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Abstract. Security of a cryptographic protocol for a bounded number ofsessions
is usually expressed as a symbolic trace reachability problem. We show that sym-
bolic trace reachability forwell-definedprotocols is decidable in presence of the
exclusive ortheory in combination with the homomorphism axiom. These theo-
ries allow us to model basic properties of important cryptographic operators.
This trace reachability problem can be expressed as a systemof symbolic de-
ducibility constraints for a certain inference system describing the capabilities of
the attacker. One main step of our proof consists in reducingdeducibility con-
straints to constraints for deducibility in one step of the inference system. This
constraint system, in turn, can be expressed as a system of quadratic equations of
a particular form overZ/2Z[h], the ring of polynomials in one indeterminate over
the finite fieldZ/2Z. We show that satisfiability of such systems is decidable.

1 Introduction

Cryptographic protocols are small programs designed to ensure secure communication
via a network that may be controlled by an attacker. They involve a high level of con-
currency and are difficult to analyze by hand. These programsare linear sequences of
receiveandsendinstructions on a public network. Apassiveattacker may only listen
to messages, while anactiveattacker may also pretend to be a protocol participant and
forge messages according to a certain set ofintruder capabilities.

The problem of deciding whether a protocol preserves the confidentiality of a mes-
sage under any active attack is known to be undecidable in general (e.g.[11]). Several
decidability results have been obtained under the assumption that the number of role
instances is bounded, among others NP-completeness due to Rusinowitch and Turu-
ani [17]. The idea of their algorithm is to guess a symbolic trace in which the messages
are represented by terms containing variables. This symbolic trace corresponds to a
concrete execution trace if the variables can be instantiated in such a way that at ev-
ery moment a message received by an agent can in fact be deduced by the intruder
from the messages seen before. Hence, verifying security ofa protocol amounts to a
non-deterministic guessing of the symbolic trace plus the resolution of a system of
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deducibility constraints. This result [17], as many others (e.g., [15]), relies on theso-
calledperfect cryptography assumptionwhich states that the cryptographic primitives
(like encryption) are perfect and can be treated as black boxes. This assumption is un-
realistic since some attacks exploit in a clever way the interaction between protocol
rules and properties of cryptographic primitives. A more realistic approach is to take
into account properties of the cryptographic primitives (see [4] for a survey). For the
constraint based approach, this has been done for differentequational theories [16, 8].

In this paper we study the equational theoryACUNh which is the combination of (h)
the homomorphism axiomh(x + y) = h(x) + h(y) with theexclusive or(ACUN) the-
ory. These two equational theories model basic properties of important cryptographic
primitives. Some protocols relying on these algebraic properties are described in [4].
Exclusive oris a basic building block in many symmetric encryption methods like DES
or AES, or even used directly as an encryption method (Vernamencryption). Homo-
morphisms are ubiquitous in cryptography. For instance, the Wired Equivalent Privacy
(WEP) protocol uses a checksum functionC which has the homomorphism property
over+, i.e. C(x + y) = C(x) + C(y). Moreover, the homomorphism property over
some binary operator appears in several encryption schemes(RSA, ElGamal ...) and
is crucial in the field of electronic voting protocols [5]. Note that the recent result by
Chevalier and Rusinowitch [2] for the combination of intruder theories can not be em-
ployed here to simply extend the known decidability result [1, 3] for ACUN since the
theoriesACUN andh share the symbol+. Furthermore, their result relies on a model
which is different from ours in that it applies only to a restricted class of protocols.

Some results have already been obtained for theACUNh theory [13, 6], but only
for the case of a passive attacker. This algorithm for passive attacks is an important
ingredient to the algorithm for active attacks developed inthe present paper. Another
important ingredient isACUNh unification which has been shown decidable in [12].
However, for our procedure, we need to establish that unification in ACUNh is finitary,
i.e. that every problem has a finite set of most general solutions. Our work is inspired
by Millen and Shmatikov’s approach [16] for the equational theory of Abelian groups.
However, there are fundamental differences in the technical development.

Outline of the paper.We present our attacker model in Section 2, and the classes of
constraint systems that we employ in our algorithm in Section 3. The proof of our main
result (Theorem 1) proceeds in two steps: First we reduce satisfiability of deducibil-
ity constraints to satisfiability of constraints for one-step deducibility by a particular
inference rule (Section 4). Second, we reduce satisfiability of these constraints to the
satisfiability of a particular form of quadratic equations over the ringZ/2Z[h], which
we finally show to be decidable in Section 5 (satisfiability ofquadratic equations over
Z/2Z[h], or for that matterZ, is undecidable in general). Due to lack of space, proofs
are omitted and can be found in [9].

2 Attacker Model

2.1 Inference System

The deduction capabilities of the intruder are formalized by theDolev-Yao model[10].
We extend the intruder capabilities by equational reasoning modulo a given setE of



equational axioms; we denote this intruder model byIDY+E. In this paper, we consider
the equational theoryE = ACUNh which consists of the well-known axioms ofexclu-
sive orin combination with a homomorphism symbol. More formally,ACUNh contains
the following equations:

– Associativity, Commutativity(AC): x + (y + z) = (x + y) + z, x + y = y + x,
– Unit (U): x + 0 = x,
– Nilpotence(N): x + x = 0,
– homomorphism(h): h(x + y) = h(x) + h(y).

We obtain the inference system described in Figure 1 where equational reason-
ing is taken into account through the normalization function ↓ associated toE. In the
case of theACUNh equational theory, theAC-convergent rewrite system is obtained
by orienting from left to right the equations(U), (N), (h) and by adding the conse-
quenceh(0) → 0 (see [13] for details). We omit the equality rule forAC and just work
with equivalence classes moduloAC.

Unpairing (UL)
T ⊢ 〈u, v〉

T ⊢ u
Compose (C)

T ⊢ u1 . . . T ⊢ un

with f ∈ F r {+, h, 0}
T ⊢ f(u1, . . . , un)

Unpairing (UR)
T ⊢ 〈u, v〉

T ⊢ v
Context(ME)

T ⊢ u1 . . . T ⊢ un

with C anE-context
T ⊢ C[u1, . . . , un] ↓

Decryption (D)
T ⊢ {u}v T ⊢ v

T ⊢ u

Fig. 1.Dolev-Yao Model Extended with an Equational Theory:IDY+E

The intended meaning of asequentT ⊢ u is that the intruder is able to deduce
the termu ∈ T (F ,X ) from the finite set of termsT ⊆ T (F ,X ). As in the standard
Dolev-Yao model, the intruder can compose new terms from known terms(C), he can
decompose pairs(UL, UR), and he can decrypt ciphertexts provided that he can deduce
the decryption key(D). Finally, the intruder may apply (ME) anyE-context,i.e. term
of the formC[x1, . . . , xn] with C ∈ T ({0, +, h}, {x1, . . . , xn}), to terms he already
knows. Examples of instances of this rule are

T ⊢ a + h(a) T ⊢ b
(ME)

T ⊢ a + h(h(h(a))) + h(b)
(ME)

T ⊢ 0

obtained withC[x1, x2] = x1 + h(x1) + h(h(x1)) + h(x2), resp.C[] = 0.
The notationhn(t) represents the termt if n = 0 andh(hn−1(t)) otherwise. Along

this paper, we consider implicitly that terms are kept in normal form, i.e. we write u
(resp.uσ) instead ofu ↓ (resp.uσ ↓).

This deductive system is equivalent in deductive power to a variant of the system in
which terms are not automatically normalized, but in which arbitrary equational proofs



are allowed at any moment of the deduction (see [6, 13]). The inference system de-
scribed in Figure 1 deals with symmetric encryption. However, it is not difficult to
design a similar deduction system for asymmetric encryption and to extend the results
of this paper to this new inference system.

2.2 Factors, Subterms

A term t is standardif and only if it is not of the formf(t1, . . . , tn) for some term
t1, . . . , tn and somef ∈ {0, h, +}. In particular, every variable is a standard term.

Definition 1. Let t be a term in normal form. We havet = C[t1, . . . , tn] for some
standard termst1, . . . , tn and anE-contextC. The setFactE(t) of factorsof t is defined
byFactE(t) = {t1, . . . , tn}. The setStE(t) of subtermsof t is the smallest set such that:

– 0, t ∈ StE(t),
– if f(t1, . . . , tn) ∈ StE(t) is standard thent1, . . . tn ∈ StE(t),
– if s ∈ StE(t) is not standard thenFactE(s) ⊆ StE(t).

Note that the set of factors is uniquely defined since equality is taken to be moduloAC.
Note also that, by definition,0 is not a standard term and the factors of any term are
necessarily standard. We extend the notationsStE(·) andFactE(·) in a natural way to
sets of terms.

Example 1.Let t1 = h2(a)+b+x andt2 = h(〈a, b〉)+x, we getFactE(t1) = {a, b, x},
StE(t1) = {t1, a, b, x}, FactE(t2) = {〈a, b〉, x}, StE(t2) = {t2, 〈a, b〉, a, b, x}.

2.3 Proofs

Definition 2. A proofP of T ⊢ u is a finite tree such that

– the root ofP is labeled withT ⊢ u,
– every leaf ofP labeled withT ⊢ v is such thatv ∈ T ,
– for every node ofP labeled withT ⊢ v havingn sons labeled withT ⊢ v1, . . . , T ⊢

vn, there is an instance
T ⊢ v1 . . . T ⊢ vn

(R)
T ⊢ v

of an inference rule. If this node

labeled withT ⊢ v is the root ofP , we say thatP endswith an instance of(R).

Note that the terms in the proof are not necessarily ground. Aproof P of T ⊢ u is
minimal if there is no proofP ′ of T ⊢ u with less nodes thanP .

Definition 3. A termu is R-one-step deduciblefrom a set of termsT in any of the
following cases:

– T ⊢ u is a proof ofT ⊢ u (i.e,u ∈ T or u = 0),

– there existsu1, . . . , un such that
T ⊢ u1 . . . T ⊢ un

(R)
T ⊢ u

is a proof ofT ⊢ u.

The termu is one-step deduciblefrom T if u is R-one-step deducible fromT for some
inference ruleR.

The following lemma, due to [6], shows that if there exists a proof of a sequent then
there exists a “small” one.

Lemma 1. A minimal proofP of T ⊢ u contains only terms inStE(T ∪ {u}).



3 Constraint Systems

3.1 Well-Defined Constraint Systems

It is well-known that the security problem of a protocol for afixednumber of parallel
sessions reduces to the satisfiability of a constraint system (see, e.g. [1, 15]):

Definition 4. A constraint(resp. one-step constraint,ME constraint) is a sequent of the
form T 
 u (resp.T 
1 u, T 
ME

u) whereT is a finite subset ofT (F ,X ) and
u ∈ T (F ,X ). We call T thehypothesis setof the constraint. Asystem of constraints
is a sequence of constraints. A solution to a systemC of constraints is a substitutionσ
such that:

– for everyT 
 u ∈ C there exists a proof ofTσ ⊢ uσ;
– for everyT 
1 u ∈ C the termuσ is one-step deducible fromTσ;
– for everyT 
ME

u ∈ C the termuσ is ME-one-step deducible fromTσ.

A solutionσ to C is non-collapsingif for all u, v ∈ StE(C) \ X such thatuσ =E vσ
thenu =E v. If F ′ is a sub-signature ofF then a solutionσ to a constraint system is
called aF ′-solution ifxσ ∈ T (F ′,X ) for everyx ∈ dom(σ).

Note that, ifσ is solution to a constraintT 
 u (resp. one-step constraint,ME

constraint), thenσθ is also a solution toT 
 u for every substitutionθ.

Definition 5. A constraint systemC = {Ti 
 ui}1≤i≤k is well-definedif:

1. (monotonicity)for all i < k: Ti ⊆ Ti+1,
2. (origination)for all substitutionθ: Cθ satisfies the following requirement:

∀i ≤ k, ∀x ∈ vars(Tiθ), ∃j < i such thatx ∈ vars(ujθ).

This notion of well-definedness, due to Millen and Shmatikov, is defined in an anal-
ogous way on systems of one-step (resp.ME) constraints. In [16] they show that “rea-
sonable” protocols, in which legitimate protocol participants only execute deterministic
steps (up to the generation of random nonces) always lead to awell-defined constraint
system. This notion is crucial for several steps of our algorithm.

Theorem 1. The problem of deciding whether a well-defined constraint system has a
solution inIDY+E, whereE = ACUNh, is decidable.

The remainder of the paper is devoted to the proof of this result.

3.2 Conservative Solutions

Intuitively, a conservative solutionto a constraint system is a solution which does not
introduce any new structure. Lemma 2 states that it is sufficient to search for conserva-
tive solutions of a constraint system. Moreover, conservative solutions allow us to lift
Lemma 1 to deducibility constraints (Lemma 3).

Definition 6. LetC be a constraint system andσ a substitution,σ is conservativew.r.t.
C if and only if for allx ∈ vars(C), FactE(xσ) ⊆ (StE(C) \ vars(C))σ.



Lemma 2. Let C be a well-defined constraint system. If there exists a solution σ to C
then there exists a conservative one.

Example 2.Consider the following well-defined constraint systemC which is made
up of two deducibility constraints:a, h(b) 
 h(x) anda, h(b), x 
 〈a, b〉. One
solution isσ = {x 7→ 〈a, a〉 + b}. This solution is not conservative w.r.t.C since
FactE(〈a, a〉+b) = {〈a, a〉, b}, and〈a, a〉 does not belong to(StE(C)\{x})σ. However,
as it is said in Lemma 2, there is a conservative solution:{x 7→ b}.

Lemma 3. Let σ be a conservative solution toC = {C1, . . . , Ck}. For eachi ≤ k
there exists a proof ofCiσ that involves only terms inStE(C)σ.

4 From Constraints to ME Constraints

We proceed in two non-deterministic steps to reduce the satisfiability of a constraint
system to the satisfiability of aME constraint system:

1. From constraints to one-step constraints (see Lemma 4 andFigure 2).
2. From one-step constraints toME constraints (see Lemma 5).

Input: C = {T1 
 u1, . . . , Tk 
 uk}
guess S ⊆ StE(C)
for all s ∈ S, guess j(s) ∈ {1, . . . , k}
C′:= ∅
for i = 1 to k do

let Si := {s | j(s) = i}
choose a total ordering on Si (Si = {s1

i , . . . , ski
i })

for j = 1 to ki do
T := Ti ∪ S1 . . . ∪ Si−1 ∪ {s1

i , . . . , sj−1

i }
C′:= C′ ∪ {T 
1 sj

i}
end
C′:= C′ ∪ {T 
1 ui}

end
return C′

Fig. 2. Step 1: from constraints to one-step constraints.

The idea of the first step is to guess among the subterms ofC those that are going to
be deduced by the intruder, and to insert each of them in some order into the constraint
system. The completeness of this reduction step is essentially due to the existence of a
conservative solution (Lemma 2) and to Lemma 3. In the resulting constraint system,
every constraint can be solved by application of a single inference rule:



Lemma 4. LetC be a well-defined system of constraints. LetC
′ be the set of constraint

systems obtained by applying onC the algorithm described in Figure 2.

1. C ′ is a finite set of well-defined systems of one-step constraints.
2. If someC′ ∈ C ′ has a solution thenC has a solution.
3. If C has a conservative solution then someC′ ∈ C ′ has a conservative solution.

Lemma 5 allows us to reduce the satisfiability of a system of one-step constraints
to the satisfiability of a system ofME constraints. We first guess a setR of equali-
ties between subterms. Then, we choose anE-unifier of R among the finite number of
possibilities given by Theorem 2.

Theorem 2. Unification in the theoryACUNh is finitary, and there exists an algorithm
to compute a complete finite setmguE(R) of unifiers of any unification problemR.

We write T ⊢DY u if u is (R)-one step deducible fromT whereR is one of
(D, UL, UR, C). It is trivial to decide whetherT ⊢DY u or not. We can now eliminate
all constraintsT 
1 u for whichT ⊢DY u already holds.

Lemma 5. LetC be a well-defined system of one-step constraints. Let
P = {

∧
(s1,s2)∈S′ s1 = s2 | S′ ⊆ StE(C)2}.

LetR ∈ P andθ ∈ mguE(R). LetCθ = {Tθ 
ME
uθ | T 
1 u ∈ C andTθ 6⊢DY uθ}.

LetC be the set of constraint systemsCθ obtained this way.

1. C is a finite set of well-defined systems ofME constraints.
2. If someCθ ∈ C has a solution thenC has a solution.
3. If C has a conservative solution then someCθ ∈ C has a non-collapsing solution.

Note that we can now restrict our attention tonon-collapsingsolutions, thanks to
the fact that we have guessed the subterms that are identifiedby the solution.

5 SolvingME Constraints

Now, we have to solve well-definedME constraint systems, where it is sufficient to
look for non-collapsing solutions. In the remainder, we consider aME constraint sys-
temC = {T1 
ME

u1, . . . , Ti 
ME
uk} and we assume w.l.o.g. that the set of termsTi

is equal to{t1, . . . , tn+i−1}.
A constraint system is calledfactor-preservingif all its factors appear for the first

time in an hypotheses set of a constraint. More formally,

Definition 7. A ME constraint system isfactor-preservingif for all i, 1 ≤ i ≤ k, we
have thatFactE(ui) \ X ⊆

⋃j=n+i−1
j=1 FactE(tj).

Example 3.The systems,〈a, b〉 
ME
〈x1, x2〉 and〈〈a, b〉, a〉 
ME

〈a, b〉 are not factor-
preserving. Note that the first one has no non-collapsing solution whereas the second
one has no solution using theME inference rule only.



This notion is important to ensure that well-definedness is maintained when we abstract
a constraint system by replacing factors by new constants (see Lemma 7). Fortunately,
requiring factor preservation is not a restriction, since:

Lemma 6. If a well-definedME-constraint systemC has a non-collapsing solution then
it is factor-preserving.

Factor preservation is of course trivial to check. We can hence suppose that the
constraint system under consideration is factor-preserving, since if it is not then we
conclude immediately by Lemma 6 that it has no non-collapsing solution.

5.1 Reducing the Signature

We will show in Lemma 7 that we can reduce the satisfiability ofME constraint systems
to the satisfiability ofME constraint systems over a signature consisting only of0, +,
h, and a set of constants.

If ρ : M → N is a replacement, that is a bijection between two finite sets of terms
M andN , then we denote for any termt by tρ the term obtained by replacing int
any top-most occurrence of a subterms ∈ M by sρ. This extends in a natural way to
constraint systems, and to substitutions.

Lemma 7. Let C be a well-defined factor-preservingME constraint system andF =
FactE(C) \ X . LetF0 be a set of new constant symbols of the same cardinality asF
andρ : F → F0 a bijection.

1. Cρ is well-defined.
2. vars(Cρ) = vars(C).
3. If C has a non-collapsing solution thenCρ has aF0 ∪ {0, h, +}-solution.
4. If Cρ has aF0 ∪ {0, h, +}-solution thenC has a solution.

As shown by the example below, well-definedness is not necessarily preserved un-
der abstraction when the system is not factor-preserving.

Example 4.Abstraction of the systema 
ME
〈x1, x2〉; a, x1, x2 
ME

b, which is not
factor preserving, yieldsa 
ME

cnew; a, x1, x2 
ME
b, which is not well-defined.

5.2 Another Characterization of Well-Definedness

Let
∑n

i=0 bih
i wherebi ∈ Z/2Z be a polynomial ofZ/2Z[h]. The product⊙ of a

polynomial by a term is a term defined as follows:

(
n∑

i=0

bih
i) ⊙ t =

n∑

i=0 | bi 6=0

hi(t)

For instance(h2+1)⊙(x+a) = h2(x)+x+h2(a)+a. Everyt ∈ T (F , {x1, . . . , xp})
can be writtentx1 ⊙x1 + . . . txp ⊙xp + t0 with txv in Z/2Z[h] andFactE(t0)∩X = ∅.
We will denote witht the vector(tx1 , . . . , txp).



Definition 8. Let V = {v1, . . . , vm} be a subset ofZ/2Z[h]n. V is independentif
whenever there existαi ∈ Z/2Z[h] such thatα1v1 + . . . + αmvm = 0 thenαi = 0 for
all 1 ≤ i ≤ m. OtherwiseV is dependent.

Remember that we consider a constraint systemC = {t1, . . . , tn+i−1 
ME
ui}i=1,...,k.

The setL = Lk of indexes of the so-calleddefining constraintsis defined as follow.
We setL0 = ∅, and we defineLi+1 = Li ∪ {i + 1} if {ui+1} ∪ {uj | j ∈ Li}
is independent, andLi+1 = Li otherwise. We noteBi = {uj | j ∈ L, j ≤ i} and
B = Bk. Lemma 8 gives an algebraic characterization of well-definedness in the special
case of the signatureF0∪{0, h, +}. Now, we have reduced the problem to this restricted
signature (Lemma 7), we are going to use the following characterization in Section 5.3
to solve systems of equations overZ/2Z[h].

Lemma 8. A factor-preservingME constraint system{t1, . . . , tn+i−1 
ME
ui}i=1,...,k

over the signature{0, h, +} ∪ F0 is well-defined if, and only if, for everyi ≤ k, the set
of vectors{tn+i−1} ∪ {uj | j ∈ Li} is dependent.

Intuitively, this is related to the fact that matching modulo ACUNh is essentially
linear equation solving.

5.3 SolvingME Constraint Systems over{0, h, +} ∪ F0

We may by Lemma 6 assume that we have a factor-preservingME constraint system.
By Lemma 7 satisfiability of such a system can be reduced to satisfiability of a ME

constraint system over a signature{0, h, +} ∪ F0 whereF0 is a finite set of constants.
The characterization of Lemma 8 allows us to use the following well-known fact.

Fact 1 Let A be a matrixn × m overZ/2Z[h] such that then row vectors are inde-
pendent (n ≤ m) then there existsQ ∈ Z/2Z[h] such that

∀b ∈ Z/2Z[h]n, ∃X ∈ Z/2Z[h]m A · X = Q · b (1)

Moreover, such a coefficientQ is computable as a determinant of a submatrix of A.

We denoteQmax the coefficientQ which satisfies the equation (1) for the matrixB.

Example 5.(running example) To illustrate our procedure, we considerthe following
well-definedME constraint system:

h(a) + a, b + h2(a) 
ME
h(x1) + h2(x2)

h(a) + a, b + h2(a), x1 + h(x2) 
ME
x1 + a

h(a) + a, b + h2(a), x1 + h(x2), h(x1) + h(a) 
ME
h(x1) + h2(x2) + x1 + a

We haveu1 = (h, h2), u2 = (1, 0) andu3 = (1 + h, h2). The algorithm returns
L = {1, 2} and we obtainQmax = det(u1, u2) = h2.



Satisfiability of such anME constraint systemC is equivalent to the satisfiability of
the following systemS of equations between terms. The variablesz[i, j], calledcontext
variables, take their value inZ/2Z[h]. LetZ = {z[i, j] | 1 ≤ i ≤ k, 1 ≤ j ≤ n+i−1}.

z[1, 1] ⊙ t1 + . . . + z[1, n] ⊙ tn = u1

z[2, 1] ⊙ t1 + . . . + z[2, n] ⊙ tn + z[2, n + 1] ⊙ tn+1 = u2

...
z[p, 1] ⊙ t1 + . . . + z[p, n] ⊙ tn + . . . + z[p, n + p − 1] ⊙ tn+k−1 = uk

Example 6.(running example) Lett1 = h(a) + a andt2 = b + h2(a).

z[1, 1] ⊙ t1 + z[1, 2] ⊙ t2 = h(x1) + h2(x2)
z[2, 1] ⊙ t1 + z[2, 2] ⊙ t2 + z[2, 3] ⊙ (x1 + h(x2)) = x1 + a
z[3, 1] ⊙ t1 + z[3, 2] ⊙ t2 + z[3, 3] ⊙ (x1 + h(x2)) + z[3, 4] ⊙ (h(x1) + h(a))

= h(x1) + h2(x2) + x1 + a

Definition 9. LetC be a well-definedME constraint system over the signature{0, h, +}∪
F0 andS(C) be the system of equations obtained fromC. A solution toS(C) is a couple
(ρ : Z 7→ Z/2Z[h], θ : vars(C) 7→ T ({0, h, +} ∪ F0)) such that all the equations
of S(C)ρθ are satisfied.

We split thecontext variablesZ into two parts, those which stem fromL and the
others. More formally,ZL = {z[i, j] | i ∈ L and1 ≤ j < n + i}.

A polynomialP =
∑i=n

i=0 pih
i (pn 6= 0) is smallerthanQ =

∑i=m
i=0 qih

i (qm 6= 0),
written P < Q, if either n < m, or P 6= Q, n = m andpi < qi for the greatesti
with pi 6= qi.

Fact 2 Given any polynomialP ∈ Z/2Z[h], there is only a finite number of polynomi-
als which are smaller (w.r.t.<) thanP .

The following Lemma is the crucial point in the proof of Lemma10.

Lemma 9. Let S(C) be a system of equations obtained from a well-definedME con-
straint systemC over the signature{0, h, +} ∪ F0. If S(C) has a solution then there
existsσ a solution toS(C) such that for allz ∈ ZL, 0 ≤ zσ < Qmax.

The proof of this lemma proceeds by induction on the number ofvariables inZL.

Lemma 10. GivenC a well-definedMEconstraint system. It is decidable whetherS(C)
has a solution.

Example 7.(running example) Thanks to Lemma 9, we know thatz[1, 1], z[1, 2], z[2, 1],
z[2, 2] andz[2, 3] are bounded byh2, the value ofQmax. We chooseρ1 = {z[1, 1] 7→
0; z[1, 2] 7→ h; z[2, 1] 7→ h + 1; z[2, 2] 7→ 1; z[2, 3] 7→ 0}. We do the replacement on
the two first equations:

h ⊙ (b + h2(a)) = h(x1) + h2(x2)
(h + 1) ⊙ (h(a) + a) + 1 ⊙ (b + h2(a)) = x1 + a



This completely determines the value ofx1 andx2: θ = {x1 7→ b, x2 7→ h(a)}. Lastly,
we can apply the substitutionθ on the third equation to obtain:

z[3, 1] ⊙ (h(a) + a) + z[3, 2] ⊙ (b + h2(a)) + z[3, 3] ⊙ (b + h2(a))+
z[3, 4] ⊙ (h(b) + h(a)) = h(b) + h3(a) + b + a

Since this system is linear it is easy to decide whether it hassolution.

Let ρ2 = {z[3, 1] 7→ h + 1; z[3, 2] 7→ h + 1; z[3, 3] 7→ 0; z[3, 4] 7→ 0}. The couple
(ρ1 ∪ ρ2, θ) is a solution to the system of equations described in Example6.

Now, we are able to prove our main result as stated in Section 3.

Theorem 1. The problem of deciding whether a well-defined constraint system has a
solution inIDY+E, whereE = ACUNh, is decidable.

Proof. The procedure described along the paper is sound and complete.

Soundness.Let C1 be some factor-preservingME-constraint system obtained by apply-
ing the first part of our procedure onC, a well-defined constraint system. Thanks to
Lemma 4 and 5,C1 is well-defined sinceC is well-defined. LetC2 be the constraint sys-
tem obtained fromC1 by replacing all factors by different constants.C2 is well-defined
thanks to Lemma 7. Assume thatS(C2) (the system of equations associated toC2) has
a solution. We easily deduce thatC2 has a solution, hence by Lemma 7 thatC1 has a
solution, and by Lemma 4 and 5 thatC has a solution.

Completeness.Assume thatσ is a solution toC. Thanks to Lemma 2, we can assume
thatσ is conservative w.r.t.C. LetC ′ be the finite set of well-defined one-step constraint
systems obtained by applying the algorithm described in Section 4 onC. By Lemma 4,
we know that there existsC′ ∈ C ′ such thatσ is a conservative solution ofC′. By
Lemma 5, we know that there existsCθ a well-definedME-constraint system which has
a non-collapsing solution. Hence,Cθ is factor-preserving due to Lemma 6. By Lemma 7,
Cρ

θ has solution over{0, h, +} ∪ F0. Then, Lemma 10 allows us to conclude. �

6 Conclusion

Our solution for solving deducibility constraints is general enough to hold in related
equational theories since it relies on general algebraic concepts. In particular, our tech-
nique generalizes previous results for the case of theexclusive orequational theory
ACUN [1, 3] (context variables take values inZ/2Z) and the theory of Abelian groups
AG [16] (contexts are inZ). However, our technique does not apply to the caseAGh
of the extension of Abelian groups with a homomorphism sincethen the contexts are
in Z[h], and Fact 2 does not hold. In fact it has recently been shown that this case is
undecidable [7].

Despite a superficial similarity between our algorithm and the one of [16], our pro-
cedure to reduceME-constraints (cf. Section 5) to a special class of quadratic equations
is different. In particular it makes use of our novel algebraic characterization of well-
defined constraint systems. Furthermore, our procedure to solve a particular form of



quadratic equations in polynomials over the finite fieldZ/2Z[h] is different from the
one proposed in [16].

An open question is the case of an encryption algorithm distributing overexclusive
or. Although the case of a passive intruder is decidable in thisframework [14], the case
of an active intruder seems quite intricate since it amountsto having an infinite number
of distinct homomorphisms (one for each term used as a key).
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