Mostafa Jafarzadeh

Two New in place Sorting Algorithms with Worst Time Complexity of n * (log n)*(log n) without using auxiliary arrays

Keywords: Data sorting, Buffer, Quick sort algorithm

Data sorting is one of the mathematical problems in the world of computer science. A variety of theories and algorithms has been provided in this regard, each with their own advantages and disadvantages. In this paper, two new mathematical theories in the form of sorting algorithms are provided. The proposed algorithms lack many disadvantages of previous algorithms. These algorithms do not use additional memory and are sorted in their own arrays. In this paper, the new algorithms are compared with those that do not use additional memory such as the quick sort algorithm. The performance of new algorithms confirms the superiority of these new algorithms.

INTRODUCTION

There are various mathematical problems in the world of computer science. New theories are provided for each of these problems over time. Data sorting is one of the mathematical problems and several methods have been proposed to solve this problem so far. In general, the methods presented are divided into two categories. The methods in the first category use additional memory such as merge sort while those in the second category do not use additional memory such as quick sort algorithm. In this paper, we propose two new mathematical models in the form of sorting algorithms, both of which are included in the second category and do not use additional memory. These mathematical models are a new mathematical base for sorting all elements of an array without using a buffer and only using the array space in a new time interval. These algorithms outperform other algorithms proposed so far.

PROPOSED SORTING ALGORITHM

In this paper, two new algorithms without using additional memory are examined. In general, these two algorithms are different mathematical models with different complexities in different scenarios.

The first algorithm (Cyrus) 2.1.1. The general idea of the mathematical model

The algorithm follows a general idea. If we have two individual sorted arrays, then we search both arrays. If the first number in the first array is smaller than that in the second array, it goes to the second cell of the first array. Otherwise, it goes to the first cell of the second array and finally n small elements (n is the length of the shorter array) in both arrays are found. Figure 1 shows the general idea of the mathematical model of Cyrus algorithm.

FIGURE 1.The general idea of the mathematical model of Cyrus algorithm

In fact, the elements in the range A and B are smaller than all elements in the range C and D. In this case, if we replace the elements in the B and C regions, all elements of the first array will be smaller than those in the second array. If we sort the first and second arrays in the same way, the array will be sorted at maximum log n levels (we use log n levels because the worst case will happen when the length of the two arrays are equal and the areas, A and B, are equal. In each step, the array is sorted and the entire operation occurs at log n levels. Otherwise, if the lengths of A and B are not equal, the next levels require fewer comparisons and displacements, thus the number of levels will be smaller). The Figure 2 shows a numerical example of the algorithm which will be explained. Each area shows two arrays that should be merged and sorted.

In step 1, which is the last level of data, the total length of each area equals 2. There is a total of 4 areas with a length of 2. So, data are sorted by 1 to 1 comparison and displacement, if necessary.

In step 2, the length of each area equals 4 and there are 2 areas with a length of 4. First, the first area containing 5, 23, 7, and 17 is sorted. According to the algorithm, we search two arrays with the same length as the first array. Thus, thesearch is done. The smallest numbers are 5 and 7. The sections c and b equal 23 and 7, respectively. Then, the two areas are displaced. Thereafter, the quadruplearray is broken into two dual areas. Like step 1, the elements are compared and displaced if necessary. The second area contains 24, 34, 9 and 17. According to the algorithm, we search two arrays with the same length as the first array. Thus, thesearch is done. The smallest numbers are 9 and 17. The sections c and b equal 24, 34 and 9, 17, respectively. Then the two areas are displaced. Thereafter, the quadruple array is broken into two dual areas. Like step 1, the elements are compared and displaced if necessary.

In step 3, we have an area with a length of 8. According to the algorithm, we search two arrays with the same length as the first array. Thus, thesearch is done. The smallest numbers are 5, 7, 17 and 9. The sections c and b equal 23 and 9, respectively. Then the two areas are displaced. Thereafter, the octuplet area is broken into two areas. The first area consists of two arrays. The first array includes 5, 7 and 17 and the second array contains 9. According to the algorithm, we search two arrays with the same length as the first array. Thus, thesearch is done. The smallest numbers are 5, 7 and 9. The sections c and b equal 17 and 9, respectively. Then the two areas are displaced. Again, each array should be divided into two areas, one containing 5, 7 and 9 and another containing 17. Since data sorting was done at this stage, no other action is performed.

In the second area, the 8-cell array includes two arrays, one containing 23 and another containing 17, 24 and 34. According to the algorithm, we search two arrays with the same length as the first array. Thus, thesearch is done. The smallest number is 17. The sections c and b equal 23 and 17, respectively. Then the two areas are displaced. Again, each array should be divided into two areas, one containing 17 and another containing 23, 24 and 34. Since data sorting was done at this stage, no other action is performed.

Algorithm description

First, the array is divided recursively to achieve an array length of 1. Then the fine arrays are merged. According to the general idea, when two arrays are merged and sorted, if the length is larger than 2, it will be broken and sorted again to reach the last level. In other words, each level of log n levels is again broken log n times. In fact, the maximum number of levels equals (log n) * (log n). The algorithm follows a general idea. We have two individual sorted arrays with a length of n (if the length of the main array is odd, the new arrays will have different lengths. Therefore, the length of the first array is considered to be a unit larger than that of the second array. The last two elements of the first array are compared with the last element of the second array and are displaced if it is larger). The following figure shows a numerical example of this algorithm. The data are compared and displaced if necessary. The data points are connected by a line. Figure 3 shows a numerical example of Darius algorithm.

We compare the elements of the same color in both arrays to displace them in the case where the element of the first array is larger. Figure 4 shows the general ideas of the mathematical model of Darius algorithm.

In this case, we continue the operation with n/2 comparisons and n/2 displacements. Each array is again considered as two separate arrays and the operation will continue to obtain singleelement arrays. In this case, we obtain a sorted area with a length of n after log n levels.

Algorithm description

First, the array is divided recursively to obtain an array length of 1. Then the fine arrays are merged. According to the general idea, when two arrays are merged and sorted, if the length is larger than 2, it will be broken and sorted again to reach the last level. In other words, each level of log n is again broken log n times. In fact, the maximum number of levels equals (log n) * (log n). (was swapped with), no swapping is performed and the elements are ordered as .

If

(was swapped with), the swapping operation is performed and the arrays are ordered as . In this case we have .

The second nested loop the array is now divided

into a left and a right subarray. The left and the right subarray contain two and one elements, respectively. In line with the above proofs, the first and second elements of the first array are compared with each other; if the first element was larger, the two elements would be swapped, otherwise, no actions would be taken. Moreover, no operations are performed on the second array and its single element. As demonstrated in line 14, the loop is not entered. The 4 main possible cases of above are investigated for this condition.

3.1.2.1.

, . Two general cases might occur in this condition: 3.1.2.1.1. If , no actions are taken and the order remains as . Since , the queue is in the correct order.

If

, swapping is performed so as to obtain the new order as . Since and , the queue is then in the correct order. , we may conclude that the queue is the correct order.

3.2.1.3.2.

, which is not feasible, since it is a contradiction.

3.2.1.4.

, and the elements are ordered as .

The considered queue is hence sorted. However, there remains a second nested loop, which is not discussed here as the procedure is similar to the proof given above. Termination: Ultimately, since k=r+1, we obtain A[p..k-1]=A[p..r]. According to the loop counter, the array A[p..r] contains k-p=r-p+1 elements, and after iterations, the queue is fully sorted.

Proof of a recursive (Cyrus)

1. introduction Our attempt in this study was to prove a realistic program which incorporates recursion. Proof can help reducing programming errors in development of computer programs.

description

The purpose of the present program was to sort the elements a[m] to a[ww] of an array in the ascending order. The aim was to present a method of providing documentations for a program using comments.

2.1 criterion of correctness this condition is abbreviated as sorted(a, m, ww). ∀p,q(m≤p≤n&v≤q≤ww⊃ a[p]≤a[q])

The second term states that the elements below and above m and n indices, respectively, are similar to those of the original array.

Additionally, although the same condition applies to the elements between m and n, the order of these middle elements are different than that of the original array. assuming is the initial value of the original array, we may state that "a is a permutation of ", or to restate it briefly: perm(a, , m,ww) it should be noted that if , then we may select perm(a, , m, ww) to prove that a is equal to . Since we used the elementary properties of permutations for our proof, the details of permutation concept are not required.

2.2 general view of 3. partitioning the method 3.1 description 3.1.1 criterion of correctness an array is partitioned into a smaller and a larger part, as described in section 2. the criterion of correctness consists of terms.

m ≤ i&j≤n&∀p (m≤p≤j⊃ a[p]≤r)& v ≤ l &x≤ww&∀q (v≤q≤x⊃r≤a[q])

The first indicates the necessary ordering relation, the abbreviation of which is partd(a, i, j, l, x, m, ww). The second is perm(a, , m, ww) which indicates that the partitioned array should be a permutation of the original array .

general view of the method we assume

is the initial value of the array . the procedure arranges the elements between m and ww.

informal proof

perm(a,a_0 , m,ww) was not directly proved by hoare (1971). hence, some additions are required to complete the proof.

j<n &∀p,q(m≤p≤n&v≤q≤ww⊃ a[p]≤a[q])⊃ perm(a, , m,ww) provided that j<n on entry partition(a,i,j,l,x):(m,ww) begin rr comment perm(a, , m,ww) if

((u+w)<=2) { if(s[m]>s[v]) { swap s[m] by s[v] }} else { rr=j; while(rr<=n) { if(((s[j]<=s[x])||(x==(ww+1)))&&(j<=n)) { j=j+1; } else if(((s[j]>s[x])||(j=(n+1))&&(x<=h)) { x=x+1; } rr=rr+1;} swap s[m] to s[j] by s[v] to s[x]
The annotations for a program include the criterion of correctness and propositions at certain points which are true each time control reaches that point. The proposition which expresses the objective of a variable is called an invariant, which is intended to maintain the correct execution of the program.

it is necessary to follow the transitivity to prove which of the results is evident. j≤n&m≤j&vp (m≤p≤j⊃ a[p]≤r)&x≤ww&∀q(v≤q≤x⊃r≤a[q])& perm(a, , m,ww)⊃ x≤w&vp,q(m≤p≤j&v≤q≤x⊃a[p]≤ a[q])& perm(a, , m,ww)

formal proof

The first condition is to show that the criterion of correctness holds true. sorted(a,m,ww)&perm(a, ,m,ww) newsort (a):(m , ww) porc if (m<ww) then begin new i,j,l,x; comment m<ww and a= here; call partition(a,i,j,l,x):(m,ww) comment a= here; partd(,i,j,l,x,m,ww)&perm(, ,m,ww) call newsort(a):(m,j); sorted(a,m,ww)&perm(a, ,m,ww) newsort (a):(m , ww) porc if (m<ww) then begin new i,j,l,x; comment m<ww and a= here; call partition(a,i,j,l,x):(m,ww) comment a= here; partd(,i,j,l,x,m,ww)&perm(, ,m,ww) call newsort(a):(m,j); comment a= here; sorted(,m,j)&perm(, ,m,j) call newsort(a):(v,x); comment sorted(a,v,x)&perm(a, ,v,x) this proposition is present at the end of the program, and should be proved. (i)sorted(a,m,ww) (ii)perm(a, ,m,ww) proof (ii) m≤j≤n&v≤x≤ww& perm(, ,m,ww) &perm(, ,m,j) &perm(a, ,v,x) &perm(, ,m,j) &perm(a, ,v,x)⊃ perm(a, ,m,ww) a) decomposition of the array and the resulting arrays, and b) sorting. (a) partd(, i,j,l,x,m,ww)&perm(, ,m,j) &perm(a, ,v,x)⊃partd(a,i,j,l,x,m,ww) (b) j<n&sorted(,m,j)&perm(a, ,v,x) &perm(, ,m,ww)⊃sorted(a,m,j) now we should prove that: all the terms may be expanded. when expanded, the lemma is transformed to the following: the proof of this will be given in greater detail since all the terms may be expanded. on expansion the lemma becomes (i) j<n (ii)&∀p,q(m≤p≤j&v≤q≤x⊃a[p]≤a[q]) (iii) &∀p,q(ww≤p≤q≤j⊃a[p]≤a[q]) (iv) &∀p,q(v≤p≤q≤x⊃a[p]≤a[q]) ⊃∀p,q(m≤p≤q≤ww⊃a[p]≤a[q]) in all of the three cases (ii), (iii) and (iv) we can observe that a[p]≤a[q]. the following is sample theorem of ordering j<x &m≤p≤q≤ww⊃m≤p≤j&v≤q≤x v m≤p≤q≤j v v≤p≤q≤x 5. the lemma generator this information includes the criterion of correctness of the program as a whole, and a sufficiently powerful invariant for each loop of the program. if the correctness of the program depends on an initial precondition, this must be given, and if the program contains a procedure call the theorem expressing the correctness of this procedure must also be supplied. the aim was to present a method of providing documentations for a program using comments. a. criterion of correctness this condition is abbreviated as sorted(a, m, ww). ∀p,q(m≤p≤n&v≤q≤ww⊃ a[p]≤a[q]) the second term states that the elements below and above m and n indices, respectively, are similar to those of the original array. additionally, although the same condition applies to the elements between m and n, the order of these middle elements are different than that of the original array. assuming is the initial value of the original array, we may state that "a is a permutation of ", or to restate it briefly: perm(a, , m,ww) it should be noted that if , then we may select perm(a, , m, ww) to prove that a is equal to . Since we used the elementary properties of permutations for our proof, the details of permutation concept are not required.

b. general view of 3. partitioning the method a. description i. criterion of correctness an array is partitioned into a smaller and a larger part, as described in section 2. the criterion of correctness consists of terms. j≤n& ∀p (m≤p≤j ⊃ a[p]≤r)&x≤ww& ∀q (v≤q≤x ⊃ r≤a[q]) the first indicates the necessary ordering relation, the abbreviation of which is partd(a,i,j,l,x,m,ww). The second is perm(a, , m, ww) which indicates that the partitioned array should be a permutation of the original array .

ii. general view of the method we assume is the initial value of the array . The procedure arranges the elements between m and ww.

b. informal proof j<n &∀p,q(m≤p≤n&v≤q≤ww⊃ a[p]≤a[q])⊃perm(a, , m,ww) provided that j<n on entry partition(a,j, it is necessary to follow the transitivity to prove which of the results is evident. j≤n&m≤j&vp (m≤p≤j⊃ a[p]≤r)&x≤ww&∀q(v≤q≤x⊃r≤a[q])& perm(a, , m,ww)⊃ v≤x&vp,q(m≤p≤j&v≤q≤x⊃a[p]≤ a[q])& perm(a, , m,ww)

formal proof

The first condition is to show that the criterion of correctness holds true. sorted(a,m,ww)&perm(a, ,m,ww) newsort (a):(m , ww) porc if (m<ww) then begin new i,j,l,x; comment m<ww and a= here; call partition(a,i,j,l,x):(m,ww) comment a= here; partd(,i,j,l,x,m,ww)&perm(, ,m,ww) call newsort(a):(m,j); comment a= here; sorted(,m,j)&perm(, ,m,j) call newsort(a):(v,x); comment sorted(a,v,x)&perm(a, ,v,x) sorted(a,m,ww)&perm(a, ,m,ww) newsort (a):(m , ww) porc if (m<ww) then begin new i,j,l,x; comment m<ww and a= here; call partition(a,i,j,l,x):(m,ww) comment a= here; partd(,i,j,l,x,m,ww)&perm(, ,m,ww) call newsort(a):(m,j); comment a= here; sorted(,m,j)&perm(, ,m,j) call newsort(a):(v,x); comment sorted(a,v,x)&perm(a, ,v,x) this proposition is present at the end of the program, and should be proved. (i)sorted(a,m,ww) (ii)perm(a, ,m,ww) proof (ii) m≤j≤n&v≤x≤ww& perm(, ,m,ww) &perm(, ,m,j) &perm(a, ,v,x)ww& perm(, ,m,ww) &perm(, ,m,j) &perm(a, ,v,x)⊃ perm(a, ,m,ww) b) decomposition of the array and the resulting arrays, and b) sorting.

(a)partd(, j,x,m,ww)&perm(, ,m,j) &perm(a, ,v,x) &perm(, ,m,ww)⊃ partd(a,i,j,l,x,m,ww) (b) j<n &sorted(,m,j)&perm(a, ,v,x) &perm(, ,m,ww)⊃sorted(,m,j) now we should prove that: all the terms may be expanded. when expanded, the lemma is transformed to the following: the proof of this will be given in greater detail since all the terms may be expanded. on expansion the lemma becomes

(i) j<n (ii)& ∀p,q(m≤p≤j&x≤q≤ww⊃a[p]≤a[q]) (iii) &∀p,q(m≤p≤q≤j⊃a[p]≤a[q]) (iv) &∀p,q(x≤p≤q≤ww⊃a[p]≤a[q])⊃∀p,q(m≤p≤q≤ww⊃a[p]≤a[q])
in all of the three cases (ii), (iii) and (iv) we can observe that a[p]≤a[q]. the following is sample theorem of ordering j<x &m≤p≤q≤ww⊃m≤p≤j&x≤q≤ww v m≤p≤q≤j v x≤p≤q≤ww 5. the lemma generator this information includes the criterion of correctness of the program as a whole, and a sufficiently powerful invariant for each loop of the program. if the correctness of the program depends on an initial precondition, this must be given, and if the program contains a procedure call the theorem expressing the correctness of this procedure must also be supplied.

. Recursion tree

Given that both recursive algorithms are similar in terms of structure, their recursion trees are similar. In this model, the general scheme of the algorithm and the number of levels are displayed. Then, the level of complexity is clear from the tree. As can be seen, the worst-case complexity for both algorithms equals n*(log n)*(log n). Figure 5 shows recursion tree for the worst-case complexity.

Average-case analysis of algorithms

Given that both recursive algorithms are similar in terms of structure, their Average-case are similar. As can be seen, the worst-case complexity for both algorithms equals n*(log n)*(log n). Due to the structure of the algorithm, the best-case complexity equals the worst-case complexity. In this algorithm, the array is sorted after n * (log n) * (log n) operations. Therefore, the bestcase, average-case, and worst-case complexities are equal.

COMPARSION 5.1. Comparison with other algorithms

In the previous section, the complexity of both algorithms was examined in different scenarios. In this section, the performance of our algorithms is compared with other algorithms. Table 1 lists the algorithms that do not use additional memory along with their complexities. As can be seen, both algorithms with a less time complexity outperform all other algorithms. Table 2 shows the algorithms that use additional memory with the same as or worse performance than our algorithms. FGGURE .7. The recursion tree for the best-case complexity of Cyrus algorithm

FIGURE 2 .

 2 FIGURE 2 . A numerical example of Cyrus algorithm

FIGURE 3 .

 3 FIGURE 3. A numerical example of Darius algorithm

FIGURE 4 . 1 . 2 . 1 . 2 . 3 . 1 . 1 .

 41212311 FIGURE 4. The general ideas of the mathematical model of Darius algorithm

 l7 a= ⊃if (m<ww) then l2 else sorted(a,m,ww)&perm(a, ,m,ww) only one lemma would be generated for sort since it contains no loops. written in full this lemma is : a= ⊃if (m<ww) then ∃ (a= &m<wwva,j,xpartd(a,i,j,l,x,m,ww)&perm(a, ,m,ww) ⊃ ∃ (a= &m<wwva sorted(a,m,j)&perm(a, ,m,ww) ⊃ ∃ (a= &m<wwva,j,xpartd(a,i,j,l,x,m,ww)&perm(a, ,m,ww) & sorted(a,m,j)&perm(a, ,m,ww) &sorted(a,v,x)&perm(a, ,m,ww) ⊃ sorted(a,m,ww)&perm(a, ,m,ww) else sorted(a,m,ww)&perm(a, ,m,ww) by eliminating quantifiers this becomes (a) m<ww⊃sorted(a,m,ww)&perm(a, ,m,ww) (b) m<ww&partd(,i,j,l,x,m,ww)&perm(, ,m,ww) &partd(,i,j,l,x,m,ww)&perm(, ,m,ww) & sorted(a,m,j)&perm(, ,m,ww) & sorted(a,v,x)&perm(a, ,m,ww) ⊃sorted(a,m,ww)&perm(a, ,m,ww) 3.4. Proof of a recursive (Darius) 1. introduction our attempt in this study was to prove a realistic program which incorporates recursion. proof can help reducing programming errors in development of computer programs. 2. description the purpose of the present program was to sort the elements a[m] to a[ww] of an array in the ascending order.

 x):(m,ww) begin new rr comment perm(a, , m,ww) rr=j; while(rr<=n) { if(j<n){j=j+1;} if(s[j]>s[x]){swap s[j]; s[x] } j=j+1; x=x-1; }rr=rr+1;} the annotations for a program include the criterion of correctness and propositions at certain points which are true each time control reaches that point. the proposition which expresses the objective of a variable is called an invariant, which is intended to maintain the correct execution of the program.

 l7 a= ⊃if (m<ww) then l2 else sorted(a,m,ww)&perm(a, ,m,ww) only one lemma would be generated for sort since it contains no loops. written in full this lemma is : a= ⊃if (m<ww) then ∃ (a= &m<wwva,j,xpartd(a,i,j,l,x,m,ww)&perm(a, ,m,ww) ⊃ ∃ (a= &m<wwva sorted(a,m,j)&perm(a, ,m,ww) ⊃ ∃ (a= &m<wwva,j,xpartd(a,i,j,l,x,m,ww)&perm(a, ,m,ww) & sorted(a,m,j)&perm(a, ,m,ww) &sorted(a,v,x)&perm(a, ,m,ww) ⊃ sorted(a,m,ww)&perm(a, ,m,ww) else sorted(a,m,ww)&perm(a, ,m,ww) by eliminating quantifiers this becomes (a) m<ww ⊃sorted(a,m,ww)&perm(a, ,m,ww) (b) m<ww&partd(,i,j,l,x,m,ww)&perm(, ,m,ww) &partd(,i,j,l,x,m,ww)&perm(, ,m,ww) &sorted(a,m,j)&perm(, ,m,ww) &sorted(a,v,x)&perm(a, ,m,ww) ⊃sorted(a,m,ww)&perm(a, ,m,ww)4. THE COMPLEXITY OF ALGORITHMTelescoping, recursion tree, and average-case analysis are used to prove the complexity of algorithms. 4.1. Worst-case complexity 4.1.1. Telescoping Given that both recursive algorithms are similar in terms of structure, their recursion trees are similar. As can be seen, the worst-case complexity for both algorithms equals n*(log n)*(log n).t(n) = 2t(n/2)+n(log n) t(n) = 2t(n/2) + n(log n) t(n) = 2t(n/2)/n + (log n) = t(n/2)/(n/2) + (log n) = t(n/2)/(n/4) + (log n) + (log n) = t(n/2)/(n/8) + (log n) + (log n) + (log n) . . . = t(n/n)/(n/n) + (log n) + (log n) +. . .+ (log n) = (log n)(logn) t(n) = n(log n)(logn) 4.1.2

)*(log n)) N* =n*(n+1)+(2(+...+ +...+)*(log n)) N* -((n-1) *(log n))=n(n+1)-n(n-1)+((log n)*2) N* =((log n)*(n+1))+2n / (N + 1) = ((log n)* / N)+ 2 / (N + 1) =(log n)* / (N -1) + (2/N) *(log n)+ 2/(N + 1) = / (N -2) + 2/(N -1)*(log n) + (2/N)*(log n)+ 2/(N + 1) = 2 (1 + 1/2 + 1/3 + . . . + 1/N + 1/(N + 1))* (log n) =(log n)*2(N + 1)(1 + 1/2 + 1/3 + . . . + 1/N) = (log n)*2(N + 1) ≈ (log n)*2(N + 1) ≈ (Log n)2(N + 1) ln N ≈ 1.39 N(log n)(log n) 4.3.2. Darius algorithm

.1.2.4.

		&	&	, and the	
	elements are ordered as	.	
	Two cases are again likely to occur:	
	3.2.1.1.1.	, which is not feasible,
	since it is a contradiction.	
	3.2.1.1.2. If		, no swapping is	
	performed, and the two following
	cases might occur:		
	3.2.1.1.2.1. If	, no actions are
		taken and the elements order
		are maintained as	.
		Since	&	&
			, we may conclude
		that the queue is the correct
		order.		
	3.2.1.1.2.2.	, which is not	
		feasible, since it is a	
		contradiction.			3.1.2.2.	,	,	.
	3.2.1.2.			, and the		The two following general cases might
	elements are ordered as	.		occur in this condition:
	3.2.1.3.	&		, and the	3.1.2.2.1. If	, no actions are taken and
	elements are ordered as	. Two	the order remains as	.
	cases are again likely to occur:		3.1.2.2.2. If	, again no actions are
	3.2.1.3.1. If		, no actions are taken and	taken, since it contradicts	.
	the elements order are maintained	Hence, the order remains as
	as	. Since	&		.
		&				3.1.2.3.	,	(was
						swapped with)
						The two following general cases might
						occur:
						3.1.2.3.1. If	, no actions are taken and
						the order of the elements are
						maintained as	. The queue
						is in the correct order, since
						,	and	,
						3.1.2.3.2. If	, swapping is performed
						and the queue is ordered as
						. Since	&
						&	&	, we can
						conclude the queue is in the correct
						order.
						3(was
						swapped with)
						The two following general cases might
						occur:
						3.1.2.4.1. If	, no actions are taken and
						the order remains as	.
						3.1.2.4.2. If	, again no actions are
						taken, since it contradicts	.
						Hence, the order remains as
						.

3.2. The second main loop

As it was observed in the previous loop, 4 sorting operations were performed, and two cases were never likely to occur. Two other sorting operations are performed in this stage. Additionally, as can be seen in line 22, the loop condition is skipped and line 21 is executed again. Consequently, the following two cases might occur: 3.2.1. The first nested loop 3.2.1.1.

Average-case complexity

Due to the structure of both algorithms, the average-case complexity is equal to the worst-case complexity. Cyrus algorithm in the average-case acts half the worst-case which is again similar to the worst-case. Darius algorithm sorts the queue after n * (log n) * (log n) operations. Therefore, the best-case, average-case, and worst-case complexities are equal.

Best-case complexity 4.3.1. Cyrus algorithm

Best-case complexity occurs when all data are already sorted. In this case, B and C do not need to be displaced and the array is not divided into two separate arrays. So the log n-level operation is converted to a one-level operation. Figure 6 shows the general idea of the mathematical model of Cyrus algorithm. The recursion tree for the best-case complexity of Cyrus algorithm is shown in Figure 7. The main advantage of this algorithm is best time complexity. The best time complexity of Cyrus and Darius algorithms is n * (log n) and n * (log n) * (log n), respectively.

Advantages of Darius algorithm

The superiority of Darius algorithm is due to a shorter, easier and more comprehensible code.

CONCLUSION

In this paper, two new mathematical models in the form of sorting algorithms were designed to sort the arrays without using additional memory. Three methods were used to demonstrate the complexity of the new algorithms. The results showed the superiority of the new algorithms over previous algorithms. Cyrus algorithm is dynamic while Darius algorithm is static. In fact, these two new algorithms are a new way for sorting data.

We recommend focusing on a model that does not use buffer or additional memory. We also recommend usinga model based on the optimization of well-known sorting algorithms.