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Abstract. Security of a cryptographic protocol for a bounded numbesestions

is usually expressed as a symbolic trace reachability probWe show that sym-
bolic trace reachability fowell-definedorotocols is decidable in presence of the
exclusive ottheory in combination with the homomorphism axiom. Thes®th
ries allow us to model basic properties of important crypapdic operators.

This trace reachability problem can be expressed as a systesymbolic de-
ducibility constraints for a certain inference system diésing the capabilities of
the attacker. One main step of our proof consists in redudedycibility con-
straints to constraints for deducibility in one step of théefence system. This
constraint system, in turn, can be expressed as a systenadfajic equations of
a particular form oveZ./2Z[h], the ring of polynomials in one indeterminate over
the finite fieldZ/27Z. We show that satisfiability of such systems is decidable.

1 Introduction

Cryptographic protocols are small programs designed tarersecure communication
via a network that may be controlled by an attacker. Theylugsa high level of con-
currency and are difficult to analyze by hand. These progemadinear sequences of
receiveandsendinstructions on a public network. passiveattacker may only listen
to messages, while attiveattacker may also pretend to be a protocol participant and
forge messages according to a certain sattofider capabilities

The problem of deciding whether a protocol preserves thédemtiality of a mes-
sage under any active attack is known to be undecidable iergkg.g.[11]). Several
decidability results have been obtained under the assamgat the number of role
instances is bounded, among others NP-completeness dugstoowitch and Turu-
ani [17]. The idea of their algorithm is to guess a symbobkcérin which the messages
are represented by terms containing variables. This syimbalce corresponds to a
concrete execution trace if the variables can be instaatiat such a way that at ev-
ery moment a message received by an agent can in fact be deddydbe intruder
from the messages seen before. Hence, verifying securigdypsbtocol amounts to a
non-deterministic guessing of the symbolic trace plus #solution of a system of

* This work has been partly supported by the RNTL project PREW3V360 and the ACI-SI
Rossignol.



deducibility constraintsThis result [17], as many others (e.g., [15]), relies ongbe
calledperfect cryptography assumptiavhich states that the cryptographic primitives
(like encryption) are perfect and can be treated as blackddkhis assumption is un-
realistic since some attacks exploit in a clever way therautiion between protocol
rules and properties of cryptographic primitives. A moralisgic approach is to take
into account properties of the cryptographic primitivese($4] for a survey). For the
constraint based approach, this has been done for diffegerdtional theories [16, 8].

In this paper we study the equational theAQUNh which is the combination oh)
the homomorphism axioth(x + y) = h(z) + h(y) with theexclusive ofACUN) the-
ory. These two equational theories model basic properfi@mmortant cryptographic
primitives. Some protocols relying on these algebraic prtgs are described in [4].
Exclusive oris a basic building block in many symmetric encryption methtike DES
or AES, or even used directly as an encryption method (Vereaanyption). Homo-
morphisms are ubiquitous in cryptography. For instanceWired Equivalent Privacy
(WEP) protocol uses a checksum functi@nwhich has the homomorphism property
over+, i.e.C(x + y) = C(z) + C(y). Moreover, the homomorphism property over
some binary operator appears in several encryption scheR®4, ElGamal ...) and
is crucial in the field of electronic voting protocols [5]. téothat the recent result by
Chevalier and Rusinowitch [2] for the combination of intendheories can not be em-
ployed here to simply extend the known decidability resujt3] for ACUN since the
theoriesACUN andh share the symbo}. Furthermore, their result relies on a model
which is different from ours in that it applies only to a réstied class of protocols.

Some results have already been obtained forAG&Nh theory [13, 6], but only
for the case of a passive attacker. This algorithm for pasaftacks is an important
ingredient to the algorithm for active attacks developethm present paper. Another
important ingredient iACUNh unification which has been shown decidable in [12].
However, for our procedure, we need to establish that utiifican ACUNN is finitary,
i.e. that every problem has a finite set of most general swistiOur work is inspired
by Millen and Shmatikov’s approach [16] for the equatiomeddry of Abelian groups.
However, there are fundamental differences in the techdmalopment.

Outline of the papeMe present our attacker model in Section 2, and the classes of
constraint systems that we employ in our algorithm in Sac3ioThe proof of our main
result (Theorem 1) proceeds in two steps: First we redudsfigaility of deducibil-
ity constraints to satisfiability of constraints for oneystdeducibility by a particular
inference rule (Section 4). Second, we reduce satisfiplufithese constraints to the
satisfiability of a particular form of quadratic equationgothe ringZ/27Z[h], which
we finally show to be decidable in Section 5 (satisfiabilitygafdratic equations over
Z/27Z[h], or for that matteZ, is undecidable in general). Due to lack of space, proofs
are omitted and can be found in [9].

2 Attacker Model

2.1 Inference System

The deduction capabilities of the intruder are formalizgdHhz Dolev-Yao mod€]10].
We extend the intruder capabilities by equational reagpniodulo a given seE of



equational axioms; we denote this intruder modeZby. . In this paper, we consider
the equational theorl = ACUNh which consists of the well-known axioms exclu-
sive orin combination with a homomorphism symbol. More formaf;UNh contains
the following equations:

— Associativity, CommutativitfAC): z + (y + 2) = (z +y) + z, 2 +y =y + x,
— Unit(U): 24+ 0=z,

— Nilpotence(N): z + z = 0,

— homomorphisnih): h(z + y) = h(z) + h(y).

We obtain the inference system described in Figure 1 whevat&upal reason-
ing is taken into account through the normalization funttjcassociated té&. In the
case of theACUNh equational theory, thAC-convergent rewrite system is obtained
by orienting from left to right the equation®&), (N), (h) and by adding the conse-
quenceh(0) — 0 (see [13] for details). We omit the equality rule #&€ and just work
with equivalence classes modAC.

. T}—(u’v> Trur ... TFup )
Unpairing (UL) ————  Compose (C) with f € F ~ {+,h,0}
TEFu TE f(ul,...,un)
. T}—<u7fy> T'*UlTF’U/n .
Unpairing (UR) ——— Context(Mg) with C' anE-context
ThHuv TI—C[ul,,un]l

) TH{u}y, Tko
Decryption(D) —— —
TkFu

Fig. 1. Dolev-Yao Model Extended with an Equational ThedEyy 4

The intended meaning of sequentl” + w is that the intruder is able to deduce
the termu € T (F, X) from the finite set of term§ C 7 (F, X). As in the standard
Dolev-Yao model, the intruder can compose new terms fronwkniegrms(C), he can
decompose paifdJL, UR), and he can decrypt ciphertexts provided that he can deduce
the decryption keyD). Finally, the intruder may applyMg) any E-context,i.e. term
of the formC|zy, ..., x,] with C € T({0,+,h},{z1,...,z,}), to terms he already
knows. Examples of instances of this rule are

TFa+ h(a) TED
—— (Mg)
T+ a+ h(h(h(a))) + h(b) (Me) THO

obtained withC'[z1, z2] = z1 + h(z1) + h(h(x1)) + h(z2), resp.C[] = 0.

The notatiom. (t) represents the termif n = 0 andh(h"~1(¢)) otherwise. Along
this paper, we consider implicitly that terms are kept innnak form, i.e. we write u
(resp.uc) instead ofu | (resp.uo |).

This deductive system is equivalent in deductive power taramt of the system in
which terms are not automatically normalized, but in whidbiteary equational proofs



are allowed at any moment of the deduction (see [6, 13]). Tiferénce system de-
scribed in Figure 1 deals with symmetric encryption. Howeiteis not difficult to
design a similar deduction system for asymmetric encrypptiod to extend the results
of this paper to this new inference system.

2.2 Factors, Subterms

A term t is standardif and only if it is not of the formf(¢4,...,t,) for some term
t1,...,t, and somef € {0, h,+}. In particular, every variable is a standard term.

Definition 1. Lett¢ be a term in normal form. We have= C|t,...,t,] for some
standard termg, , . . ., t,, and anE-contextC'. The setfacte(t) of factorsoft is defined
by Facte(t) = {t1,...,tn}. The setStg(¢) of subterm®ft is the smallest set such that:

— O,t S StE(t),

—if f(t1,...,t,) € Ste(t) is standard then, ... t,, € Ste(t),

— if s € Ste(t) is not standard thedracte(s) C Ste(t).

Note that the set of factors is uniquely defined since equialitaken to be moduldC.
Note also that, by definition) is not a standard term and the factors of any term are
necessarily standard. We extend the notati6hg-) and Facte(-) in a natural way to
sets of terms.

Example 1.Lett; = h?(a)+b+x andty = h({a, b))+, we getFacte(t1) = {a,b, z},
Ste(t1) = {t1,a,b,z}, Facte(t2) = {{(a,b), x}, Ste(t2) = {t2,(a,b),a,b,z}.

2.3 Proofs
Definition 2. A proof P of T' + w is a finite tree such that

— the root of P is labeled withT" - ,
— every leaf ofP labeled withT' - v is such that € T,

— for every node oP labeled withl" - v havingn sons labeled witf" - v, ..., T

TrFvy ... TEhuo,

v, there is an instance (R) of an inference rule. If this node

Fo
labeled withT" I- v is the root of P, we say that” endswith an instance ofR).
Note that the terms in the proof are not necessarily groungkotf P of T+ u is
minimalif there is no proofP’ of T' - u with less nodes thaR.

Definition 3. A termu is R-one-step deducibléom a set of term§” in any of the
following cases:
— T Fwuis aproof ofl" - u (i.e,u € T or u = 0),

) THu, ... THu, )
— there existsq, ..., u, such that (R) is a proof ofT" - w.

ThHu
The termu is one-step deduciblgom T if u is R-one-step deducible froffi for some
inference ruleR.

The following lemma, due to [6], shows that if there exists@qgh of a sequent then
there exists a “small” one.

Lemma 1. A minimal proofP of T' - « contains only terms i$te (7' U {u}).



3 Constraint Systems

3.1 Well-Defined Constraint Systems

It is well-known that the security problem of a protocol fofixxed number of parallel
sessions reduces to the satisfiability of a constraint sy§see, e.g. [1, 15]):

Definition 4. A constrainfresp. one-step constrairt|g constraint) is a sequent of the
formT I+ w (resp.T Iy u, T by, u) whereT is a finite subset of (F,X") and
u € T(F,X). We call T thehypothesis sedf the constraint. Asystem of constraints
is a sequence of constraints. A solution to a sysfesh constraints is a substitution
such that:

— for everyT' IF u € C there exists a proof &f o - uo;
— for everyT' I, u € C the termuo is one-step deducible froffio;
— for everyT Iky, u € C the termuo is Mg-one-step deducible froffio.

A solutiono to C is non-collapsingf for all u,v € Stg(C) \ X such thatuo =g vo
thenu =g v. If 7’ is a sub-signature of then a solutiornr to a constraint system is
called aF’-solution ifzo € T (F’, X) for everyx € dom(o).

Note that, ifo is solution to a constrainl’ I+ « (resp. one-step constrairt]g
constraint), thew 6 is also a solution td@” I « for every substitutiord.

Definition 5. A constraint systerfi = {7; I u; }1<;<x is well-definedif:

1. (monotonicity)for all i < k: T; C T;41,
2. (origination)for all substitutiond: Cé satisfies the following requirement:
Vi < k,Vx € vars(T;0), 3j < i such thatr € vars(u;0).

This notion of well-definedness, due to Millen and Shmatjkedefined in an anal-
ogous way on systems of one-step (rdgp) constraints. In [16] they show that “rea-
sonable” protocols, in which legitimate protocol partenips only execute deterministic
steps (up to the generation of random nonces) always leadvédl-alefined constraint
system. This notion is crucial for several steps of our algor.

Theorem 1. The problem of deciding whether a well-defined constraistesy has a
solution inZpy g, whereE = ACUNN, is decidable.

The remainder of the paper is devoted to the proof of thislttesu

3.2 Conservative Solutions

Intuitively, a conservative solutioto a constraint system is a solution which does not
introduce any new structure. Lemma 2 states that it is selfftdo search for conserva-
tive solutions of a constraint system. Moreover, consematolutions allow us to lift
Lemma 1 to deducibility constraints (Lemma 3).

Definition 6. LetC be a constraint system amda substitutiong is conservativev.r.t.
C ifand only if for allz € vars(C), Factg(zo) C (Ste(C) \ vars(C))o.



Lemma 2. LetC be a well-defined constraint system. If there exists a smiutito C
then there exists a conservative one.

Example 2.Consider the following well-defined constraint syst€mvhich is made
up of two deducibility constraintsz, h(b) I+ h(xz) anda,h(b),z I+ {(a,b). One
solution isc = {z +— (a,a) + b}. This solution is not conservative w.r@. since
Facte({a,a)+b) = {{a, a),b}, and(a, a) does not belong t0Ste (C)\{x})o. However,
as it is said in Lemma 2, there is a conservative solutfan— b}.

Lemma 3. Let o be a conservative solution © = {C4,...,Cy}. Foreachi < k
there exists a proof af;o that involves only terms i§tg(C)o.

4  From Constraints to Mg Constraints

We proceed in two non-deterministic steps to reduce thefeiility of a constraint
system to the satisfiability of lflg constraint system:

1. From constraints to one-step constraints (see Lemma Eigade 2).
2. From one-step constraintsté: constraints (see Lemma 5).

Input: ¢ = {Th Fuw, ..., Tk IFug}
guess S C Ste(C)
for all s € S, guess j(s) € {1, ..., k}
C:=10

for i = 1to k do
let S; :={s | j(s) = i}

choose a total ordering on S; (S; = {s}, ..., s¥})

for 7 =1 to ki do
T:=T;, U S ... U Si1 U {S%,..., Sg_l}
C:=C U {T I sl}

end

Cl:: Cl @] {T I+ u7}

end
return C’

Fig. 2. Step 1: from constraints to one-step constraints.

The idea of the first step is to guess among the subterifistafse that are going to
be deduced by the intruder, and to insert each of them in sodez mto the constraint
system. The completeness of this reduction step is esbguiig to the existence of a
conservative solution (Lemma 2) and to Lemma 3. In the reguttonstraint system,
every constraint can be solved by application of a singlerarice rule:



Lemma 4. LetC be a well-defined system of constraints. €ébe the set of constraint
systems obtained by applying 6rihe algorithm described in Figure 2.

1. ¥’ is afinite set of well-defined systems of one-step constraint
2. If someC’ € €’ has a solution thef has a solution.
3. If C has a conservative solution then sofiiec €’ has a conservative solution.

Lemma 5 allows us to reduce the satisfiability of a system efstep constraints
to the satisfiability of a system d#lg constraints. We first guess a setof equali-
ties between subterms. Then, we choos&amifier of R among the finite number of
possibilities given by Theorem 2.

Theorem 2. Unification in the theor ACUNHh is finitary, and there exists an algorithm
to compute a complete finite seyue(R) of unifiers of any unification problerR.

We write T Fpy wu if u is (R)-one step deducible frorfi’ whereR is one of
(D, UL, UR, Q). It is trivial to decide whethef" py w or not. We can now eliminate
all constraintsl” I « for which T Fpy u already holds.

Lemma 5. LetC be a well-defined system of one-step constraints. Let

P ={As1.oyes 51 =52 | 8" C Ste(C)?}.
LetR € P andf € mgue(R). LetCy = {T0 IFm, ud | T Ik w € CandT0 t/py ub}.
Let% be the set of constraint systeflg obtained this way.

1. ¥ is afinite set of well-defined systemdvf constraints.
2. If someCy € ¥ has a solution thed has a solution.
3. If C has a conservative solution then sofec ¢ has a non-collapsing solution.

Note that we can now restrict our attentionrton-collapsingsolutions, thanks to
the fact that we have guessed the subterms that are ideryfited solution.

5 SolvingM¢g Constraints

Now, we have to solve well-defineldle constraint systems, where it is sufficient to
look for non-collapsing solutions. In the remainder, wesidar aMg constraint sys-
temC = {T} lFm, u1, ..., T; IFme ux} and we assume w.l.o.g. that the set of teffns
is equal tofty, ..., turi—1}-

A constraint system is callef@dctor-preservingf all its factors appear for the first
time in an hypotheses set of a constraint. More formally,

Definition 7. A Mg constraint system ifactor-preservingf for all 4, 1 < i < k, we
have thatFacte(u;) \ X C 277" Facte(t;).

Example 3.The systems{a, b) IFy. (21, 22) and({(a,b), a) IFu. (a,b) are not factor-
preserving. Note that the first one has no non-collapsingtisol whereas the second
one has no solution using tihé inference rule only.



This notion is important to ensure that well-definednessdagtained when we abstract
a constraint system by replacing factors by new constaatsl{emma 7). Fortunately,
requiring factor preservation is not a restriction, since:

Lemma 6. If a well-definedMg-constraint syster@ has a non-collapsing solution then
it is factor-preserving.

Factor preservation is of course trivial to check. We canchesuppose that the
constraint system under consideration is factor-presgnsince if it is not then we
conclude immediately by Lemma 6 that it has no non-collgpsiution.

5.1 Reducing the Signature

We will show in Lemma 7 that we can reduce the satisfiabilitiefconstraint systems
to the satisfiability ofMg constraint systems over a signature consisting only, ef,
h, and a set of constants.

If p: M — N is areplacement, that is a bijection between two finite setsrms
M and N, then we denote for any terimby ¢” the term obtained by replacing in
any top-most occurrence of a subtesne M by sp. This extends in a natural way to
constraint systems, and to substitutions.

Lemma 7. LetC be a well-defined factor-preservige constraint system and' =
Facte(C) \ X. LetFy be a set of new constant symbols of the same cardinalify as
andp : F' — F; a bijection.

1. C* is well-defined.

2. vars(CP) = vars(C).

3. IfC has a non-collapsing solution théif has aF, U {0, h, + }-solution.
4. If C? has aFy U {0, h, +}-solution therC has a solution.

As shown by the example below, well-definedness is not nadéspreserved un-
der abstraction when the system is not factor-preserving.

Example 4.Abstraction of the system Iy, (1, z2); a,x1, 22 IFm b, which is not
factor preserving, yields -y, cnew; a, 1,22 IFme b, which is not well-defined.

5.2 Another Characterization of Well-Definedness

Let >" ,b;h whereb; € Z/2Z be a polynomial ofZ/2Z[h]. The product> of a
polynomial by a term is a term defined as follows:

O wnhyot= > ()
i=0 i=0 | b;#0
Forinstancéh?+1)® (z+a) = h*(z)+x+h?(a)+a. Everyt € T(F,{z1,...,xp})
can be writtent™ ® 1 +. .. t*» © x, +t° with t** in Z/2Z[h] and Facte(t°) N X =
We will denote witht the vector(t™, ..., t%»).



Definition 8. LetV = {vy,...,v,,} be a subset ofZ/2Z[h]™. V is independentf
whenever there exist; € Z/2Z[h| such thatwyvy + ... + @ vy, = 0 thena; = 0 for
all 1 < i < m. Otherwise) is dependent

Remember that we consider a constraint system{t1, ..., tp+i—1 IFme i bi=1,.. k-
The setL = L, of indexes of the so-calledefining constraintss defined as follow.
We setL, = ), and we definel; 1, = L; U {t + 1} if {uip1} U{u; | j € L;}

is independent, and;; = L, otherwise. We not#; = {u; | j € L,j < i} and

B = B;,. Lemma 8 gives an algebraic characterization of well-défiess in the special
case of the signatutg, U{0, h, +}. Now, we have reduced the problem to this restricted
signature (Lemma 7), we are going to use the following charaation in Section 5.3

to solve systems of equations oV&f2Z[h].

Lemma 8. A factor-preservindvig constraint systemits, . .., t,4i—1 lFmg %iti=1, &
over the signaturg0, h, +} U Fq is well-defined if, and only if, for eveiy< k, the set
of vectors{t,y,—1} U{u,; | j € L;} is dependent.

Intuitively, this is related to the fact that matching magllCUNh is essentially
linear equation solving.
5.3 SolvingMg Constraint Systems over{0, h, +} U Fo
We may by Lemma 6 assume that we have a factor-preseMingonstraint system.
By Lemma 7 satisfiability of such a system can be reduced tefisdiility of a Mg

constraint system over a signatyi® h, +} U Fy whereFy is a finite set of constants.
The characterization of Lemma 8 allows us to use the follgwiell-known fact.

Fact 1 Let A be a matrixn x m overZ/2Z[h] such that the: row vectors are inde-
pendent{ < m) then there exist§ € Z/27Z[h] such that

Vb e Z/2Z1h|",3X € Z/2Z[h]™ A-X =Q b 1)
Moreover, such a coefficiel} is computable as a determinant of a submatrix of A.
We denotd),,.... the coefficient) which satisfies the equation (1) for the matfix

Example 5.(running example) To illustrate our procedure, we consillerfollowing
well-definedMg constraint system:

h(a)+ a,b+ h?(a) lFme h(21) + h2(x2)
h(a) + a,b+ h?(a),z; + h(xs) lFme 21+ a
h(a)+ a,b+ h2(a), 1 + h(x2), h(z1) + h(a) IFme A(z1) + h2(xo) + 1 +a

We haveu; = (h,h?), uz = (1,0) anduz = (1 + h,h?). The algorithm returns
L = {1,2} and we obtairQ,,, = det(u1,usz) = h%



Satisfiability of such atMg constraint systerd is equivalent to the satisfiability of
the following systens of equations between terms. The variablgsj], calledcontext
variables take their value itZ./2Z[h]. Let Z = {z[i,j] | 1 < i < k,1 < j <n+i—1}.

Z[L1]Oti+...+2[L,n] O t, = uy
z[2,1]Ot1 + ...+ 2[2,n] Oty + 2[2,n + 1] O tp1 = u2

zlp,1]0ti + ...+ 2z[p,n] Oty + ...+ z[p,n+p — 1] © tpyr—1 = up
Example 6.(running example) Let; = h(a) + a andty = b+ h%(a).

Z[l, 1] @ tl + Z[l, 2] @ t2 = h(l‘l) —|— hQ(l‘g)

z[2,1] ©t1 + 2[2,2] © ta + 2[2,3] @ (1 + h(z2)) =21+ a

3] O+ 2[3.2] O 1 + 23,8 © (21 + h(za)) + 2(3.4] © (h(a) + h(a)

= h($1) + h2((I:2) +z1+a

3
Y

Definition 9. LetC be awell-defined/lg constraint system over the signatyfg , + }U
Fo andS(C) be the system of equations obtained fiom solution toS(C) is a couple
(p: Z — Z/2Z[h],0 : vars(C) — T({0,h,+} U Fy)) such that all the equations
of S(C)pb are satisfied.

We split thecontext variablesZ into two parts, those which stem fromand the
others. More formallyZ;, = {z[i,j] | i € L andl < j < n +i}.

A polynomial P = Y".=0 p;h* (p, # 0) issmallerthan@ = Y".=(" ¢;h" (g # 0),
written P < @, if eithern < m, or P # @, n = m andp; < ¢; for the greatest
with p; # g;.

Fact 2 Given any polynomiaP € Z/2Z[h], there is only a finite number of polynomi-
als which are smaller (w.r.<) than P.

The following Lemma is the crucial point in the proof of Lemib@a

Lemma 9. Let S(C) be a system of equations obtained from a well-defidiedcon-
straint systent over the signaturg0, 4, +} U F. If S(C) has a solution then there
existso a solution toS(C) such that for allz € 27,0 < z0 < Qmaa-

The proof of this lemma proceeds by induction on the numbegagdébles inZ;,.

Lemma 10. GivenC a well-definedvigconstraint system. It is decidable whetl$C)
has a solution.

Example 7.(running example) Thanks to Lemma 9, we know #at 1], 2[1, 2], 2[2, 1],
z[2,2] andz[2, 3] are bounded by, the value 0fQ, ... We choose; = {z[1,1] —
0;2[1,2] — h;z[2,1] — h + 1;2[2,2] — 1;2[2,3] — 0}. We do the replacement on
the two first equations:

h® (b+ h?(a)) = h(x1) + h?(x9)
(h+1)® (h(a) +a)+ 16 (b+h*(a)) =21 +a



This completely determines the valuexgfandxzs: 0 = {z1 — b, 22 — h(a)}. Lastly,
we can apply the substitutighon the third equation to obtain:

213,11 ® (h(a) + a) + 2[3,2) © (b+ h2(a)) + 2[3,3] © (b + h?(a))+
2[3,4] ® (h(b) + h(a)) = h(b) + h3(a) + b+ a

Since this system is linear it is easy to decide whether isbasgion.

Let po = {2[3,1] — h + 1;2[3,2] — h + 1; 2[3,3] — 0; 2[3,4] — 0}. The couple
(p1 U po, 0) is a solution to the system of equations described in Exaiple

Now, we are able to prove our main result as stated in Section 3

Theorem 1. The problem of deciding whether a well-defined constraistesy has a
solution inZpy g, whereE = ACUNN, is decidable.

Proof. The procedure described along the paper is sound and canplet

Soundnesd.et C; be some factor-preservingg-constraint system obtained by apply-
ing the first part of our procedure a@h a well-defined constraint system. Thanks to
Lemma 4 and 5, is well-defined sinc€ is well-defined. Let’; be the constraint sys-
tem obtained front’; by replacing all factors by different constants.is well-defined
thanks to Lemma 7. Assume th&{C,) (the system of equations associated{phas

a solution. We easily deduce th@t has a solution, hence by Lemma 7 tidathas a
solution, and by Lemma 4 and 5 th@&has a solution.

Completenes#ssume that is a solution toC. Thanks to Lemma 2, we can assume
thato is conservative w.r.C. Let%¢” be the finite set of well-defined one-step constraint
systems obtained by applying the algorithm described iti@ed onC. By Lemma 4,
we know that there exist§’ € %" such thato is a conservative solution af’. By
Lemma 5, we know that there exisig a well-definedMg-constraint system which has
a non-collapsing solution. Hena®; is factor-preserving due to Lemma 6. By Lemma 7,
C§ has solution ovef0, h, +} U Fy. Then, Lemma 10 allows us to conclude. O

6 Conclusion

Our solution for solving deducibility constraints is gealeenough to hold in related
equational theories since it relies on general algebraicepts. In particular, our tech-
nique generalizes previous results for the case ofett@usive orequational theory
ACUN [1, 3] (context variables take valuesZy2Z) and the theory of Abelian groups
AG [16] (contexts are ir¥). However, our technique does not apply to the c&Gh
of the extension of Abelian groups with a homomorphism sithes the contexts are
in Z[h], and Fact 2 does not hold. In fact it has recently been shouaintliis case is
undecidable [7].

Despite a superficial similarity between our algorithm ameldne of [16], our pro-
cedure to reduchlg-constraintsf. Section 5) to a special class of quadratic equations
is different. In particular it makes use of our novel algébcharacterization of well-
defined constraint systems. Furthermore, our procedurelte & particular form of



quadratic equations in polynomials over the finite figl(2Z[h] is different from the
one proposed in [16].

An open question is the case of an encryption algorithmibdiging overexclusive
or. Although the case of a passive intruder is decidable inftammework [14], the case
of an active intruder seems quite intricate since it amotmkgving an infinite number
of distinct homomorphisms (one for each term used as a key).
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