%, and the top 15 for 85.5%. The top five port operators had a 29.9% global market

share (Port Technology, 2014). The aviation industry is another example. The average market share of the

largest firm in 59 major US airports during the period 2002-2012 was 42% (Choo, 2014). Similar shares

exist in Europe.
3For example, Ghosal and Southworth (2017) describe how the Kia Motors Manufacturing plant, a large

automobile assembler in West Point, Georgia, affects inbound and outbound transportation flows on highway

and rail networks, and at seaports.
4Using data from US metropolitan areas with Major League Baseball (MLB) teams, Humphreys and

Pyun (2017) estimate that attendance at MLB games increases average daily vehicle-miles traveled by

about 6.9%, and traffic congestion by 2%.
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their own vehicles impose on each other. This so-called “self-internalization” incentive can

affect large users’ decisions5 and raises a number of interesting questions — some of which

are discussed further in the conclusions. One is how much a large user gains from self-

internalization. Can it backfire and leave the large user worse off after other users respond?

Second, do other users gain or lose when one or more large users self-internalize? Does it

depend on the size of the large users and when they prefer to schedule their traffic? Are

mergers between large users welfare-improving? What about unions of small users that

create a large user?

There is now a growing literature on large users and self-internalization – notably on

large airlines and airport congestion. Nevertheless, this body of work is limited in two

respects. First, as described in more detail below, most studies have used static models.

Second, much of the theoretical literature has restricted attention to large users. In most

settings, however, small users are also present. Automobile drivers and most other road

users are small. Most airports serve not only scheduled commercial service, but also general

aviation movements by recreational private aircraft and other non-scheduled users. Low-

cost carriers with small market shares serve airports where large legacy airlines control

much of the overall traffic.6

We contribute to the literature in this paper by developing and analyzing a dynamic

model of congestion at a transportation facility with both large users and small users.

More specifically, we use the Vickrey bottleneck model to study how large users schedule

departure times for their vehicle fleets when small users use the facility too. As we explain

in the literature review below, to the best of our knowledge, we are the first to study

trip-timing decisions in markets with a mix of large and small users.

Several branches of literature have developed on large users of congestible facilities.7

They include studies of route-choice decisions on road networks and flight scheduling at

congested airports. There is also a literature directed to computer and telecommunications

5For example, some seaports alleviate congestion by extending operating hours at truck gates, and using

truck reservation systems at their container facilities (Weisbrod and Fitzroy, 2011). Cities and travel com-

panies are also attempting to spread tourist traffic by making off-peak visits more attractive and staggering

the arrivals of cruise ships (Sheahan and Bryan, 2018). Airports, especially in Europe, restrict the number of

landings and takeoffs during specific periods of time called slot windows (see Daniel (2014) for a discussion

of this practice).
6Using data from Madrid and Barcelona, Fageda and Fernandez-Villadangos (2009) report that the

market share of low-cost carriers is generally low (3-5 carriers with 3-18% of market share). Legacy carriers

themselves sometimes operate only a few flights out of airports where another legacy carrier has a hub. For

example, at Hartsfield-Jackson Atlanta International (ATL) American Airlines has a 3% market share while

Delta’s is 73% (Bureau of Transportation Statistics, 2017).
7See Silva et al. (2017) for a brief review.
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networks on atomic congestion games. However, most studies have adopted static models

that disregard the timing decisions of users despite the fact that congestion delays tend

to be highly concentrated at peak times (see, e.g., Naroditskiy and Steinberg, 2015). The

relatively small body of work that does address the temporal dimension of congestion has

taken three approaches to incorporate dynamics. One approach has used dynamic stochas-

tic models designed specifically to describe airport congestion (see, e.g., Daniel, 1995). A

second approach, also directed at studying airport congestion, features deterministic con-

gestion and a sequential decision-making structure in which an airline with market power

acts as a Stackelberg leader and schedules its flights before other airlines in a competitive

fringe (see Daniel, 2001; Silva et al., 2014). As Daniel (2014) discusses, the presence of slot

constraints at airports makes the Stackelberg approach relevant. The slots are allocated

twice a year with priority for the incumbent airlines; slots allocation for new entrants, which

are modeled as followers in this approach, occur only after the incumbents have committed

to a slot schedule, and normally come from new airport capacity. In these cases, adopt-

ing a sequential decision-making structure seems to be accurate. Nevertheless, at most

US airports, the capacity is assigned in a first-come, first-served basis, which makes the

simultaneous structure, and Nash as an equilibrium concept, more relevant.

These two approaches lead to outcomes broadly consistent with those of static models.

Two results stand out. First, self-internalization of congestion by large users tends to result

in less concentration of traffic at peak times, and consequently lower total costs for users

in aggregate. Second, the presence of small users limits the ability of large users to reduce

congestion. This is because reductions in the amount of traffic scheduled by large users,

either at peak times or overall, are partially offset by increases in traffic by small users.

The Stackelberg equilibrium concept adopted in the second approach rests on the as-

sumptions that the leader can schedule its traffic before other agents, and also commit itself

to abide by its choices after other agents have made theirs. These assumptions are plau-

sible in some institutional settings (e.g., Stackelberg leadership by legacy airlines at hub

airports), but by no means in all settings. The third approach to incorporating trip-timing

decisions, which we adopt, instead takes Nash equilibrium as the solution concept so that

all users make decisions simultaneously.

Our paper follows up on recent work by Verhoef and Silva (2017) and Silva et al. (2017)

who focus on determining under what conditions a Pure Strategy Nash Equilibrium (PSNE)

in departure-time decisions exists. These two studies employ different deterministic con-

gestion models that are best suited to describe road traffic congestion. Verhoef and Silva

(2017) use the flow congestion model developed by Henderson (1974), and modified by Chu

(1995). In this model, vehicles travel at a constant speed throughout their trips with the

speed determined by the density of vehicles prevailing when their trip ends. Verhoef and
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Silva (2017) show that, if there are two or more large users and no small users, a PSNE al-

ways exists. Self-internalization of congestion by the large users results in less concentration

of trips at peak times and, not surprisingly, higher efficiency compared to the equilibrium

without large users. However, this result is tempered by two well-known drawbacks of the

Henderson-Chu model. First, vehicles departing at any given time never interact with vehi-

cles departing at other times.8 Second, compared to the bottleneck model discussed below,

the Henderson-Chu model is less analytically tractable, and for most functional forms it

can only be solved numerically.

The second paper to adopt Nash equilibrium, by Silva et al. (2017), uses the Vickrey

(1969) bottleneck model in which congestion takes the form of queuing behind a bottleneck

with a fixed flow capacity. Silva et al. consider two large users controlling identical vehicles

with linear trip-timing preferences. In contrast to Verhoef and Silva (2017), Silva et al.

find that under plausible parameter assumptions a PSNE in departure times does not

exist. They also prove that a PSNE never exists in which large users queue. These results

readily generalize to oligopolistic markets with more than two large users. Silva et al.

also show that more than one PSNE may exist in which no queuing occurs, and that ex

ante identical users can incur substantially different equilibrium costs. These results are

disturbing given the fundamental importance of existence and uniqueness of equilibrium

for equilibrium models. The unease is heightened by the facts that the bottleneck model

is widely used, and that when all users are small a unique PSNE with a deterministic and

finite departure rate exists under relatively unrestrictive assumptions.9

8In essence, this means that every infinitesimal cohort of vehicles travels independently of other cohorts

and is unaffected by the volume of traffic that has departed earlier – contrary to what is observed in

practice. The Henderson-Chu model is a special case of the Lighthill-Whitham-Richards hydrodynamic

model in which shock waves travel at the same speed as vehicles and therefore never influence other vehicles

(see Lindsey and Verhoef, 2007). Henderson (1974) originally assumed that vehicle speed is determined

by the density of traffic encountered when a vehicle starts its trip. This formulation has the additional

disadvantage that a vehicle departing when density is low may overtake a vehicle that departed earlier when

density was higher. As Lindsey and Verhoef (2007) explain, overtaking has no behavioral basis if drivers

and vehicles are identical, and it is physically impossible under heavily congested conditions. By contrast,

in Chu’s (1995) reformulated model overtaking does not occur in equilibrium.
9A few experimental economics studies have tested the theoretical predictions of the bottleneck model;

see Dixit et al. (2015) for a review. The studies used a variant of the bottleneck model in which vehicles

and departure times are both discrete. In all but one study, players controlled a single vehicle. The

exception is Schneider and Weimann (2004) who ran two sets of experiments. In the first experiment each

player controlled one vehicle, and in the second experiment each player controlled 10 vehicles which were

referred to as trucks. Compared to the first experiment, the aggregate departure-time profile in the second

experiment was further from the theoretical Nash equilibrium and closer to the system optimum. Schneider

and Weimann conclude (p.151) that “players with 10 trucks internalize some of the congestion externality”.
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In this paper we extend Silva et al. (2017) by investigating the existence and nature

of PSNE in the bottleneck model for a wider range of market structures and under more

general assumptions about trip-timing preferences. Unlike both Verhoef and Silva (2017)

and Silva et al. (2017), we allow for the presence of small users as well as large users.

As in the standard bottleneck model, small users each control a single vehicle and seek to

minimize their individual trip cost. Each large user operates a vehicle fleet that comprises a

positive fraction or measure of total traffic, and seeks to minimize the aggregate trip costs

of its fleet.10 Each vehicle has trip-timing preferences described by a trip-cost function

C(t, a), where t denotes departure time and a denotes arrival time. Trip cost functions can

differ for small and large users, and they can also differ for vehicles in a large user’s fleet.

Our analysis consists of several parts. After introducing the basic model and assump-

tions in Section 2, in Section 3 we use optimal control theory to derive a large user’s optimal

fleet departure schedule as a best response to the aggregate departure rate profile of other

users. We show that the optimal response can be indeterminate, and the second-order

condition for an interior solution is generally violated. Consequently, a candidate PSNE

departure schedule may exist in which a large user cannot gain by rescheduling any single

vehicle in its fleet, yet it can gain by rescheduling a positive measure of vehicles. These diffi-

culties underlie the non-existence of a PSNE in Silva et al. (2017). We then show in Section

4 that if vehicles in the large user’s fleet have sufficiently diverse trip-timing preferences, a

PSNE may exist in which some - or even all - of the large user’s vehicles do queue. The fact

that a PSNE exists given sufficient user heterogeneity parallels the existence of equilibrium

in the Hotelling model of location choice given sufficient preference heterogeneity (de Palma

et al., 1985).

Next, in Section 5 we revisit the case of symmetric large users that Silva et al. (2017)

consider, and derive the minimum degree of preference heterogeneity required to support

a PSNE. We show that relative to the PSNE in which large users disregard self-imposed

congestion, self-internalization results in substantial efficiency gains from reduced queuing

delays even when the number of users is fairly large. Then, in Section 6 we modify the

example of symmetric large users by assuming that part of the traffic is controlled by a single

large user, and the rest by a continuum of small users. We derive conditions for existence of

Unfortunately, they do not provide information on how the players distributed their vehicles over departure-

time slots. Thus, it is not possible to compare their results with the predictions of our model as far as when

large users choose to depart.
10In game theory, small agents or players are sometimes called “non-atomic” and large agents “atomic”.

In economics, the corresponding terms are “atomistic” and “non-atomistic”. To avoid confusion, we do not

use these terms. However, we do refer to the PSNE in which large users do not internalize their self-imposed

congestion externalities as an “atomistic” PSNE.
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a PSNE and show how the order in which users depart depends on the flexibility implied by

the trip-timing preferences of large and small users. We also show that self-internalization

of congestion can have no effect on the PSNE at all.

2. The model

The model is a variant of the classical bottleneck model.11 All users travel from a

common origin to a common destination along a single link that has a bottleneck with a

fixed flow capacity of s. Without loss of generality, travel times from the origin to the

bottleneck and from the bottleneck to the destination are normalized to zero. If there is

no queue upstream of the bottleneck, travel time through the bottleneck is also zero and

departure time from the origin coincides with arrival time at the destination. Let r(t)

denote the aggregate departure rate from the origin at time t, and R(t) denote cumulative

departures. If the departure rate exceeds s, a queue develops. Let t̂ be the most recent

time at which there was no queue. The number of vehicles in the queue is then Q(t) =

R(t)−R(t̂)− s
(
t− t̂

)
, and travel time through the bottleneck is q(t) = Q(t)/s, or

q(t) = t̂− t+ s−1
(
R(t)−R(t̂)

)
. (1)

A user departing at time t arrives at time a = t+ q(t).

The cost of a trip is described by a function C (t, a, k), where k denotes a user’s index

or type.12 Function C (t, a, k) is assumed to have the following properties:

Assumption 1: C (t, a, k) is differentiable almost everywhere with derivatives Ct < 0,

Ca > 0, Ctt ≥ 0, Ctt + Caa > 0, Cta = Cat = 0, Ctk ≤ 0, Cak ≤ 0, Ctkk = 0, and Cakk = 0.

The assumption Ct < 0 implies that a user prefers time spent at the origin to time

spent in transit. Similarly, assumption Ca > 0 implies that a user prefers time spent at the

destination to time spent in transit. User types can be defined in various ways. For much

of the analysis, type is assumed to denote a user’s preferred time to travel if a trip could

be made instantaneously (i.e, with a = t). For type k, the preferred time is t∗k = Argmint

C (t, t, k). Given Assumption 1, t∗k is unique. Types are ordered so that if k > j, t∗k ≥ t∗j .
As explained in the Appendix, Assumption 1 is satisfied for various specifications of the

cost function including the piecewise linear form introduced by Vickrey (1969):

11The bottleneck model is reviewed in Arnott et al. (1998), Small and Verhoef (2007), de Palma and

Fosgerau (2011), and Small (2015). The exposition in this section draws heavily from Silva et al. (2017).

Literal excerpts are not marked as such and are taken to be acknowledged by this footnote.
12As explained in the Appendix, the trip cost function can be derived from functions specifying the flow

of utility or payoff received at the origin, at the destination, and while in transit.
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C (t, a, k) =

{
αk (a− t) + βk (t∗k − a) for a < t∗k
αk (a− t) + γk (a− t∗k) for a > t∗k

. (2)

In (2), parameter αk is the unit cost of travel time, βk < αk is the unit cost of arriving early,

and γk is the unit cost of arriving late. The first term in each branch of (2) denotes travel

time costs, and the second term denotes schedule delay costs. We refer to this specification

of costs as “step preferences”.13

Because step preferences have a kink at t∗k, the derivative Ca is discontinuous at a = t∗k.

This turns out to affect some of the results in this paper, and makes step preferences an

exception to some of the propositions. It is therefore useful to know whether step preferences

are reasonably descriptive of reality. Most studies that have used the bottleneck model

have adopted step preferences, but this may be driven in part by analytical tractability

and convention. Empirical evidence on the shape of the cost function is varied. Small

(1982) found that step preferences describe morning commuter behaviour fairly well, but

he did find evidence of discrete penalties for arriving late beyond a “margin of safety.”

Nonconvexities in schedule delay costs have been documented (e.g., Matsumoto, 1988), and

there is some empirical evidence that the marginal cost of arriving early can exceed the

marginal cost of travel time (Abkowitz, 1981a,b; Hendrickson and Plank, 1984; Tseng and

Verhoef, 2008) which violates the assumption βk < αk.

The paper features examples with step preferences where the results depend on the

relative magnitudes of parameters α, β, and γ. Estimates in the literature differ, but most

studies of automobile trips find that β < α < γ. Small (1982, Table 2, Model 1) estimates

ratios of β:α:γ = 1:1.64:3.9. These rates are representative of average estimates in later

studies.14 For benchmark values we adopt β:α:γ = 1:2:4.

In the standard bottleneck model, each user controls a single vehicle of measure zero and

decides when it departs. A Pure Strategy Nash Equilibrium (PSNE) is a set of departure

13These preferences have also been called “α− β − γ ” preferences.
14Estimates of the ratio γ/β vary widely. It is of the order of 8 in Geneva (Switzerland), and 4 in Brussels

(Belgium), where tolerance for late arrival is much larger (see de Palma and Rochat, 1997; Khattak and

de Palma, 1997). Tseng et al. (2005) obtain a ratio of 3.11 for the Netherlands. Peer et al. (2015) show that

estimates derived from travel choices made in the short run can differ significantly from estimates derived

from long-run choices when travelers have more flexibility to adjust their schedules. Most studies of trip-

timing preferences have considered passenger trips. Many large users transport freight rather than people.

Trip-timing preferences for freight transport can be governed by the shipper, the receiver, the transportation

service provider, or some combination of agents. There is little empirical evidence for freight transportation

on the relative values of α, β, and γ. The values are likely to depend on the type of commodity being

transported, the importance of reliability in the supply chain, and other factors. Thus, it is wise to allow

for a wide range of possible parameter values.
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times for all users such that no user can benefit (i.e., reduce trip cost) by unilaterally

changing departure time while taking other users’ departure times as given. For brevity,

the equilibrium will be called an “atomistic PSNE”.

If small users are homogeneous (i.e., they all have the same type), then in a PSNE they

depart during periods of queuing when the cost of a trip is constant. Their departure rate

will be called their atomistic equilibrium departure rate, or “atomistic rate” for short. The

atomistic rate for type k is derived from the condition that C (t, a, k) is constant. Using

subscripts to denote derivatives, this implies

Ct (t, a, k) + Ca (t, a, k)

(
1 +

dq (t)

dt

)
= 0.

Given (1), the atomistic rate is

r̂ (t, a, k) = −Ct (t, a, k)

Ca (t, a, k)
s. (3)

Since Ct < 0 and Ca > 0, r̂ (t, a, k) > 0. Using Assumption 1, it is straightforward to

establish the following properties of r̂ (t, a, k):15

∂r̂ (t, a, k)

∂k
≥ 0,

∂2r̂ (t, a, k)

∂k2
≥ 0, Sgn

(
∂r̂ (t, a, k)

∂a

)
= −Caa. (4)

For given values of t and a, the atomistic rate increases with a user’s type, and at an

increasing rate. In addition, the atomistic rate is increasing with arrival time if Caa < 0,

and decreasing if Caa > 0. With step preferences, Caa = 0 except at t∗k, and the atomistic

rate is:

r̂ (t, a, k) =

{
αk

αk−βk s for a < t∗k
αk

αk+γk
s for a > t∗k

. (5)

Silva et al. (2017) consider a variant of the standard bottleneck model in which users

are “large”. A large user controls a vehicle fleet of positive measure, and internalizes the

congestion costs its vehicles impose on each other. A PSNE entails a departure schedule

for each user such that no user can reduce the total trip costs of its fleet by unilaterally

changing its departure schedule while taking other users’ departure schedules as given. We

will call the equilibrium the “internalized PSNE”. Silva et al. (2017) focus on the case of

two large users with step preferences. In the next section we derive the departure schedule

of a large user with general trip-timing preferences when other large users and/or small

users may be departing too.

15See the Appendix.
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3. Fleet departure scheduling and equilibrium conditions

3.1. Optimal departure schedule for a large user

This section uses optimal control theory to derive and characterize the optimal departure

schedule of a large user with a fleet of vehicles. Call the large user “user A”, and let NA

be the measure of vehicles in its fleet. Vehicle k has a cost function CA (t, a, k). Vehicles

are indexed in order of increasing preferred arrival times so that t∗k ≥ t∗j if k > j. It is

assumed that, regardless of the queuing profile, it is optimal for user A to schedule vehicles

in order of increasing k. The departure schedule for user A can then be written rA (t) with

argument k suppressed. If RA (t) denotes cumulative departures of A, vehicle k = RA (t)

departs at time t.

User A chooses rA (t) to minimize the total trip costs of its fleet while taking as given

the aggregate departure rate of other users, r−A (t). Trips are assumed to be splittable:

they can be scheduled at disjoint times (e.g., some vehicles can travel early in the morning

while others travel at midday). Let tAs and tAe denote the first and last departure times

chosen by user A. User A’s optimization problem can be stated as:

Min
tAs,tAe,rA(t)

∫ tAe

t=tAs

rA (t)CA (t, t+ q (t) , RA (t)) dt, (6)

subject to the equations of motion:

dq (t)

dt+
=

{
s−1 (r−A (t) + rA (t))− 1 if q (t) > 0 or r−A (t) + rA (t) > s

0 otherwise
(7)

(costate variable λ (t) ≥ 0), and

dRA (t)

dt
= rA (t) (costate variable µ (t) ), (8)

and the following constraints16:

rA (t) ≥ 0 (multiplier ξ (t) ≥ 0), (9a)

RA (tAs) = 0, RA (tAe) = NA, (9b)

q (tAs) = q̄ (tAs) (multiplier φ), (9c)

tAs, tAe chosen freely. (9d)

Costate variable λ (t) for Eq. (7) measures the shadow cost to user A of queuing time.

Eq. (8) governs how many vehicles in user A’s fleet have left the origin. Costate variable

16The nonnegativity constraint on queuing time, q (t) ≥ 0, is guaranteed by (7).
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µ (t) measures the shadow cost of increasing the number of vehicles in the fleet that have

started their trips. Condition (9a) stipulates that the departure rate cannot be negative.

Condition (9b) specifies initial and terminal values for cumulative departures. Condition

(9c) describes how queuing time is evolving when departures begin. Finally, (9d) indicates

that the choice of departure period is unconstrained.

The Hamiltonian for the optimization problem is

H (t) = rA (t)CA (t, t+ q (t) , RA (t)) + µ (t)
dRA (t)

dt
+ λ (t)

dq (t)

dt+
, (10)

and the Lagrangian is

L (t) = H (t) + rA (t) ξ (t) . (11)

Costate variable λ (t) for queuing time evolves according to the equation of motion

dλ (t)

dt
= −∂H

∂q
= −rA (t)CAa (t, t+ q (t) , RA (t)) ≤ 0. (12)

Variable λ (t) decreases as successive vehicles in the fleet depart because fewer vehicles

remain that can be delayed by queuing.

Costate variable µ (t) for cumulative departures evolves according to the equation of

motion
dµ (t)

dt
= − ∂H

∂RA
= −rA (t)CAk (t, t+ q (t) , RA (t)) ≥ 0. (13)

If vehicles in the fleet are homogeneous, µ is independent of time.

With tAe chosen freely, transversality conditions at tAe are:

λ (tAe) = 0, (14)

H (tAe) = 0. (15)

According to condition (14), the shadow cost of queuing time drops to zero when the last

vehicle departs. Condition (15) dictates that the net flow of cost is zero when the last

vehicle departs. Substituting (14) into (10), and applying (15) yields

µ (tAe) = −CA (tAe, tAe + q (tAe) , NA) . (16)

Condition (16) states that the benefit from dispatching the last vehicle in the fleet is the

cost of its trip that has now been incurred, and is no longer a pending liability.

With tAs chosen freely, a transversality condition also applies at tAs. Following Theorem

7.8.1 in Leonard and Van Long (1992), the transversality condition is:

H (tAs)− φ
dq (t)

dt

∣∣∣∣
tAs

= 0, (17)
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where φ is a multiplier on the constraint (9c). By continuity, φ = λ (tAs). Using (10) and

(8), condition (17) reduces to

rA (tAs)
(
CA (tAs, tAs + q (tAs) , 0) + µ (tAs)

)
= 0. (18)

It remains to determine the optimal path of rA (t). The optimality conditions governing

rA (t) depend on whether or not there is a queue. Attention is limited here to the case with

a queue.17 If q (t) > 0, the optimal departure rate is governed by the conditions

∂L

∂rA (t)
= CA (t, t+ q (t) , RA (t)) + ξ (t) + µ (t) +

λ (t)

s
= 0, (19)

ξ (t) rA (t) = 0.

If rA (t) is positive and finite during an open time interval containing t, then ξ (t) = 0 and

(19) can be differentiated with respect to t:

d

dt

(
∂L

∂rA (t)

)
= CAt (t, t+ q (t) , RA (t)) + CAa (t, t+ q (t) , RA (t))

(
1 +

dq (t)

dt+

)
+CAk (t, t+ q (t) , RA (t)) rA (t) +

dµ (t)

dt
+

1

s

dλ (t)

dt
= 0.

Using Eqs. (7) and (12), this condition simplifies to

CAt (t, t+ q (t) , RA (t)) + CAa (t, t+ q (t) , RA (t))
r−A (t)

s
= 0. (20)

The left-hand-side of (20) depends on the aggregate departure rate of other users, r−A (t),

but not on rA (t) itself. In general, derivatives CAt (t, t+ q (t) , RA (t)) and CAa (t, t + q (t) ,

RA (t)) depend on the value of q (t), and hence the value of R (t), but not directly on

rA (t). Condition (20) will therefore not, in general, be satisfied regardless of user A’s

choice of rA (t). This implies that the optimal departure rate may follow a bang-bang

solution between zero flow and a mass departure.18 This is confirmed by inspecting the

Hessian matrix of the Hamiltonian:
∂2H
∂r2A(t)

∂2H
∂rA(t)∂q(t)

∂2H
∂rA(t)∂RA(t)

∂2H
∂rA(t)∂q(t)

∂2H
∂q2(t)

∂2H
∂q(t)∂RA(t)

∂2H
∂rA(t)∂RA(t)

∂2H
∂q(t)∂RA(t)

∂2H
∂R2

A(t)

 =


0 CAa (t, t+ q (t) , RA (t)) CAk (t, t+ q (t) , RA (t))

CAa (t, t+ q (t) , RA (t)) rA (t)CAaa (t, t+ q (t) , RA (t)) rA (t)CAak (t, t+ q (t) , RA (t))

CAk (t, t+ q (t) , RA (t)) rA (t)CAak (t, t+ q (t) , RA (t)) rA (t)CAkk (t, t+ q (t) , RA (t))

 .

17The optimality conditions with no queue, which involve multiple cases, are not very instructive.
18See Leonard and Long (1992, Chapter 8).
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Since the Hessian is not positive definite, the second-order sufficient conditions for a

local minimum are not satisfied. As we will show, if users are homogeneous the necessary

condition (20) cannot describe the optimal schedule unless CAaa = 0.

In summary, user A will not, in general, depart at a positive and finite rate when a

queue exists. To understand why, consider condition (20). Given CAt < 0 and CAa > 0, if

r−A (t) is “small” the left-hand side of (20) is negative. The net cost of a trip is decreasing

over time, and user A is better off scheduling the next vehicle in its fleet later. Contrarily,

if r−A (t) is “large”, the left-hand side of (20) is positive. Trip cost is increasing, and user

A should dispatch a mass of vehicles immediately if it has not already done so. In either

case, the optimal departure rate is not positive and finite.

In certain cases, described in the next section, condition (20) will be satisfied. The

condition can then be written as a formula for the departure rate of other users:

r−A (t) = −C
A
t (t, t+ q (t) , RA (t))

CAa (t, t+ q (t) , RA (t))
s ≡ r̂A (t, t+ q (t) , RA (t)) . (21)

Condition (21) has the same functional form as Eq. (3) for the atomistic rate of small users.

Thus, with step preferences, the right-hand side exceeds s for early arrival and is less than

s for late arrival. Moreover, the condition depends only on the aggregate departure rate of

other users, and not their composition (e.g., whether the other users who are departing are

large or small. However, condition (21) is only necessary, not sufficient, to have rA (t) > 0

because the second-order conditions are not satisfied. This leads to:

Lemma 1. Assume that a queue exists at time t. A large user will not depart at a positive

and finite rate at time t unless the aggregate departure rate of other users equals the large

user’s atomistic rate given in Eq. (21).

Lemma 1 requires qualification in the case of step preferences because the atomistic

rate is discontinuous at the preferred arrival time. If vehicles in a large user’s fleet differ

sufficiently in their individual t∗k, it is possible to have a PSNE in which the fleet departs

at a positive and finite rate with each vehicle arriving exactly on time. The aggregate

departure rate of other users falls short of the atomistic rate of each vehicle in the fleet just

before it departs, and exceeds it just after it departs. This is illustrated using an example

in Section 6.

3.2. Equilibrium conditions with large users

We now explore the implications of Lemma 1 for the existence of a PSNE in which a

large user departs when there is a queue and the atomistic rates of all users are continuous.

Conditions for a PSNE depend on whether or not small users are present, and the two cases

are considered separately below.
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3.2.1. Multiple large users and no small users

Suppose there are m ≥ 2 large users and no small users. User i has an atomistic rate

r̂i (t, t+ q (t) , Ri (t)). For brevity, we write this as r̂i (t) with arrival time and the index k

for vehicles both suppressed. Suppose that a queue exists at time t, and user i departs at

rate ri (t) > 0, i = 1...m.19 Necessary conditions for a PSNE to exist are

r−i (t) = r̂i (t) , i = 1...m. (22)

This system of m equations has a solution

ri (t) =
1

m− 1

∑
j 6=ir̂j (t)− m− 2

m− 1
r̂i (t)

=
1

m− 1

∑
j r̂j (t)− r̂i (t) , i = 1...m. (23)

With m = 2, the solution is r1 (t) = r̂2 (t), and r2 (t) = r̂1 (t). With m > 2, the solution

is feasible only if all departure rates are nonnegative. A necessary and sufficient condition

for this to hold at time t is

Max
i

r̂i (t) ≤ 1

m− 2

∑
j 6=ir̂j (t) . (24)

Condition (24) is satisfied if large users have sufficiently similar atomistic rates.

3.2.2. Multiple large users and small users

Assume now that, in addition to m ≥ 1 large users, there is a group of homogeneous

small users comprising a positive measure of total traffic with an atomistic rate r̂o (t).

Suppose that large user i departs at rate ri (t) > 0, i = 1...m, and small users depart at an

aggregate rate ro (t) > 0. If a queue exists at time t, necessary conditions for a PSNE are

r−i (t) = r̂i (t) , i = 1...m, (25)∑
jrj (t) + ro (t) = r̂o (t) . (26)

The solution to this system of m+ 1 equations is

ri (t) = r̂o (t)− r̂i (t) , i = 1...m, (27)

ro (t) =
∑

j r̂j (t)− (m− 1) r̂o (t) . (28)

The solution is feasible only if all departure rates are nonnegative. With m = 1, the

necessary and sufficient condition is r̂1 (t) < r̂0 (t). With m > 1, necessary and sufficient

19If a user does not depart at time t, it can be omitted from the set of m “active” users at t.
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conditions for nonnegativity are

1

m− 1

∑
j r̂j (t) > r̂o (t) , (29)

r̂i (t) < r̂o (t) , i = 1...m. (30)

Condition (30) requires that all large users have lower atomistic rates than the small users.

However, condition (29) dictates that the average atomistic rate for large users be close

enough to the atomistic rate of small users. Together, (29) and (30) impose relatively tight

bounds on the r̂i (t) .

4. Existence of PSNE with queuing by a large user

Silva et al. (2017) consider two identical large users with homogeneous vehicle fleets

and step preferences. They show that a PSNE with queuing does not exist. In addition,

they show that if γ > α, a PSNE without queuing does not exist either so that no PSNE

exists. In this section we build on their results in two directions. First, we prove that

if a large user has a homogeneous vehicle fleet, and CAaa 6= 0 at any time when the large

user’s vehicles arrive, a PSNE in which the large user queues does not exist for any market

structure. Second, we show that if a large user has a heterogeneous vehicle fleet, and the

derivative CAak is sufficiently large in magnitude, a PSNE in which the large user queues is

possible. We illustrate the second result in Section 5.

Consider a large user, “user A”, and a candidate PSNE in which queuing time is q̄ (t) > 0

at time t. (A bar denotes quantities in the candidate PSNE.) User A never departs alone

when there is a queue because it can reduce its fleet costs by postponing departures. Thus,

if r̄A (t) is positive and finite, other users must also be departing. The aggregate departure

rate of other users must equal user A’s atomistic rate as per Eq. (22) or (25):

r̄−A (t) = r̂A
(
t, t+ q̄ (t) , R̄A (t)

)
.

In addition, user A must depart at a rate r̄A (t) consistent with equilibrium for other users as

per Eq. (23), or Eqs. (27) and (28). Figure 1 depicts a candidate PSNE on the assumption

that CAaa > 0. (The case CAaa < 0 is considered below.) Cumulative departures of other

users, R̄−A (t), are shown by the blue curve passing through points y and z. Cumulative

total departures, R̄ (t), are shown by the black curve passing through points A, D and B.

Cumulative departures of user A, R̄A (t) = R̄ (t) − R̄−A (t), are measured by the distance

between the two curves.

Suppose that user A deviates from the candidate PSNE during the interval (tA, tB) by

dispatching its vehicles slightly later so that section ADB of R̄ (t) shifts rightwards to R̃ (t)
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Figure 1: Candidate PSNE with CAaa > 0

shown by the green curve. The rescheduled vehicles still depart in order of increasing k.20

Vehicle k = R̄A (tD) that is initially scheduled to depart at point D and time tD is therefore

rescheduled to point E and time tE such that distance Ez equals distance Dy. Vehicle k

experiences a change in cost of

∆CA (k) = CA (tE , tE + q̃ (tE) , k)− CA (tD, tD + q̄ (tD) , k) ,

where q̄ (tD) is queuing time at tD with the candidate equilibrium departure schedule R̄ (t),

and q̃ (tE) is queuing time at tE with the deviated schedule R̃ (t). The path from point D to

point E can be traversed along the dashed blue curve running parallel to R̄−A (t) between

points y and z. Let q̌ (t) denote queuing time along this path. The change in cost can then

20If vehicles are homogeneous, the order of departure does not matter. The assumption that they depart

in the same order is useful for accounting purposes.
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be written

∆CA (k) =

∫ tE

t=tD

(
CAt (t, t+ q̌ (t) , k) + CAa (t, t+ q̌ (t) , k)

(
1 +

dq̌ (t)

dt

))
dt.

=

∫ tE

t=tD

(
CAt (t, t+ q̌ (t) , k) + CAa (t, t+ q̌ (t) , k)

r̂A
(
t, t+ q̄ (t) , R̄A (t)

)
s

)
dt

=
1

s

∫ tE

t=tD

CAa (t, t+ q̌ (t) , k)
{
r̂A
(
t, t+ q̄ (t) , R̄A (t)

)
− r̂A (t, t+ q̌ (t) , k)

}
dt

=
1

s

∫ tE

t=tD

CAa (t, t+ q̌ (t) , k)


(
r̂A
(
t, t+ q̄ (t) , R̄A (t)

)
− r̂A (t, t+ q̄ (t) , k)

)
− (r̂A (t, t+ q̌ (t) , k)− r̂A (t, t+ q̄ (t) , k))

 dt. (31)

The sign of this expression depends on how r̂A varies with arrival time and vehicle

index. We begin by showing that, if vehicles are homogeneous, (31) is negative so that

∆CA (k) < 0 and the candidate is not a PSNE.

4.1. Homogeneous vehicle fleets

If user A has a homogeneous fleet, the first line in braces in (31) is zero. Given CAaa > 0

and q̌ (t) < q̄ (t) for t ∈ (tD, tE), r̂A (t, t+ q̌ (t) , k) > r̂A (t, t+ q̄ (t) , k) and the second line

in braces is negative. Hence ∆CA (k) < 0, and rescheduling the vehicle from D to E

reduces its trip cost. Since point D is representative of all points between A and B, all

the rescheduled vehicles except those at the endpoints, A and B, experience a reduction in

costs. User A therefore gains from the deviation, and the candidate schedule is not a PSNE.

In the Appendix we show that if CAaa < 0, user A can benefit by accelerating departures

of its fleet. Deviation is therefore beneficial both when CAaa > 0 and when CAaa < 0. This

result is formalized in

Lemma 2. Consider large user A with a homogeneous vehicle fleet. If a queue exists at

time t, and CAaa(t, t+ q(t)) 6= 0, user A will not depart at a positive and finite rate at time

t.

Lemma 2 shows that although the candidate PSNE is robust to deviations in the de-

parture time of a single vehicle, it is not robust to deviations by a positive measure of the

fleet. If CAaa > 0, the departure rate of other users must decrease over time in order for

user A to maintain a positive and finite departure rate. By delaying departures, user A

enables vehicles in its fleet to benefit from shorter queuing delays. Conversely, if CAaa < 0,

the departure rate of other users must increase over time in a PSNE, and user A can benefit

by accelerating departures of its fleet.
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Lemma 2 contrasts sharply with the results of Verhoef and Silva (2017) who show that,

given a set of large users with homogeneous vehicle fleets, a PSNE always exists in the

Henderson-Chu model. As noted in the introduction, in the Henderson-Chu model vehicles

that arrive (or depart) at different times do not interact with other. In particular, a cohort

of vehicles departing at time t is unaffected by the number or density of vehicles that

departed before t. Thus, if a large user increases or decreases the departure rate of its

fleet at time t, it does not affect the costs incurred by other vehicles in the fleet that are

scheduled after t. Equilibrium is determined on a point-by-point basis, and there is no

state variable analogous to the queue in the bottleneck model that creates intertemporal

dependence in costs.

4.2. Heterogeneous vehicle fleets

Suppose now that user A has a heterogeneous fleet. By (4), ∂r̂A (t, a, k) /∂k ≥ 0 so

that the first line in braces in (31) is positive. Expression (31) is then positive if the

first line outweighs the second line. We show that this is indeed the case under plausible

assumptions. Towards this, we introduce the following two-part assumption:

Assumption 2: (i) The trip cost function depends only on the difference between actual

arrival time and desired arrival time, and thus can be written CA (t, a, k) = CA (t, a− t∗k).
(ii) t∗k is distributed according to a density function f (t∗k) over a range [t∗s, t

∗
e].

The following result is proved in the Appendix:

Theorem 1. Consider large user A with a heterogeneous vehicle fleet that satisfies As-

sumption 2. If the density of desired arrival times in user A’s fleet never exceeds bottleneck

capacity (i.e., f (t∗k) ≤ s ∀ t∗k ∈ [t∗s, t
∗
e]), a PSNE in which user A queues may exist.

Theorem 1 identifies necessary conditions such that a large user may queue in a PSNE.

In light of Lemma 2 the key requirement is evidently sufficient heterogeneity in the trip-

timing preferences of vehicles in the large user’s fleet. Condition f (t∗k) ≤ s stipulates

that the desired arrival rate of vehicles in the fleet never exceeds bottleneck capacity. Put

another way, if user A were the only user of the bottleneck, it could schedule its fleet so

that every vehicle arrived precisely on time without queuing delay.

The assumption f (t∗k) ≤ s is plausible for road transport. Freight shippers such as

Fedex or UPS operate large vehicle fleets out of airports and central warehouses, and

they can make hundreds of daily trips on highways and connecting roads in an urban

area. Nevertheless, deliveries are typically made to geographically dispersed customers

throughout the day so that the fleet rarely comprises more than a small fraction of total
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traffic on a link at any given time. Thus, for any t∗k, f (t∗k) is likely to be only a modest

fraction of s.

In concluding this section it should be emphasized that Theorem 1 only states that a

PSNE in which a large user queues may exist. A large user may prefer to avoid queuing

by traveling at off-peak times. To determine whether this is the case, it is necessary to

consider the trip-timing preferences of all users. We do so in Section 5 for the case of large

users studied by Silva et al. (2017). Section 6 examines a variant with both large users and

small users.

5. Existence of PSNE and self-internalization: multiple large users

In this section we analyze the existence of PSNE with m ≥ 2 symmetric large users.

We begin with m = 2: the case considered by Silva et al. (2017). Consider two symmetric

large users, A and B, that each controls N/2 vehicles with step preferences. Such a market

setting might arise with two airlines that operate all (or most of) the flights at a congested

airport. This section revisits Proposition 1 in Silva et al. (2017) which states that a PSNE

does not exist with homogeneous vehicles when γ > α. Their proof entails showing that

with γ > α, a PSNE without queuing does not exist. The proof that a PSNE with queuing

does not exist either follows the general reasoning used to prove Lemma 2 above. Here we

relax the assumption that vehicles are homogeneous, and suppose that in each vehicle fleet,

t∗k is uniformly distributed with a density f (t∗k) = N/ (2∆) over the interval [t∗s, t
∗
e] where

∆ ≡ t∗e − t∗s. It can be shown that introducing heterogeneity in this way does not upset

the proof in Silva et al. (2017) that a PSNE without queuing does not exist. However, a

PSNE with queuing does exist if the conditions of Theorem 1 are met. Both conditions of

Assumption 2 are satisfied. The remaining condition, f (t∗k) ≤ s, is also met if N/ (2∆) ≤ s,
or ∆ ≥ N/ (2s).

The candidate PSNE with queuing is shown in Figure 2.21 The cumulative distribution

of desired arrival times for users A and B together is shown by the straight line W with

domain [t∗s, t
∗
e] and height N . The two users schedule vehicles at the same rate. During the

initial interval (ts, tq), both users depart at an aggregate rate of s without creating a queue.

Queuing begins at time tq, and ends at te when the last vehicle in each fleet departs. Queuing

time reaches a maximum at t̃ for a vehicle arriving at t̂∗ = β
β+γ t

∗
s + γ

β+γ t
∗
e. Total departures

after time tq are shown by the piecewise linear curve ALC. Cumulative departures by user

B starting at tq are given by the piecewise linear curve AP ′E, and cumulative departures

by user A are measured by the distance between AP ′E and ALC.

21Figure 2 is a variant of Figure 2 in Silva et al. (2017). The main difference is that desired arrival times

have a nondegenerate distribution rather than being the same for all vehicles.
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Figure 2: PSNE with two large users

Silva et al. (2017) show that with homogeneous vehicles user A can benefit by deviating

from the candidate PSNE and rescheduling part of its fleet later. To see whether this is

possible in Figure 2, consider vehicle k in user A’s fleet. This vehicle is scheduled to depart

at time tk, when cumulative departures have reached point K, and arrive early at ak < t∗k.

To benefit from rescheduling, vehicle k has to depart after t̃ when user B has decreased

its departure rate from α
α−β s to α

α+γ s. Vehicle k therefore has to depart after cumulative

departures have reached point K ′ where distance K ′P ′ equals distance KP . Vehicle k can

benefit if it still arrives early. This is possible if all vehicles had a common desired arrival

time of t̂∗. But, as shown in the Appendix, it is not possible with the distribution of t∗

shown, with ∆ = t∗e − t∗s > N/ (2s) , because vehicle k will arrive after time a′k > t∗k when

it is late. Vehicle k thus cannot take advantage of the drop in user B’s departure rate

at t̃. The same reasoning applies to all vehicles in user A’s fleet. Deviation is therefore

unprofitable, and the candidate PSNE is a PSNE.

The existence of a PSNE contrasts with Silva et al. (2017) who show that no PSNE

exists if γ > α and vehicles are homogeneous. We formalize this result in the following

proposition which serves as a counterpart to Proposition 1 in Silva et al. (2017).

Proposition 1. Consider two identical large users that simultaneously schedule N/2 vehi-
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cles each with unit costs α, β, and γ, with γ > α. Desired arrival times in each fleet are

uniformly distributed with a range ∆. If ∆ > N/ (2s), a unique PSNE exists that is shown

in Figure 2.

The analysis is readily extended to m > 2 symmetric users. The necessary and sufficient

condition for a PSNE with queuing to exist is ∆ > N/ (ms). This condition becomes less

stringent the larger is m. The counterpart to Proposition 1 with m users is stated as:

Corollary 1. Consider m identical large users that simultaneously schedule N/m vehicles

each with unit costs α, β, and γ, with γ > α. Desired arrival times in each fleet are

uniformly distributed with a range ∆. If ∆ > N/(ms), a unique PSNE exists.

If a PSNE exists, total costs in the internalized PSNE, TCi, are lower than total costs

in the atomistic PSNE, TCn. As shown in the Appendix, the total cost saving from

internalization with m users is

TCn − TCi =
(m− 1)β (α+ γ) +mαγ

2m (m− 1)βγ + 2mαγ︸ ︷︷ ︸
Ψ

· TCnH ,

where TCnH = βγ
β+γ

N2

s denotes total costs in the atomistic PSNE with homogeneous ve-

hicles. The composite parameter Ψ depends on parameters α, β, and γ only through the

ratios β/α and γ/α. Given the benchmark ratios of β:α:γ = 1:2:4, Ψ = 7m−3
4m(1+m) , which

varies with m as shown in Table 1.

m 1 2 3 4 5 10 20 Large

Ψ 0.5 0.458 0.375 0.313 0.267 0.152 0.081 ' 7/(4m)

Table 1: Proportional cost saving from internalization as a function of m

With two users (m = 2) the saving is nearly as great as with a single user. Even with

10 users the savings is over 15 percent of the atomistic costs TCnH . These results are

similar to those obtained by Verhoef and Silva (2017) with the Henderson-Chu model of

congestion and a single desired arrival time, as they also find significant savings from self-

internalization. Moreover, with heterogeneity in t∗, total costs in the atomistic PSNE are

less than TCnH so that the proportional cost saving from internalization is actually larger

than shown in Table 1. The example shows that self-internalization of congestion can

boost efficiency appreciably even if no user controls a large fraction of total traffic. This

is consistent with Brueckner (2002) who showed, using a Cournot oligopoly model, that

internalization of self-imposed delays leads to an equilibrium that is more efficient than the

atomistic equilibrium, and correspondingly offers smaller potential efficiency gains from

congestion pricing.
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6. Existence of PSNE and self-internalization: large and small users

In this section we modify the example in Section 5. We now assume that traffic is

controlled by one large user, user A, with a vehicle fleet of measure NA, and a group of

homogeneous small users with a measure No. For ease of reference, vehicles in user A’s fleet

are called “large vehicles” and vehicles driven by small users are called “small vehicles”.

Large vehicles have the same trip-timing preferences as in Section 5. Their unit costs are

denoted by αA, βA, and γA. Their desired arrival times are uniformly distributed over the

interval [t∗s, t
∗
e] with a range of ∆ ≡ t∗e − t∗s. For future use we define δ ≡ s∆/NA.

The existence and nature of PSNE depend on how the trip-timing preferences of small

vehicles compare with those of large vehicles. We adopt a specification that allows the

preferences to be either the same, or different in a plausible and interesting way. Small

vehicles have step preferences with unit costs of α, β, and γ. The cost of late arrival relative

to early arrival is assumed to be the same as for large vehicles so that γ/β = γA/βA. The

distribution of desired arrival times is also the same as for large vehicles.22

Small vehicles and large vehicles are allowed to differ in the values of β/α and βA/αA.

The ratio βA/αA measures the cost of schedule delay relative to queuing time delay for

large vehicles. It determines their flexibility with respect to arrival time, and hence their

willingness to queue to arrive closer to their desired time. If βA/αA is small, large vehicles

are flexible in the sense that they are willing to reschedule trips in order to avoid queuing

delay. Conversely, if βA/αA is big, large vehicles are inflexible. Ratio β/α has an analogous

interpretation for small vehicles. To economize on writing, we use the composite parameter

θ ≡ βA/αA
β/α to measure the relative flexibility of the two types.

We consider two cases. In Case 1, θ ≤ 1 so that large vehicles are (weakly) more flexible

than small vehicles. To fix ideas, small vehicles can be thought of as morning commuters

with fixed work hours and relatively rigid schedules. Large vehicles are small trucks or

vans that can make deliveries within a broad time window during the day. We show below

that for a range of parameter values, a PSNE exists in which large vehicles depart at the

beginning and end of the travel period without queuing. Small vehicles queue in the middle

of the travel period in the same way as if large vehicles were absent.

In Case 2, θ > 1 so that large vehicles are less flexible than small vehicles. This

would be the case if large vehicles are part of a just-in-time supply chain, or have to deliver

22Within limits, this assumption can be relaxed. Suppose that t∗ is uniformly distributed over the interval

[t∗so, t
∗
eo] . The existence and nature of PSNE with self-internalization are unaffected if two conditions are

satisfied. First, t∗eo − t∗so ≤ No/s. This condition assures that small vehicles queue in the PSNE. Second,
β

β+γ
t∗so + γ

β+γ
t∗eo = β

β+γ
t∗s + γ

β+γ
t∗e . This condition assures that small vehicles and large vehicles adopt the

same queuing pattern in the atomistic PSNE.
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products to receivers within narrow time windows.23 We show that for a range of parameter

values a PSNE exists in which large vehicles depart simultaneously with small vehicles and

encounter queuing delays. The PSNE is identical to the atomistic PSNE in which user A

disregards the congestion externalities that its vehicles impose on each other. Cases 1 and

2 are analyzed in the following two subsections.

6.1. Case 1: Large vehicles more flexible than small vehicles

In Case 1, large vehicles are more flexible than small vehicles. In the atomistic PSNE,

large vehicles depart at the beginning and end of the travel period, and small vehicles

travel in the middle. A queue exists throughout the travel period, but it rises and falls

more slowly while large vehicles are departing than when small vehicles are departing just

before and after the peak.24 One might expect the same departure order to prevail with

self-internalization, but with user A restricting its departure rate to match capacity so that

queuing does not occur. The candidate PSNE with this pattern is shown in Figure 3.

Figure 3: PSNE in which large user does not queue (Case 1)

Large vehicles depart during the intervals (tAs, tos) and (toe, tAe), where tAs = t∗ −

23Another possibility is that large vehicles are commercial aircraft operated by airlines with scheduled

service, while small vehicles are private aircraft used mainly for recreational purposes.
24This departure pattern was studied by Arnott et al. (1988) and Arnott et al. (1994).
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γ
β+γ

No+NA
s , and tAe = t∗ + β

β+γ
No+NA

s .25 Small vehicles depart during the central interval

(tos, toe). The departure schedule for small vehicles and the resulting queue are the same

as if user A were absent.

If the candidate departure schedule in Figure 3 is a PSNE, neither small vehicles nor any

subset of large vehicles can reduce their travel costs by deviating. The requisite conditions

are identified in the two-part assumption:

Assumption 3: (i) θ ≤ 1. (ii) αA ≥ (βA + γA) (1− δ).

The following proposition identifies necessary and sufficient conditions for the pattern

in Figure 3 to be a PSNE.

Proposition 2. Let Assumption 3 hold. Then the departure pattern in Figure 3 is a PSNE.

Small users depart early at rate α · s/ (α− β) during
(
tos, t̃

)
, and late at rate α · s/ (α+ γ)

during
(
t̃, toe

)
. Large vehicles depart early at rate s during (tAs, tos), and late at rate s

during (toe, tAe). Large vehicles avoid queuing.

Proof: See the Appendix.

Condition (i) in Assumption 3 is required for Proposition 2 since otherwise large vehicles

could reduce their costs by departing during the queuing period (tos, toe). As explained

below, Condition (ii) in Assumption 3 is required so that user A cannot reduce its fleet’s

costs by rescheduling a mass of vehicles. The condition ∆ > NA/s (or δ ≥ 1) required for

Theorem 1 does not apply here because user A does not queue in the PSNE. Nevertheless,

Condition (ii) becomes less stringent the larger δ is, and Condition (ii) is guaranteed to

hold if δ ≥ 1. Thus, similar to the duopoly example in Section 5, heterogeneity is conducive

to existence of a PSNE.26

The key to the proof of Proposition 2 is to show that user A cannot profitably deviate

from the candidate PSNE by rescheduling vehicles departing after toe to a mass departure

at tos. Forcing vehicles into the bottleneck as a mass just as small vehicles are beginning

to depart allows user A to reduce the total schedule delay costs incurred by its fleet. Doing

so at tos is preferable to later because, with θ ≤ 1, large vehicles have a lesser willingness

to queue than small vehicles. Queuing delay is nevertheless unavoidable because vehicles

that depart later in the mass have to wait their turn. This trade-off is evident in the

condition αA ≥ (βA + γA) (1− δ). Moreover, the more dispersed desired arrival times are,

25Recall that γA/βA = γ/β.
26In the candidate PSNE, large vehicles travel in the tails of the departure period. In the system optimum

there is no queuing, and the optimal order of departure depends on the ranking of βA and β. If βA < β,

large vehicles still travel in the tails, but if βA > β they would travel in the middle. Hence the PSNE may

be inefficient not only because queuing occurs, but also because total schedule delay costs are excessive.
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the lower the fleet’s costs in the candidate PSNE, and hence the less user A stands to gain

from rescheduling. If δ > 1, rescheduling vehicles actually increases their schedule delay

costs because they arrive too quickly relative to their desired arrival times. Rescheduling

then cannot possibly be beneficial. Given the benchmark parameter ratios β:α:γ = 1:2:4,

condition αA ≥ (βA + γA) (1− δ) simplifies to δ ≥ 3/5, or ∆ ≥ (3/5) (NA/s). In words:

the range of desired arrival times for vehicles in the fleet must be at least 60 percent of the

aggregate time required for them to traverse the bottleneck. This condition is plausible, at

least for road users.

As noted above, the atomistic PSNE features the same order of departures and arrivals

as the internalized PSNE, but with queuing by large vehicles as well as small vehicles. It

is easy to show that both large vehicles and small vehicles incur lower travel costs with

self-internalization. Thus, self-internalization achieves a Pareto improvement.

Silva et al. (2017) show that a PSNE without queuing exists for a symmetric duopoly

and homogeneous users if α ≥ γ. We have effectively replaced one of the duopolists with a

continuum of small users. The condition for a PSNE here (with δ = 0) is αA ≥ βA+γA. This

is more stringent than for the duopoly with the same unit costs. Hence, counterintuitively,

the mixed market with a large user and small users may not have a PSNE even if a PSNE

exists for both the less concentrated atomistic market and the more concentrated duopoly.

While this nonmonotonic variation in behavior is intriguing, it complicates the analysis of

equilibrium with large users.

6.2. Case 2: Large vehicles less flexible than small vehicles

In Case 2, θ > 1 so that large vehicles are less flexible than small vehicles. Large

vehicles prefer to travel in the middle of the travel period to reduce their schedule delay

costs. However, queuing will be inevitable because small vehicles prefer the same range

of arrival times. To meet the requirements of Theorem 1 for an internalized PSNE with

queuing, it is necessary to assume that ∆ > NA/s. Given this assumption, the atomistic

PSNE is as shown in Figure 4. Large vehicles depart during the interval (tAs, tAe) and

arrive at rate NA/∆ over the interval [t∗s, t
∗
e]. Each large vehicle arrives on time. Small

vehicles arrive at rate s −NA/∆ during this interval, and at rate s during the rest of the

interval [tos, toe]. The aggregate departure rate and queuing time are the same as if all

vehicles were small.27

Given an additional assumption identified in Assumption 4 below, the internalized PSNE

turns out to be identical to the atomistic PSNE. All large vehicles thus travel during a

27Newell (1987) analyzed a more general version of this arrival pattern in the bottleneck model with small

users. See also de Palma and Lindsey (2002).
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queuing period, and depart at the same time as in the atomistic PSNE.28 Thus, in contrast

to Case 1, the large user’s incentive to internalize self-congestion has no effect on either its

fleet or small users.

Figure 4: PSNE in which large user does not queue (Case 2).

The candidate departure schedule in Figure 4 is an internalized PSNE if and only if

neither small vehicles nor any subset of large vehicles can reduce their travel costs by

deviating. The three requisite conditions are identified in Assumption 4:

Assumption 4: (i) θ > 1. (ii) ∆ > NA/s.

(iii)
NA

s
< (θ − 1)

βγ

α (β + γ)

(
NA +No

s
−∆

)
. (32)

Using Assumption 4, the internalized PSNE is stated as:

Proposition 3. Let Assumption 4 hold. Then the departure pattern in Figure 4 is a PSNE.

Large users depart during the queuing period and all arrive on time. Small vehicles arrive

28Recall Condition (30) which requires that in a PSNE with queuing, all large users have lower atomistic

rates than the small users. This condition is satisfied in Case 2 because each large vehicle has a lower

atomistic rate than small users after its preferred arrival time.
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at a complementary rate so that the bottleneck is fully utilized. The aggregate departure rate

and queuing time are the same as if all vehicles were small.

Proof: See the Appendix.

The roles of Conditions (i) and (ii) in Assumption 4 were explained above. Condition

(iii) assures that user A’s fleet is small enough that it prefers to schedule all its vehicles

on-time during the queuing period, rather than scheduling some vehicles before queuing

begins at tos.
29

7. Conclusions

In this paper we have studied trip-timing decisions by large users in the Vickrey bot-

tleneck model of congestion. We believe that the model is representative of many trans-

portation settings including airlines scheduling flights at airports, rail companies operating

on rail networks, and freight shippers using congested roads. We build on previous studies

of trip-timing decisions by large users in three ways: (i) we allow for the presence of small

users; (ii) we consider general trip-timing preferences; and (iii) we allow for heterogeneity of

trip-timing preferences within a large user’s fleet as well as between large and small users.

Our paper makes two main contributions. First and foremost, it identifies conditions

under which a Nash equilibrium in pure strategies exists in a setting in which large users

make trip-timing decisions simultaneously and queue in a dynamic model of congestion

with realistic propagation of delays. More specifically, we show that if vehicles in a large

user’s fleet have sufficiently diverse trip-timing preferences, a PSNE in which the large user

queues may exist. We also provide an example in which the conditions for existence of a

PSNE become less stringent as the number of large users increases.

Second, we illustrate how self-internalization can affect equilibrium travel costs. In two

of the three examples presented, self-internalization reduces costs for all users. In the first

example with symmetric large users (Section 5), the cost savings are substantial and can

be nearly as large as for a monopolistic user that controls all the traffic. In the second

example with one large user and a group of small users, all parties also gain if the large

user schedules its fleet during the off-peak period without queuing. However, in the third

example in which the large user travels during the peak, the equilibrium is identical to

the atomistic PSNE so that no one benefits. The three examples illustrate that the effects

29In the candidate PSNE, large vehicles arrive at their individually preferred arrival times because they

are less flexible than small vehicles. In the system optimum there is no queuing and, as in Case 1, the

optimal order of departure depends on the ranking of βA and β. If βA > β, large vehicles would still be

scheduled at their individually preferred arrival times, but if βA < β they would travel in the tails.
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of self-internalization depend on both market structure and the trip-timing preferences of

users.

The analysis of this paper can be extended in various directions. One is congestion

pricing: either in the form of an optimal fine (i.e., continuously time-varying) toll that

eliminates queuing, or a more practically feasible step-tolling scheme. Although the gains

from self-internalization can be substantial, there is still scope to improve welfare by im-

plementing congestion pricing. Indeed, this is what Verhoef and Silva (2017) find using the

Henderson-Chu model for the case of large users with homogenous trip-timing preferences.

A second topic is mergers or other measures to enable users to coordinate their trip-timing

decisions gainfully without intervention by an external authority using either tolls or direct

traffic control measures. It is not obvious from our preliminary results which users, if any,

stand to gain by merging, how a merger would affect other users, and whether there is a

case for regulation.

A third extension is to explore more complex market structures and different types of

user heterogeneity. Ride-sharing companies or so-called Transportation Network Companies

(TNCs) have become a major mode of passenger transportation in some cities and evidence

is emerging that they are contributing to an increase in vehicle-km and congestion (Clewlow

and Mishra, 2017; The New York Times, 2017). In Manhattan, the number of TNCs exceeds

the number of taxis. Transportation services are offered by six types of operators in all:

yellow cabs that must be hailed from the street, for-hire vehicles or black cars that must

be booked, and four TNC companies: Uber, Lyft, Via, and Juno (Schaller, 2017).30 The

firms differ in their operations and fare structures. Their trip-timing preferences are also

dictated by those of their customers. The size of a firm’s fleet is not fixed, but varies by

time of day and day of week according to when drivers choose to be in service. The simple

Vickrey model would have to be modified to incorporate these user characteristics.

A fourth topic that we are studying is whether self-internalization by a large user can

make other users worse off, or even leave the large user itself worse off. Such a result is of

policy interest because it suggests that the welfare gains from congestion pricing of roads,

airports and other facilities in which large users operate could be larger than previously

thought.
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Appendix A. Appendix

Appendix A.1. Properties of the trip cost function (Section 2)

Trip-scheduling preferences can be described by a utility function of departure time and

arrival time with the form31

U (t, a) =

∫ t

th

uh (v) dv +

∫ tw

a
uw (v) dv, (A.1)

where th and tw are such that all trips take place within the interval [th, tw]. Function

uh (·) > 0 denotes the flow of utility at the origin (e.g., home), and function uw (·) > 0

denotes utility at the destination (e.g., work). It is assumed that uh (·) and uw (·) are

continuously differentiable almost everywhere with derivatives u′h ≤ 0 and u′w ≥ 0, and

uh (t∗) = uw (t∗) for some time t∗. Utility from time spent traveling is normalized to zero.

The cost of a trip is the difference between actual utility and utility from an idealized

instantaneous trip at time t∗: C (t, a) ≡ U (t∗, t∗)− U (t, a) ≥ 0.

31This formulation of scheduling preferences is due to Vickrey (1969, 1973) and has been used in several

studies since; see de Palma and Fosgerau (2011). Defining preferences in terms of utility is appropriate for

commuting and certain other types of trips. For trips involving freight transport, the utility function can

be interpreted as profit or some other form of payoff or performance metric.
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Various specification are possible for the flow-of-utility functions. Vickrey (1969) adopted

a piecewise constant form:

uh (v) = uh (a constant),

uw (v) =

{
uEw for v < t∗

uLw for v > t∗
, (A.2)

where uh > 0, 0 < uEw < uh, and uLw > uh. The cost function corresponding to (A.2) is:

C (t, a) =

{
α (a− t) + β (t∗ − a) for a < t∗

α (a− t) + γ (a− t∗) for a > t∗
, (A.3)

where α = uh, β = uh − uEw , and γ = uLw − uh.

Another specification adopted by Fosgerau and Engelson (2011), and called the “slope”

model by Börjesson et al. (2012), features linear flow-of-utility functions:

uh (x) = uho − uh1x, uw (x) = uwo + uw1x .

Preferred travel time is t∗ = uho−uwo
uh1+uw1

, and the cost function is

C (t, a) = α (a− t) +
uh1

2
(t∗ − t)2 +

uw1

2
(a− t∗)2 , (A.4)

where α = uho − uh1t
∗. To assure that the model is well-behaved, departure and arrival

times are restricted to values such that uh (t) > 0 and uw (a) > 0.

A third specification — used in early studies by Vickrey (1973), Fargier (1983), and

Hendrickson et al. (1981) — is a variant of (A.4) with uh1 = 0:

C (t, a) = α (a− t) +
uw1

2
(a− t∗)2 . (A.5)

In (A.5), utility at the origin is constant and schedule delay costs depend on arrival time

but not departure time. Cost functions (A.3), (A.4), and (A.5) all satisfy Assumption 1 in

the text (with t∗ in place of k).

Appendix A.2. Atomistic departure rates (Section 2)

The atomistic rate for a user of type k is given by Eq. (3):

r̂ (t, a, k) = −Ct (t, a, k)

Ca (t, a, k)
s.

Derivatives of specific interest are (with arguments suppressed to economize on notation)

∂r̂ (t, a, k)

∂k
=
CtCak − CaCtk

C2
a

≥ 0,
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Figure A.5: Candidate PSNE with CAaa < 0

∂2r̂ (t, a, k)

∂k2
=
Ca (CtCakk − CaCtkk) + 2Cak (CaCtk − CtCak)

C3
a

≥ 0,

∂r̂ (t, a, k)

∂a
=

s

C2
a

(CtCaa − CaCta) =
s

C2
a

CtCaa
s
= −Caa,

where
s
= means identical in sign.

Appendix A.3. Proof of Lemma 2 with CAaa < 0

Consider Figure A.5, which depicts a candidate PSNE similar to that in Figure 1, but

with CAaa < 0 so that curve R̄−A (t) is convex rather than concave. Suppose that user A

deviates from the candidate PSNE during the interval (tA, tB) by dispatching its vehicles

earlier so that section ADB of R̄ (t) shifts leftwards to R̃ (t). Vehicle k = R̄A (tD) originally

scheduled to depart at point D and time tD is rescheduled earlier to point E and time tE

such that distance Ey equals distance Dz. Vehicle k experiences a change in costs of

∆CA (k) = CA (tE , tE + q̃ (tE) , k)− CA (tD, tD + q̄ (tD) , k) .

Let q̌ (t) denote queuing time along the path from point D to point E shown by the dashed

blue curve that runs parallel to R̄−A (t) between points y and z. The change in cost can be
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written

∆CA (k) = −
∫ tD
t=tE

(
CAt (t, t+ q̌ (t) , k) + CAa (t, t+ q̌ (t) , k)

(
1 +

dq̌ (t)

dt

))
dt

= −
∫ tD
t=tE

(
CAt (t, t+ q̌ (t) , k) + CAa (t, t+ q̌ (t) , k)

r̂A
(
t, t+ q̄ (t) , R̄A (t)

)
s

)
dt

= −1

s

∫ tD
t=tE

CAa (t, t+ q̌ (t) , k)
{
r̂A
(
t, t+ q̄ (t) , R̄A (t)

)
− r̂A (t, t+ q̌ (t) , k)

}
dt.

Since q̌ (t) > q̄ (t) for t ∈ (tA, tB), with CAaa < 0 and for any j, r̂A (t, t+ q̌ (t) , j) <

r̂A (t, t+ q̄ (t) , j). If user A’s fleet is homogeneous, the expression in braces is negative,

∆CA (k) < 0, and rescheduling the vehicle from D to E reduces its trip cost.

Appendix A.4. Proof of Theorem 1 (Section 4)

Using Eq. (1), the term in braces in (31) can be written

Z =
∫ R̄A(t)
j=k

∂r̂A (t, t+ q̄ (t) , j)

∂j
+

1

s

∂r̂A

(
t, t+ q̄ (t)− j−k

s , k
)

∂a

 dj. (A.6)

A sufficient condition for Z to be positive is that the integrand be positive for all values of

j. Given Assumption 2, there is a one-to-one monotonic correspondence between j and t∗j .

The integrand in (A.6), z, can therefore be written

z =
∂r̂A (t, t+ q̄ (t) , j)

∂t∗j

1

f
(
t∗j

) − 1

s

∂r̂A

(
t, t+ q̄ (t)− j−k

s , k
)

∂t∗j
. (A.7)

Now

∂r̂A (t, t+ q̄ (t) , j)

∂t∗j
−
∂r̂A

(
t, t+ q̄ (t)− j−k

s , k
)

∂t∗j

=
∫ j
n=k

(
∂2r̂A

(
t, t+ q̄ (t)− n−k

s , n
)

∂ (t∗n)2

1

f (t∗n)
+

1

s

∂2r̂A
(
t, t+ q̄ (t)− n−k

s , n
)

∂a∂t∗n

)
dn

=
∫ j
n=k

(
∂2r̂A

(
t, t+ q̄ (t)− n−k

s , n
)

∂ (t∗n)2

(
1

f (t∗n)
− 1

s

))
dn (A.8)

By (4), the second derivative is positive, and by assumption, f (t∗n) ≤ s for all t∗n. Hence

(A.8) is positive. Using this result in (A.7) we have

z ≥
∂r̂A

(
t, t+ q̄ (t)− j−k

s , k
)

∂t∗j

 1

f
(
t∗j

) − 1

s

 > 0.

This establishes that Z > 0 in (A.6), and hence that ∆CA (k) > 0.
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Appendix A.5. Section 5

Appendix A.5.1. Proposition 1: Profitability of deviation with 2 users

Since vehicle k arrives early in the candidate PSNE, k < γ
β+γNA where NA = N/2.

Vehicle k has a desired arrival time of

t∗k = t̂∗ −
(

γ

β + γ
NA − k

)
∆

NA
.

Vehicle k departs at time

tk = t̃−
(

γ

β + γ
NA − k

)
/

(
α

α− β
s

)
,

and arrives at time

ak = t̂∗ −
(

γ

β + γ
NA − k

)
/ (s/2) .

As shown by Silva et al. (2017, Eq. (24c)),

t̃ = t̂∗ − β (γ − α)

2α (β + γ)

N

s
.

If user A deviates from the candidate PSNE so that vehicle k departs at t̃ rather than tk,

vehicle k arrives at

a′k = ak +
(
t̃− tk

) α

α− β
s · 1

s
= t̂∗ − 1

s

(
γ

β + γ
NA − k

)
.

Vehicle k can benefit from deviation only if a′k < t∗k: a condition which reduces to ∆ < NA/s.

Deviation is not profitable if ∆ > NA/s, or equivalently f = NA/∆ < s as per Theorem 1.

Appendix A.5.2. Gain from internalization with m users

With m large users the aggregate equilibrium departure rate in the candidate PSNE

during the period of queuing is given by eq. (23):

r (t) =

{
m
m−1

α
α−β s, t ∈

(
tq, t̃

)
m
m−1

α
α+γ s, t ∈

(
t̃, te
) .

When all vehicles have the same desired arrival time, t∗, the critical times ts, tq, t̃, and te

are determined by the following four equations:

te − ts = N/s, (A.9)

β (t∗ − ts) = γ (te − t∗) , (A.10)

s (tq − ts) +
m

m− 1

α

α− β
s
(
t̃− tq

)
+

m

m− 1

α

α+ γ
s
(
te − t̃

)
= N , (A.11)
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s (tq − ts) +
m

m− 1

α

α− β
s
(
t̃− tq

)
= s (t∗ − ts) . (A.12)

Eq. (A.9) stipulates that all vehicles complete their trips. Eq. (A.10) states that the

first and last vehicles incur the same private cost. Eq. (A.11) stipulates that cumulative

departures equal N . Finally, according to eq. (A.12) total departures from ts to t̃ equals

the number of vehicles that arrive early.

Solving (A.9)-(A.12), it is possible to show after considerable algebra that total costs

in the candidate PSNE are

TCi =
(m− 1) (2m− 1)βγ +mαγ − (m− 1)αβ

2mγ (α+ (m− 1)β)

βγ

β + γ

N2

s
.

Total costs in the atomistic PSNE are

TCn =
βγ

β + γ

N2

s
.

When vehicles differ in their desired arrival times, schedule delay costs are reduced by

the same amount in the two PSNE. The departure rate is unchanged in the candidate

PSNE with internalization. The difference in total costs is thus the same with and without

heterogeneity so that, as stated in the text

TCn − TCi =
(m− 1)β (α+ γ) +mαγ

2m (m− 1)βγ + 2mαγ

βγ

β + γ

N2

s
.

Appendix A.5.3. Proof of Proposition 2

It is necessary to show that neither user A nor a small user can gain by deviating from

the candidate PSNE. In all, seven types of deviations need to be considered-

Deviation 1. A small user cannot gain by deviating.

Small users incur the same cost throughout the candidate departure interval (tos, toe).

Hence, they cannot gain by retiming their trips within this interval. Rescheduling a trip

either before tos or after toe would clearly increase their cost. Thus, no small user can

benefit by deviating.

Deviation 2. User A cannot gain by rescheduling vehicles outside the departure period

(tAs, tAe).

User A does not queue in the candidate PSNE. Large vehicles therefore do not delay

each other. Moreover, the highest costs are borne by the first and last vehicles departing

at tAs and tAe, respectively. Rescheduling any vehicles either before tAs or after tAe would

increase user A’s fleet cost.

Deviation 3. User A cannot gain by rescheduling a single vehicle to another time within

the departure period when there is no queue; i.e. to any time t ∈ (tAs, tos) ∪ (toe, tAe).
32

32Much of the following text is drawn, verbatim, from Silva et al. (2017).
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During the no-queuing period, the bottleneck is used to capacity. It is therefore nec-

essary to distinguish between the cost that user A saves by removing a vehicle from the

departure schedule (which does not affect the costs of other vehicles in the fleet) and the

cost user A incurs by adding a vehicle (which creates a queue unless the vehicle is added

at tAe). The respective costs are33:

C−A (t) =

{
βA · (t∗ − t) , t ∈ [tAs, tos]

γA · (t− t∗) , t ∈ [toe, tAe]
,

C+
A (t) =


βA · (t∗ − t) + αA−βA

s ·
∫ tos

t
rA (u) du + αA+γA

s ·
∫ tAe

toe

rA (u) du, t ∈ [tAs, toe]

γA · (t− t∗) + αA+γA
s ·

∫ tAe

t
rA (u) du, t ∈ [toe, tAe]

.

A vehicle can be rescheduled in four ways: (i) late to late, (ii) late to early, (iii) early

to late, and (iv) early to early. Consider each possibility in turn.

(i). Rescheduling late to late: Rescheduling a late vehicle to a later time is never

beneficial because the vehicle’s trip cost increases, and other vehicles in the fleet do not

benefit. Suppose a vehicle is rescheduled earlier from t to t′ where toe ≤ t′ < t. User A’s

fleet costs change by an amount:

∆CA = −C−A (t) + C+
A

(
t′
)

= −γA ·
(
t− t′

)
+
αA + γA

s
·
∫ t

t′
rA (u) du

= −γA ·
(
t− t′

)
+
αA + γA

s
· s
(
t− t′

)
= αA

(
t− t′

)
> 0.

Since fleet costs increase, the deviation is not gainful.

(ii). Rescheduling late to early : The best time to reschedule a vehicle is tos because this

minimizes the vehicle’s early-arrival cost as well as the queuing delay imposed on the rest

of the fleet. But rescheduling the vehicle to tos is no better (or worse) than rescheduling it

to toe, which is not beneficial as per case (i).

(iii). Rescheduling early to late: The best option in this case is to reschedule a vehicle

from tAs. However, the gain is the same as (or worse than) from rescheduling a vehicle from

tAe, and this is not beneficial as per case (i). Rescheduling early to late therefore cannot

be beneficial.

(iv). Rescheduling early to early : The best option in this case is to reschedule a vehicle

from tAs to tos. Again, this is not beneficial for the same reason as in case (iii).

Deviation 4. User A cannot gain by rescheduling a single vehicle to a time within the

queuing period, (tos, toe).

33The formula for C+
i (t) can be derived by integrating (12) and applying transversality condition (14).

39



For any vehicle in user A’s fleet that is scheduled to depart early at t, there is another

vehicle scheduled to depart late at t′ that incurs the same cost (this follows from symmetry

of the t∗A distribution). Removing either vehicle saves the same cost: C−A (t) = C−A (t′).

However, removing the early vehicle and inserting it at any time during the queuing period

creates a (small) queue that persists until tAe. Removing the late vehicle creates a queue

only until t′ because the queue disappears during the departure-time slot opened up by the

rescheduled vehicle. Rescheduling a late vehicle is therefore preferred. The best choice is

to reschedule the first late-arriving vehicle at toe so that no later vehicles in the fleet are

delayed. Rescheduling a vehicle from t′ > toe would reduce that vehicle’s cost by more, but

a queue would persist from toe until t′. The fleet’s schedule delay costs would therefore not

be reduced, and a greater queuing cost would be incurred as well.

Given θ ≤ 1, rescheduling a vehicle from toe to any time t ∈ (tos, toe) will (weakly)

increase its cost. So rescheduling it not gainful. But if θ > 1, the vehicle will benefit.

Hence the candidate can be a PSNE only if θ ≤ 1 as per Proposition 2.

Deviation 5. User A cannot gain by rescheduling a positive measure of its fleet (i.e., a

mass of vehicles) to times within the departure period when there is no queue.

If user A reschedules a positive measure of vehicles to depart during (tAs, tos)∪(toe, tAe),

queuing will occur during some nondegenerate time interval. By Lemma 1, user A is

willing to depart at a positive and finite rate during early arrivals only if r−A (t) = r̂A =

αA · s/ (αA − βA) > 0. Since no other users depart at t, r−A (t) = 0 and user A is better off

scheduling vehicles later. Similarly, for late arrivals user A is willing to depart at a positive

and finite rate only if r−A (t) = αA · s/ (αA + γA). Since r−A (t) = 0, user A is again better

off scheduling vehicles later.

Deviation 6. Any deviation by user A involving multiple mass departures is dominated

by a deviation with a single mass departure.

Suppose that user A deviates from the candidate PSNE by scheduling multiple mass

departures. All vehicles in the fleet are assumed to depart in order of their index, including

vehicles within the same mass. (This assures that fleet costs in the deviation cannot be

reduced by reordering vehicles.) We show that such a deviation is dominated by a single

mass departure. The proof involves establishing three results: (i) Fleet costs can be reduced

by rescheduling any vehicles that are not part of a mass, but suffer queuing delay, to a period

without queuing. (ii) Fleet costs can be reduced by rescheduling any vehicles in a mass

departure after t̃ to a period without queuing. (iii) Any deviation with multiple mass

departures launched before t̃ entails higher fleet costs than a deviation with a single mass

departure at tos. These three results show that the candidate PSNE need only be tested

against a single mass departure launched at tos.
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Result (i): When a queue exists, user A is willing to depart at a positive and finite rate

only if condition (21) is satisfied; i.e. r−A (t) = r̂A (t). For any vehicle that arrives early

this requires r−A (t) = r̂AE = α · s/ (α− θβ) > 0, and for any vehicle that arrives late,

r−A (t) = r̂AL = α · s/ (α+ θγ) > 0. During the departure period (tAs, tos), r−A (t) = 0, so

user A is better off scheduling all vehicles in the mass later. During the departure period(
tos, t̃

)
, r−A (t) = α · s/ (α− β). Since θ ≤ 1, r−A (t) ≥ r̂AE > r̂AL and user A is (weakly)

better off scheduling all vehicles in the mass earlier. During the departure period
(
t̃, toe,

)
,

r−A (t) = α · s/ (α+ γ) ≤ r̂AL < r̂AE . User A is (weakly) better off scheduling all vehicles

later. Finally, during the departure period (toe, tAe, ), r−A (t) = 0 and user A is again better

off scheduling vehicles later.

Result (ii): Assume that user A launches the last mass departure after t̃. We show that

user A can reduce its fleet costs by rescheduling vehicles in the mass to a later period in

which they avoid queuing delay. This is true whether or not each vehicle in the mass is

destined to arrive early or late relative to its individual t∗. By induction, it follows that

all mass departures launched after t̃ can be gainfully rescheduled. In what follows it is

convenient to use the auxiliary variable λ−At,t′ ≡
∫ t
t′ r−A (u) du/ (s · (t− t′)) which denotes

average departures of small users as a fraction of capacity during the period [t′, t].

Suppose user A launches the last mass departure at time tL with M vehicles. Assume

first that at tL there is a queue with queuing time q (tL). We show that postponing the

mass departure to a later time when a queue still exists reduces user A’s fleet costs. By

induction, it follows that postponing the mass until the queue disappears is gainful. Let j

be the vehicle that departs in position m of the mass, m ∈ [0,M ]. Let Dj [·] be the schedule

delay cost function of vehicle j, and c (j, t) its trip cost if the mass departs at time t.

If the mass departs at time tL, vehicle j incurs a cost of

c (j, tL) = α ·
(
q (tL) +

m

s

)
+Dj

[
tL + q (tL) +

m

s

]
. (A.13)

If the mass departure is postponed to time t′L > tL, and a queue still exists at t′L, vehicle j

incurs a cost of

c
(
j, t′L

)
= α ·

(
q
(
t′L
)

+
m

s

)
+Dj

[
t′L + q

(
t′L
)

+
m

s

]
. (A.14)

By Result (i), user A does not depart during (tL, t
′
L) because a queue persists during this

period. Hence

q
(
t′L
)

= q (tL) +

∫ t′L

tL

r−A (u)− s
s

du = q (tL)−
(
t′L − tL

) (
1− λ−A

tL,t
′
L

)
. (A.15)
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Substituting (A.15) into (A.14), and using (A.13), one obtains

c
(
j, t′L

)
− c (j, tL) = −α ·

(
1− λ−A

tL,t
′
L

) (
t′L − tL

)
(A.16)

+Dj

[
tL + q (tL) +

m

s
+ λ−A

tL,t
′
L

(
t′L − tL

)]
−Dj

[
tL + q (tL) +

m

s

]
.

The value of λ−A
tL,t
′
L

depends on the timing of tL and t′L. If t′L ≤ toe, small users depart

at rate α
α+γ · s throughout the interval (tL, t

′
L) so that λ−A

tL,t
′
L

= α
α+γ . If t′L > toe, λ

−A
tL,t
′
L
<

α
α+γ . Hence, λ−A

tL,t
′
L
≤ α

α+γ for all values of t′L and the first line of (A.16) is negative. For

the second line there are three possibilities to consider according to when vehicle j arrives:

(a) early both before and after the mass is postponed, (b) early before postponement and

late after, and (c) late both before and after postponement. In case (a), the second line of

(A.16) is negative, in case (c) it is positive, and in case (b) the sign is a priori ambiguous.

To show that (A.16) is negative it suffices to show this for case (c). The second line is an

increasing function of λ−A
tL,t
′
L
. Using λ−A

tL,t
′
L
≤ α

α+γ and Dj [x] = γx for x > 0, (A.16) yields

c
(
j, t′L

)
− c (j, tL) ≤ −α · γ

α+ γ

(
t′L − tL

)
+ θγ ·

(
α

α+ γ

(
t′L − tL

))
< 0.

This proves that postponing the mass departure (weakly) reduces the cost for every vehicle

in the mass. We conclude that if there is a queue when the last mass departs, user A

can (weakly) reduce its fleet costs by postponing the mass departure to the time when the

queue just disappears (user A’s later vehicles are not affected by postponing the mass).

Now assume there is no queue at tL when the last mass is launched, which is possible only

if tL > toe. Small users do not depart after toe, and by Result (i) none of A’s vehicles outside

the mass depart until the queue from the mass has disappeared. The queue produced by

the mass departure thus disappears at time tL +M/s. We show that user A can reduce its

fleet costs by rescheduling vehicles in the mass to depart at rate s over the time interval

[tL, tL +M/s]. Every vehicle arrives at the same time as in the mass, but avoids queuing

delay.

To see this, let j be the index of the vehicle that departs in position m in the mass. In

the mass departure, vehicle j incurs a cost of

c (j, tL) = Dj

[
tL +

m

s

]
+ α · m

s
.

In the deviation where vehicle j delays departure until t′L = tL +m/s, it incurs a cost of

c
(
j, t′L

)
= Dj

[
tL +

m

s

]
.

Its cost changes by

c
(
j, t′L

)
− c (j, tL) = −α · m

s
< 0.
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Every vehicle enjoys a reduction in queuing time cost with no change in schedule delay

cost. Hence, in any deviation from the candidate PSNE, fleet costs can be reduced by

eliminating the last mass departure. By induction, any mass departure launched after t̃

can be rescheduled without increasing fleet costs.

Next, we show that any deviation entailing multiple mass departures before t̃ is domi-

nated by scheduling a single mass departure at tos.

Result (iii): Suppose that more than one mass departure is scheduled before t̃. Assume

the first mass is launched at time tE with M vehicles, and the second mass is launched at

time t′E with M ′ vehicles. There are three cases to consider depending on the timing of tE

and t′E .

Case 1 : tE < t′E ≤ tos. Both masses are scheduled before small users start to depart.

Since r−A (t) = 0 for t < tE , by Result (i), there is no queue at tE . If the queue from

the first mass disappears before t′E , as in the proof of Result (ii), user A can reduce its

fleet costs simply by rescheduling vehicles in the first mass to depart at a rate of s during

t ∈ (tE , t
′
E). Since user A does not depart in the original deviation until the first queue has

dissipated, the rescheduled vehicles in the alternative deviation avoid queuing and arrive at

the same time – thereby reducing their queuing delay costs without affecting their schedule

delay costs. If the queue from the first mass does not disappear before t′E , user A can still

reduce its fleet costs by rescheduling s · (t′E − tE) vehicles at a rate s during (tE , t
′
E), and

letting the remaining M −s · (t′E − tE) vehicles join the head of the second mass at t′E . The

first set of vehicles in the first mass avoids queuing and incur the same schedule delay costs.

The remaining vehicles in the first mass also incur lower queuing costs since they no longer

queue between tE and t′E . Vehicles in the second mass that departs at t′E still depart and

arrive at the same time because the same number of vehicles depart before them, and the

bottleneck operates at capacity throughout.

Case 2 : tE < tos < t′E . The second mass is scheduled after small users start to depart.

If the queue from the first mass disappears before tos, the reasoning for Case 1 applies.

If the queue from the first mass does not disappear before tos, the queue will not dissipate

until after small users have stopped departing at toe. However, user A can still reduce its

fleet costs by rescheduling some of the M vehicles in the first mass to tos, and rescheduling

the remainder to the head of the second mass at t′E .

Case 3 : tos ≤ tE < t′E . The first mass departs when, or after, small users begin to depart.

In this case, user A can reduce its fleet costs by rescheduling the second mass to depart

immediately after the first mass. To show this, let q (t), t ≥ tE , denote queuing time

after the first mass of M vehicles departs. Let j be the index of the vehicle that departs

in position m of the second mass, where m ∈ [0,M ′]. Vehicle j arrives at time a′j =
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t′E + q (t′E) +m/s and incurs a cost of

c
(
j, t′E

)
= α

(
q
(
t′E
)

+
m

s

)
+Dj

[
a′j
]

.

If the second mass is instead dispatched immediately after the first mass at tE , vehicle j

arrives at time aj = tE + q (tE) +m/s and incurs a cost of

c (j, tE) = α
(
q (tE) +

m

s

)
+Dj [aj ] .

The cost saving is

c
(
j, t′E

)
− c (j, tE) = α

(
q
(
t′E
)
− q (tE)

)
+Dj

[
a′j
]
−Dj [aj ] . (A.17)

Now

a′j = aj + t′E − tE + q
(
t′E
)
− q (tE) , (A.18)

and

q
(
t′E
)
− q (tE) =

β

α− β
(
t′E − tE

)
. (A.19)

Substituting (A.18) and (A.19) into (A.17) yields

c
(
j, t′E

)
− c (j, tE) =

αβ

α− β
(
t′E − tE

)
+Dj

[
aj +

α

α− β
(
t′E − tE

)]
−Dj [aj ]

= β∆q−A +Dj [aj + ∆q−A]−Dj [aj ] ≥ 0, (A.20)

where ∆q−A ≡ α
α−β (t′E − tE) is the gross contribution of small users to queuing time during

the period (tE , t
′
E). The weak inequality in (A.20) holds as an equality if vehicle j arrives

early when the second mass departs at t′E . The inequality is strict if vehicle j arrives late.

Since this conclusion holds for all vehicles in the second mass, user A can reduce its costs

by merging the later mass with the earlier mass.

By induction, all but one of any mass departures launched before t̃ can be eliminated

in a way that decreases user A’s fleet costs. Using similar logic, it is straightforward to

show that user A can do no better than to schedule the single mass at tos rather than

later. In summary, results (i)–(iii) show that, of all deviations from the candidate PSNE

entailing mass departures, a deviation with a single mass departure launched at tos is the

most viable.

Deviation 7. User A cannot gain by rescheduling a positive measure of its fleet to times

during the queuing period (tos, toe) .

To prove that Deviation 7 is not gainful, we must determine whether total fleet costs can

be reduced by deviating from the candidate PSNE. Since user A has weaker preferences for

on-time arrival than small users, user A prefers not to schedule departures in the interior

of (tos, toe). User A’s best deviation is to schedule a mass departure at tos. Let NAm be
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the measure of vehicles in the mass. If NAm is small, the best choice is to reschedule the

first vehicles departing late during the interval (toe, toe +NAm/s). (As explained in proving

that Deviation 4 is not beneficial, this strategy avoids queuing delay for large vehicles that

are not part of the mass.) The first of the rescheduled vehicles has a preferred arrival time

of t̂∗. In the candidate PSNE, this vehicle incurs a cost

CA
(
toe, toe, t̂

∗) = γA
(
toe − t̂∗

)
. (A.21)

The last of the rescheduled vehicles has a preferred arrival time of t̂∗ + δNAm/s. It incurs

a cost

CA
(
toe +

NAm

s
, toe +

NAm

s
, t̂∗ +

δ

s
NAm

)
= γA

(
toe − t̂∗ + (1− δ) NAm

s

)
. (A.22)

The average cost of the rescheduled vehicles is the unweighted mean of eqs. (A.21) and

(A.22). Total costs for the NAm vehicles before they are displaced are therefore

TCcdev =

[
γA
(
toe − t̂∗

)
+
γA (1− δ)NAm

2s

]
NAm, (A.23)

where superscript c denotes the candidate PSNE.

The first of the rescheduled vehicles departs at tos and incurs a cost

CA
(
tos, tos, t̂

∗) = βA
(
t̂∗ − tos

)
. (A.24)

The last of the rescheduled vehicles incurs a cost of

CA

(
tos, tos +

NAm

s
, t̂∗ + δ

NAm

s

)
= βA

(
t̂∗ + δ

NAm

s
− (tos +

NAm

s
)

)
+ αA

NAm

s

= βA

(
t̂∗ − tos + δ

NAm

s

)
+ (αA − βA)

NAm

s
. (A.25)

The average cost of the rescheduled vehicles is the unweighted mean of eqs. (A.24) and

(A.25). Total costs for the rescheduled vehicles are therefore

TCddev =

[
βA
(
t̂∗ − tos

)
+
αA − βA (1− δ)

2

NAm

s

]
NAm, (A.26)

where superscript d denotes the deviation. Given (A.23) and (A.26), the change in total

costs is

TCddev − TCcdev = [αA − (βA + γA) (1− δ)]
N2
Am

2s
. (A.27)

The deviation is unprofitable if TCddev ≥ TCcdev; that is, if

αA ≥ (βA + γA) (1− δ) . (A.28)
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When condition (A.28) is met, user A cannot profit by rescheduling some vehicles from the

early-departure interval (tAs, tos) in addition to all large vehicles from the late-departure

interval (toe, tAe). To see why, note that the net benefit from rescheduling the vehicle at

tAs is the same as the net benefit from rescheduling the vehicle at tAe. The benefit from

rescheduling vehicles after tos is lower.

Appendix A.5.4. Proof of Proposition 3

The aggregate departure rate is given by Eq. (5)

r (t) =

{
α

α−β s for tos < t < t̃
α

α+γ s for t̃ < t < toe
.

Large vehicles depart at rate

rA (t) =


0 for t < tAs

α
α−β

NA
∆ for tAs < t < t̃

α
α+γ

NA
∆ for t̃ < t < tAe

0 for t > tAe.

Critical travel times are

tos = t∗ − γ

β + γ

NA +No

s
,

tAs = t∗s −
βγ

α (β + γ)

(
NA +No

s
−∆

)
,

t̃ = t∗ − βγ

α (β + γ)

NA +No

s
,

t∗ =
β

β + γ
t∗s +

γ

β + γ
t∗e,

tAe = t∗e −
βγ

α (β + γ)

(
NA +No

s
−∆

)
,

toe = t∗ +
β

β + γ

NA +No

s
.

Clearly, user A cannot reduce the cost for any single vehicle in its fleet by rescheduling

it to another time. It is necessary to check that user A cannot reduce its fleet cost by

rescheduling a positive measure of vehicles. The first and last large vehicles to depart incur

the same travel cost of

CA (t∗s) = CA (t∗e) = αA
β

α

γ

β + γ

(
NA +No

s
−∆

)
. (A.29)

The last large vehicle imposes no delay on others in the fleet, whereas the first large vehicle

imposes a delay of 1/s on all the others. The first vehicle can be rescheduled to just
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before the travel period at a lower cost than the other vehicles. Thus, if deviation from the

candidate PSNE is profitable, it must be profitable to reschedule the vehicle departing at

tAs to tos. It is straightforward to show that user A can retime departures of the remaining

large vehicles so that they continue to arrive on time and incur no schedule delay cost. The

net gain to the other large vehicles is therefore αANA/s. The first vehicle incurs a cost of

(A.29) in the candidate PSNE, and a cost of (βAβ/α) (t∗s − tos) if it rescheduled. The net

change in costs for the fleet is

∆TCA =

(
βA − αA

β

α

)
γ

β + γ

(
NA +No

s
−∆

)
− αA

NA

s

= (θ − 1)αA
βγ

α (β + γ)

(
NA +No

s
−∆

)
− αA

NA

s
.

Deviation is not profitable if this difference is positive, which is assured by condition (32).
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