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Abstract

Cryptographic protocols are small programs which involve a high level of concurrency and that
are difficult to analyze by hand. For instance, a flaw in the infamous Needham-Schroeder public
key authentication protocol (consisting of three simple message exchanges) was only discovered 17
years after its first publication. Therefore, the need for formal methods to achieve this analysis has
been recognized and many approaches to model and analyze cryptographic protocols have been
proposed. The most successful methods rely on rewriting techniques and automated deduction
in order to implement or mimic the process calculus describing the protocol execution. The first
existing tools and results implemented the cryptographic primitives as black-boxes and did not
consider the algebraic properties of the operations that are actually used in the real implementa-
tions of protocols. For instance, the DES and the AES encryption methods make extensive use of
the exclusive or operation; other protocols rely on homomorphic properties of modular exponen-
tiation. Therefore, the formal approach has been extended to handle algebraic properties. Several
extensions of the formal approach exist, among others, for the exclusive or, a restricted notion of
modular exponentiation, and for Abelian groups.

The classical approach of Dolev and Yao consists in modeling the capabilities of an intruder by
a deduction system. The analysis of this deduction system relies on the notion of a local theory, i.e.
a theory where a simplest proof that a term t is deducible from a set of terms T can consist only of
subterms of T and t. The problem whether an intruder can gain a certain information t from a set
of initial knowledge T , that is in this formalization whether there is a proof of t from T , is called
the intruder deduction problem. The deduction system contains rules describing cryptographic
primitives (for instance knowing a key K, a term t that is the encryption of s by K, one can
deduce s) and possibly axioms describing the algebraic properties of the relevant operations. A
further problem, which lies beyond the intruder deduction problem, is to design an algorithm for
constraint satisfaction that relies on the intruder deduction procedure.

In this paper we focus on the intruder deduction problem in presence of several variants of AC-
like axioms (from AC to Abelian groups, including the theory of exclusive or) and homomorphism
that are the most frequent axioms arising in cryptographic protocols. The first issue is to prove
the decidability of the intruder deduction problem in these cases, the second issue is to have a
good complexity for the decision procedure. Solutions are known for the cases of exclusive or and
of Abelian groups alone. In this paper, we address the combination of these theories with a law
of homomorphism which leads to much more complex decision problems.

We have been able to prove decidability of the intruder deduction problem in all cases consid-
ered. Our decision procedure is in EXPTIME, except for a restricted case in which we have been
able to get a PTIME decision procedure using a property of one-counter automata.
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Chapter 1

Introduction

Automatic Verification of Cryptographic Protocols in Presence of Equational Axioms.
Cryptographic protocols are ubiquitous in distributed computing applications. They are employed
for instance in Internet banking, video on demand services, wireless communication, or secure
UNIX services like ssh or scp. Cryptographic protocols can be described as relatively simply
programs which are executed in an untrusted environment. These protocols use cryptographic
primitives in order to implement symmetric (shared-key) encryption, and asymmetric (public-
key) encryption and signatures. Often both symmetric and asymmetric encryption are used in
combination by a single protocol. The ssh protocol, for instance, uses in a first phase asymmetric
encryption in order to have the two protocol participants agree on a shared key which is then used
to encrypt subsequent data flows using symmetric encryption (which is much more efficient than
asymmetric encryption).

Contrary to the classical verification problem, the question is here not the correct execution
of usually large and complex programs in a trusted environment, but the correct execution of a
usually simple program in a hostile environment. Ross Anderson and Roger Needham [AN95] have
paraphrased the problem of protocol design as the problem of “programming Satan’s Computer”.
Verifying protocols is notoriously difficult, and even very simple protocols which look completely
harmless may have serious security flaws, as it was dramatically demonstrated by the bug of the
Needham-Schroeder protocol found by Lowe [Low95] using a model-checking tool. The protocol
was published since 17 years and widely believed secure before the flaw, a so-called man in the
middle attack, was found.

There are many different protocols published in the literature. An overview of authentication
protocols known a decade ago can be found in [CJ97], a more recent data base of protocols and
known flaws is [Jac]. These protocols are often implemented in small variants which differ from
the originally proposed protocol, or are used in combination with other protocols. This raises the
need of automatic tools for protocol verification.

There are different approaches to modeling cryptographic protocols and analyzing their secu-
rity properties: process calculi like the spi-calculus [AG99], cryptographic proofs (see, for instance,
[AR00]) which consist in reducing the existence of an attack against a protocol using certain crypto-
graphic primitives to cryptanalytic attacks against the cryptographic primitives, and the so-called
approach of Dolev and Yao [DY83] which consists in modeling an attacker by a deduction sys-
tem. This deduction system specifies how the attacker can obtain new information from previous
knowledge, which he has either obtained by silently eavesdropping the communication between
honest protocol participants (in case of a passive attacker), or by eavesdropping and fraudulently
emitting messages, thus provoking honest protocol participants to reply according to the proto-
col rules (this is the case of a so-called active attacker). We call intruder deduction problem the
question whether a passive eavesdropper can obtain a certain information from knowledge that he
observes on the network.

The first two approaches to model cryptographic protocols, process calculi and cryptographic
proofs, lead to verification problems which are very hard to automatize. The Dolev-Yao approach,
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however, lends itself to automatization since the question whether the intruder can obtain a certain
information now reduces to the question whether this information can be deduced using a certain
deduction system. On the other hand, a drawback of this approach is its limitation to so-called
trace properties of protocols, such as the question whether the attacker can gain knowledge of a
certain information (the so-called security problem).

Classically, the verification of cryptographic protocols was based on a black-box view of cryp-
tographic primitives. That is, verification of cryptographic protocols adopted the so-called perfect
cryptography assumption which states that it is impossible to obtain any information about an
encrypted message without knowing the exact key necessary to decrypt this message. This as-
sumption allowed a separation of verification tasks into proving lower bounds for the cryptanalysis
of the cryptographic primitives on the one hand, and verification of a distributed program on the
other hand. Unfortunately, this perfect cryptography assumption has proven too idealistic since
there are protocols which can be proven secure under the perfect cryptography assumption, but
which are in reality insecure since an attacker can use properties of the cryptographic primitives
in combination with the protocol rules in order to obtain knowledge of a secret. These properties
are typically expressed as equational axioms (so-called algebraic properties), like for instance as-
sociativity and commutativity of certain operators. Algebraic properties may be essential for the
executability of the protocol, or may just come into play because for some reason cryptographic
primitives with these properties are employed. A recent overview of algebraic properties of cryp-
tographic primitives, their use to mount attacks on protocols, and existing results on verification
of cryptographic protocols in presence of equational axioms can be found in [CDL04].

A number of results have been obtained, both for the intruder deduction problem and for the
preservation of secrecy under active attacks1. We here only mention some results which are of
particular relevance to the problems studied in this report: the intruder deduction problem is
decidable [CLS03] in polynomial time [CKRT03] in case of the equational axioms of exclusive or,
and decidable [CLS03] in polynomial time [Tur03] in case of the equational axioms of Abelian
groups2. Likewise, the intruder deduction problem is decidable in polynomial time [CLT03] in
the case of the equational theory of an homomorphism. Note that the two equational theories of
exclusive or and of homomorphism model basic properties of important cryptographic primitives:

• exclusive or is a basic building block in many symmetric encryption methods (for instance
DES or the more recent AES) or even used directly as an encryption method;

• homomorphisms are ubiquitous in cryptography since many asymmetric encryption methods
are based on modular arithmetic. Furthermore, symmetric encryption methods which often
work on data blocks of fixed size are in the simplest of cases (the so-called electronic codebook
mode) homomorphically extended to data streams of arbitrary size.

An Example of an Attack against a Protocol Using the Equational Theory of Exclusive
Or and of Homomorphism. This example is taken from [CDL04]. The Wired Equivalent
Privacy (WEP) protocol, described in [80299], is used to protect data during wireless transmission.
To crypt the message M, A applies the xor (exclusive or) operator to RC4(v,Kab) and (M,C(M))
where C(M) is the integrity checksum of the message M and RC4 is a function modeling the
RC4 algorithm which is used to generate a keystream (i.e. a long sequence of pseudo-random
bytes) from the initial vector v and the secret key Kab shared between A and B. To decrypt the
received message, B computes RC4(v,Kab) and after applying exclusive or to it and to the received
message, he obtains (M,C(M)) and can verify that the checksum is correct. We can represent this
simple protocol by:

A→ B : v, ((M,C(M))⊕RC4(v,Kab))
1These results have been obtained only for a bounded number for parallel sessions since this verification problem

for an unbounded number of sessions is already undecidable for an empty equational theory, that is under the
perfect cryptography assumption.

2In fact, the NP-decision procedure in the case of Abelian groups given by [CLS03] can also be improved to
deterministic polynomial time using the techniques explained in this report.
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The checksum function C has the homomorphism property over xor, i.e. C(x⊕ y) = C(x)⊕
C(Y ). When messages have compatible lengths we have also (x1, y1)⊕(x2, y2) = (x1⊕x2, y1⊕y2).

We will now describe two attacks among those given in [BGW01].
The first one uses the fact that encrypting two messages P1, P2 with the same initial vector v

and with the same key k can reveal some information. Indeed, we have the following equalities
between the ciphers C1, C2 and their associated plain texts P1, P2 which allows an intruder who
knows a plain text P1 and its cipher C1 to decrypt any cipher C2. This attack only uses the
properties of the xor symbol:

C1⊕ C2 = ((P1, C(P1))⊕RC4(v, k))⊕ (P2, C(P2))⊕RC4(v, k))
= (P1, C(P1))⊕ (P2, C(P2))

The second attack allows an intruder to make controlled modifications to a cipher text without
disrupting the checksum. Assume that the intruder has intercepted (M,C(M)) ⊕ RC4(v,Kab)
and knows D. He can now obtain the cipher text associated to the message M ⊕D by computing:

((M,C(M))⊕RC4(v,Kab))⊕ (D,C(D)) = RC4(v,Kab)⊕ ((M,C(M))⊕ (D,C(D)))
= RC4(v,Kab)⊕ (M ⊕D,C(M)⊕ C(D))
= RC4(v,Kab)⊕ (M ⊕D,C(M ⊕D))

In this second attack the intruder uses the properties of exclusive or, a special property of
pairing and exclusive or, and the homomorphism property of C over the exclusive or operation.

Contribution and Approach of this Paper. In this paper we investigate the intruder deduc-
tion problem in presence of several variants of the equational theory of associativity and commu-
tativity (short AC) of a binary operator ⊕, plus the homomorphism property of a binary function
symbol over the AC operator. The variants of AC which we consider are: pure AC, the theory of
exclusive or (also called ACUN), and the theory of Abelian groups. We are furthermore interested
in the combination of these AC-like theories with a generalization of one homomorphic function
to some form of distributivity of the encryption operator over the binary operator ⊕. The homo-
morphism law is now replaced by a law stating that the encryption of the ⊕ of two messages is
equal to the ⊕ of the encryptions of the two messages using the same encryption key. This can be
seen as the extension to an infinite family of homomorphisms, one for each possible encoding key.

We are interested both in decidability of the intruder deduction problem in any of these equa-
tional theories, and also in obtaining polynomial-time algorithms. Our results can be summarized
as follows:

1. The intruder deduction problem is decidable, more precisely it is NP-complete in case of the
theory AC plus homomorphism, and we have an EXPTIME upper bound for the equational
theory ACUN plus homomorphism and Abelian groups plus homomorphism.

2. The intruder deduction problem is in all three cases decidable in polynomial time if we
restrict the class of problems to the so-called binary case, that is the case where the set of
assumptions and the theorem do not contain ⊕’s of more than two elements.

3. The first two sets of results carry over to the generalization which consists in replacing the
homomorphic function by an encryption operation which distributes over exclusive or.

We follow the approach of [CLS03] and [CLT03] which consists in adapting Mc Allester’s locality
method to the problem at hand. Mc Allester [McA93] introduced local proof systems which are
deduction systems (expressed as finite sets of Horn clauses) with the property that if there is a
proof of a theorem then there also is a so-called local proof, that is a proof which only uses syntactic
subterms of the set of assumption and the theorem. In case of a finite set of assumptions, existence

6



of a local proof can be decided in polynomial time by the well-known bottom-up algorithm for the
construction of the deduction closure of a set of terms by a finite set of ground Horn clauses (in
this case all instances of the proof rules by syntactic subterms of the assumptions or the theorem).

In general, the difficulty in applying this technique to a given deduction system consists in
showing the locality of the proof system. This is achieved by exhibiting a rewrite system which
transforms an arbitrary given proof into a local proof of the same theorem, following the idea of
proof transformation pioneered by Gentzen.

In [CLS03] and [CLT03], this approach was employed in a generalized form which consists in
extending the notion of subterms from syntactic subterms to a wider notion which is consistent
with the equational theory at hand. In case of the axioms of associativity and commutativity
we furthermore have to cope with an infinite family of rules since we have to flatten successive
application of the construction rules of an AC operator, as it was already observed in [CLS03].

In our case, the combination of for instance the theory of exclusive or with the homomorphism
law poses a major obstacle when proving locality: In the construction of proofs it may now be
necessary to construct large intermediate terms which partially cancel out when combining them
by exclusive or, as it is explained later in the paper.

It has been shown in [CDL04] that decidability of unification modulo an equational theory E
is a necessary condition for the decidability of the security of a protocol for a bounded number
of sessions and in presence of this equational theory E. Since unification modulo AC plus homo-
morphism is undecidable [Nar96], security against active attackers is undecidable at least for this
equational theory as well.

Structure of the Paper. After reminding about some basic notions in Chapter 2 we present
in Chapter 3 the Dolev-Yao model of intruder capacities extended by equational reasoning, and
prove it equivalent to a variant of the Dolev-Yao model which works only with normal forms of
terms modulo a rewrite system in case the equational theory can be oriented into a rewrite system
modulo a background equational theory. In this chapter we also present the three equational
theories studied in this paper and their presentation as rewrite systems. Chapter 4 presents
Mc Allester’s locality technique and the generalization we are using here. In Chapter 5 we give
definitions of the notion of subterm which allow us to prove locality in the three cases. Finally, we
discuss in Chapter 6 an extension of our results to a variant where instead of one homomorphic
function we have a family of homomorphism, each of which is the encryption function by some
key. We summarize our results in Chapter 7.
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Chapter 2

Preliminaries

We summarize some basic notations used in this paper, see [DJ90, BN98] for an overview of
rewriting.

2.1 Terms

Let Σ be a signature. T (Σ, X) denotes the set of terms over the signature Σ and the set of variables
X, that is the smallest set such that

1. X ⊆ T (Σ, X);

2. if t1, . . . , tn ∈ T (Σ, X), and f ∈ Σ has arity n ≥ 0, then f(t1, . . . , tn) ∈ T (Σ, X).

We abbreviate T (Σ, ∅) as T (Σ); elements of T (Σ) are called Σ-ground terms. The set of variables
occurring in a term t is denoted by V(t).

The set of occurrences of a term t is defined recursively as O(f(t1, . . . , tn)) = {ε} ∪
⋃

i=1...n i ·
O(ti). For instance, O(f(a, g(b, x))) = {ε, 1, 2, 21, 22}. The size |t| of a term t is defined as its
number of occurrences, that is |t| = cardinality(O(t)). If o ∈ O(t) then the subterm of t at position
o is defined recursively by

• t |ε= t

• f(t1, . . . , tn) |j·o= tj |o

St(t) is the set of (not necessarily strict) subterms of the term t, that is St(t) = {t |o | o ∈ O(t)}.
If t and s are terms and o ∈ O(t) then the grafting of s onto t at position o is defined recursively
as

• t[ε← s] = s

• f(t1, . . . , tn)[j · o← s] = f(t1, . . . , tj−1, tj [o← s], tj+1, . . . , tn)

For instance, f(a, g(b, x))[22← h(c)] = f(a, g(b, h(c))).
For a unary function symbol f and a set of terms T we define f∗(T ) as the smallest set of

terms which contains T and which is closed under application of f .

2.2 Equations and Rewriting Systems

A Σ-equation is a pair (l, r) ∈ T (Σ, X), commonly written as l = r. The relation =E generated
by a set of Σ equations E is the smallest congruence on T (Σ) that contains all ground instances
of all equations in E.
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A Σ-rewriting system R is a finite set of so-called rewriting rules l→ r where l ∈ T (Σ, X) and
r ∈ T (Σ,V(l)). A term t ∈ T (Σ, X) rewrites to s in one step by R if there is a rewriting rule
l → r in R, an occurrence o and a substitution σ such that t |o= lσ and s = t[o← rσ]. We write
→∗ for the reflexive and transitive closure of →. A term t is in normal form if there is no term s
with t→ s. If t→∗ s and s is a normal form then we say that s is a normal form of t, and write
s = t ↓, or t→! s.

A term rewriting system is called convergent if it is

• strongly terminating, that is if there is no infinite sequence of the form t1 → t2 → t3 → · · · .

• locally confluent, that is if t → s1 and t → s2 then there exists a term r with s1 →∗ r and
s2 →∗ r.

By a well known result (see, e.g., [DJ90]), every convergent rewrite system is confluent, that is if
t →∗ s1 and t →∗ s2 then there exists a term r with s1 →∗ r and s2 →∗ r. As a consequence, in
a convergent rewrite system every term has a unique normal form

By R/S we denote the so-called class rewrite system composed of a set R = {li → ri} of
rewrite rules and a set S = {ui = vi} of equations. Generalizing the notion of term rewriting, we
say that s rewrites to t modulo S, denoted s →R/S t, if s =S u[lσ]p and u[rσ]p =S t, for some
context u, position p in u, rule l→ r in R, and substitution σ.

2.3 Miscellaneous
Definition 1 We write A ⊆fin B if:

• A ⊆ B

• A is a finite set

We write A ]B for the union of two disjoint sets A and B.
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Chapter 3

A Dolev-Yao Model for AC-like
Equational Theories

We consider the classic model of deduction rules introduced by Dolev and Yao [DY83] in order to
model the deductive capacities of a passive intruder. In this model, an intruder may use any term
he has previously observed on the network, and construct new terms by pairing, unpairing, using
a free constructor, encryption and decryption, where in the last two cases the intruder also has to
know the encryption key. For the sake of simplicity we here only consider symmetric encryption;
the results and techniques can be easily transferred to the case of asymmetric encryption. Our
aim in this chapter is to extend this model by an equational theory which can be exploited by the
intruder to mount new attacks.

We are in particular interested in the case where the equational theory comprises the axioms
of associativity and commutativity (AC) of a distinguished binary function symbol. For reasons
that will become apparent in the next chapter we separate the construction rule for this binary
AC operator from the construction rule for the free function symbols, and furthermore generalize
this rule into a vary-aric rule.

In Section 3.1 we present a first variant of the Dolev-Yao model extended by equational rea-
soning. The extension consists of a rule for passing from one term to a term which is equivalent
in the equational theory. Then, in Section 3.2, we present a more effective variant of the extended
Dolev-Yao model for the case where the equational theory can be presented by a convergent term
rewriting system modulo a background equational theory (which usually is AC). In this case we
can work with normal forms of terms modulo the background theory, instead of allowing for un-
restricted equational reasoning modulo the equational theory. Finally, in Sections 3.3 to 3.5, we
show that the three equational theories we are interested in can be presented by a convergent
term rewriting system modulo AC, and hence can be handled in the framework introduced in this
chapter. These equational theories are:

• Associativity and commutativity of the distinguished binary operator⊕, plus homomorphism
of a unary function symbol f with respect to⊕ (Section 3.3), we denote this equational theory
by ACh;

• Associativity, commutativity, and nilpotence of the distinguished binary operator ⊕ and
existence of a zero element for ⊕ (that is the theory of exclusive or), plus homomorphism of
a unary function symbol f with respect to ⊕ (Section 3.4), we denote this equational theory
by ACUNh;

• Abelian groups, plus homomorphism of a unary function symbol with respect to the group
operator (Section 3.5), we denote this equational theory by AGh.

The material in Sections 3.1 and 3.2 follows the presentation of [CLT03], but is here extended
to the case of an additional background equational theory.
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(A) u ∈ T
T `E u

(P) T `E u T `E v
T `E 〈u, v〉

(UL) T `E 〈u, v〉
T `E u

(UR) T `E 〈u, v〉
T `E v

(C) T `E u T `E v
T `E {u}v

(D) T `E {u}v T `E v

T `E u

(F) T `E u1 · · · T `E un

T `E φ(u1, . . . , un)
φ ∈ Σ− (Eq(E)) T `E u u =E v

T `E v

(GX) T `E u1 · · · T `E un

T `E u1 ⊕ . . .⊕ un

Figure 3.1: Dolev-Yao System extended equations theory E

3.1 The Dolev-Yao Model Extended by Equational Reason-
ing

Let Σ be a finite signature which can be partitioned as

Σ = {〈·, ·〉, {·}·,⊕} ] Σ−

that is Σ consists of pairing 〈·, ·〉, encryption {·}·, a distinguished binary operator ⊕, and some
set Σ− of so-called free function symbols.

Let E be an equational theory over the signature Σ.
We use sequents of the form T `E t, where T ⊆fin T (Σ) and t ∈ T (Σ). The intended meaning

of such a sequent T `E t is that an intruder with a certain set of deduction capabilities can
deduce the term t from his knowledge T and using the equational theory E. In the context of
cryptographic protocols, T is typically a set of messages that an intruder has previously observed
on a network. Different deduction capabilities can be defined by different deduction systems for
these sequents.

The classic Dolev-Yao model [DY83] defines the deduction capacities of an intruder assuming
perfect cryptography. This deduction system is composed of the following rules: (A) the intruder
knows any term that he has previously observed, (P) the intruder can build a pair of two messages,
(UL, UR) he can extract each member of a pair, (C) he can crypt a message m with a key k, (D)
if he knows a key k he can decrypt a message encrypted by the same key, (F) he can construct a
new term using a free function symbol φ ∈ Σ−.

Since we distinguish a special binary operator ⊕ we here furthermore add a rule (GX) which
allows the intruder to build a new term from an arbitrary number of already known terms by
using the (associative) ⊕ operator.

Finally, we model the weakening of the perfect cryptography assumption by giving the intruder
the power to use equational reasoning modulo a given set E of equational axioms. The resulting
set of deduction rules is given in Figure 3.1.

Definition 2 (Proof) A Σ, E-sequent is an expression of the form T `E u where E is an equa-
tional theory over Σ, T ⊆fin T (Σ), and u ∈ T (Σ).

A proof of a Σ, E-sequent T `E u is a tree whose nodes are labeled by either Σ, E-sequents or
expressions of the form “v ∈ T ”, such that:
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• Each leaf is labeled by an expression of the form v ∈ T , and each non-leaf node is labeled by
an Σ, E-sequent.

• Each node labeled by a sequent T `E v has n children labeled by T `E s1, . . . , T `E sn

such that there is an instance of an inference rule with conclusion T `E v and hypotheses
T `E s1, . . . , T `E sn.

• The root of the tree is labeled by T `E u.

3.2 The Dolev-Yao Model Extended by Rewriting
The above model is not appropriate for automated proof search since the Eq(E) rule allows equa-
tional reasoning at any moment of a proof. In order to define a more effective model we split the
equational theory E into a background theory S and a rewrite system R.

Definition 3 (Rewrite Presentation of an Equational Theory) Let E and S be equational
theories over a signature Σ, and R a Σ-term rewriting system. (R,S) is a rewrite presentation of
E iff

• R is locally confluent modulo S

• R is terminating modulo S

• For all closed Σ-terms u, v : u =E v iff u ↓R/S=S v ↓R/S.

In this case we can consider a variant of the extended model of Dolev-Yao defined in the
preceding section which works on the normal form modulo S of the term at each step of the proof.
The idea is that equivalence modulo S is easy to decide, such that we may omit the Eq(S) rule
and just work with equivalence classes modulo S.

For the purpose of this paper the background theory S will always consist of AC(⊕), that is
the axioms stating associativity and commutativity of the operator ⊕.

In the next part we will explain the equivalence of the two models. In the three final sec-
tions of this chapter we will give rewrite presentations of the three equational theories that we
are interested in, i.e. AC and homomorphism, ACUN and homomorphism, and Abelian groups
and homomorphism. We will verify that the rewriting systems associated to each of these equa-
tional theories are confluent and terminating modulo AC (to show these points we use the tool
CiME [CM96]).

To define the right notion of a normal form we need that the term rewriting system modulo the
background equational theory is convergent. Notice that local confluence and termination modulo
an equational theory of the term rewriting system imply its convergence.

We now define normal forms for a such system.

Definition 4 (Term in Normal Form) Let (R,S) be a rewrite presentation of some equational
theory E. A term t is in normal form if there is no term s such that t→R/S s (t reduces to s by
a rule of the rewriting system of R modulo S). If t →∗ s and s is in normal form then we call s
the normal form of t, denoted s = t ↓.

Note that normal forms are unique only up to S-equivalence.

Example 1 If we have the rewriting rule f(x ⊕ y) →R f(x) ⊕ f(y) and S is the theory of asso-
ciativity and commutativity of ⊕, then the normal form of f((a⊕ b)⊕ c) is f(a)⊕ f(b)⊕ f(c).

Normal forms have the following properties:

• ∀u, v : u =E v ⇒ u ↓ =S v ↓

• ∀u : u =E u ↓

12



(A) u ∈ T
T ` u ↓

(P) T ` u T ` v
T ` 〈u, v〉 ↓

(UL) T ` r
T ` u ↓

if〈u, v〉 →! r (UR) T ` r
T ` v ↓

if〈u, v〉 →! r

(C) T ` u T ` v
T ` {u}v ↓

(D) T ` r T ` v
T ` u ↓

if{u}v →! r

(F) T ` u1 · · · T ` un

T ` φ(u1, . . . , un) ↓
φ ∈ Σ− (GX) T ` u1 · · · T ` un

T ` (u1 ⊕ . . .⊕ un) ↓

Figure 3.2: A Dolev-Yao proof system working on normal forms modulo a background equational
theory.

An immediate remark is: if t[.] is a context and u a ground term then t[u ↓] ↓ =S t[u] ↓. In
particular (u1 ⊕ . . .⊕ un) ↓ =S (u1 ↓⊕ . . .⊕ un ↓) ↓ We omit the rule (Eq(E)) and consider a new
system ` presented in Figure 3.2 which only works on normal forms.

Theorem 1 Let (R,S) be a rewrite presentation of the equational theory E, T ⊆fin T (Σ), and
T ∈ T (Σ). We have that

T `E u iff T ` u ↓

Proof: Given a proof of T ` u ↓ we can easily find a proof of T `E u by inserting Eq(E)-steps.
For the other direction of the the theorem we transform a proof in `E into a proof in ` by

the transformation of Figure 3.3. This transformation does not change the leaves of a proof tree.
We show by induction that if there is a proof of T `E u then the transformation yields a proof of
T ` u ↓.

ψ1

(R)
T `E u u =E v

(Eq(E))
T `E v

=⇒
ψ1

(R)
T ` v ↓

ψ1

(R1)
T `E u1 · · ·

ψn

(Rn)
T `E un

(R)
T `E v

=⇒

ψ1

(R1)
T `E u1 · · ·

ψn

(Rn)
T `E un

(R)
T ` v ↓

Figure 3.3: Transformation of a proof of T `E u into a proof of T ` u ↓.

We proceed by case distinction on the last deduction rule:

• (A): obvious.

• (Eq(E)): Since (R,S) is a rewrite presentation of E we get u ↓ = v ↓ (modulo S) so we obtain
a proof of T ` u ↓

• (P), (C) or (F): by induction hypothesis on all the hypotheses of the rule and with the fact
f(u1, . . . , un) ↓ = f(u1 ↓, . . . , un ↓) ↓ we get the result.

• (GX) we know that (u1⊕. . .⊕un) ↓ = (u1 ↓⊕ . . .⊕un ↓) ↓ and by induction T ` u1 ↓, . . . , T `
un ↓. We apply (GX) and conclude.
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• (D), by induction T ` {u}v ↓ and T ` v ↓, with {u}v ↓ = {u}v ↓ ↓ and the rule (D) we get
T ` u ↓, hence a proof in `.

• (UL) or (UR) by induction we obtain the result. 2

In the following we will always work with the system ` which works on normal forms modulo
a background equational theory.

3.3 The Equational Theory ACh
The equational theory denoted by ACh consists of the axioms of associativity (A) and commuta-
tivity (C) of an operator ⊕, plus the law of homomorphism of a function f over ⊕.

3.3.1 Equational Theory
We consider the symbols ⊕ and f with the following axioms:

1. (x⊕ y)⊕ z = x⊕ (y ⊕ z) (Associativity)

2. x⊕ y = y ⊕ x (Commutativity)

3. f(x⊕ y) = f(x)⊕ f(y) (Homomorphism)

3.3.2 Rewrite Presentation
We do not orient the two rules of associativity and commutativity and consider the new system
modulo AC and transform the homomorphism equation into the following rewriting rule:

• f(x⊕ y)→ f(x)⊕ f(y)

We show that this system is locally confluent and terminating.

3.3.3 Local Confluence
Showing that the system is locally confluent is equivalent to showing that all critical pairs are
joinable since the system is terminating (see below).

We see that there are no critical pairs.

3.3.4 Termination
We show termination by giving a polynomial interpretation of the function symbols:

• constant: [0] = 0

• variable: [x] = x

• function f : [f(x)] = 2x

• xor: [x⊕ y] = x+ y + 1

We show that all the rules of the rewriting system modulo AC are decreasing:

• f(x⊕ y)→ f(x)⊕ f(y) gives: [f(x⊕ y)] = 2x+ 2y + 2 > 2x+ 2y + 1 = [f(x)⊕ f(y)]

Hence, the term rewriting system is terminating .

3.4 The Equational Theory ACUNh
The equational theory denoted by ACUNh consists of associativity (A), commutative (C), unity
(U) and nilpotence (N) of an operator ⊕, plus the law of homomorphism of a function f over ⊕.
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3.4.1 Equational Theory

We consider the symbols ⊕, 0, f with the following axioms:

1. (x⊕ y)⊕ z = x⊕ (y ⊕ z) (Associativity)

2. x⊕ y = y ⊕ x (Commutativity)

3. 0⊕ x = x (Unit)

4. x⊕ x = 0 (Nilpotence)

5. f(x⊕ y) = f(x)⊕ f(y) (Homomorphism)

3.4.2 Orientation of the Axioms

Consider the following term rewriting system modulo AC:

1. 0⊕ x→ x

2. x⊕ x→ 0

3. f(x⊕ y)→ f(x)⊕ f(y)

We do not orient the two rules of associativity and commutativity. We now show that this
system can be extended to an equivalent and convergent system.

3.4.3 Local Confluence

Showing that a term rewrite system is locally confluent is equivalent to showing that all its critical
pairs are joinable since the system is terminating (see below).

We see that there are two critical pairs:

f(x)⊕ f(0)← f(x⊕ 0)→ f(x)

f(x)⊕ f(x)← f(x⊕ x)→ f(0)

With the homomorphic property f(x ⊕ y) = f(x) ⊕ f(y) and the properties of ⊕ we deduce
that f(0) = f(x⊕x) = f(x)⊕f(x) = 0 so f(0) = 0. We add the rewrite rule f(0)→ 0 and obtain
a completed rewrite system in which all critical pairs are joinable. This system is hence locally
confluent.

3.4.4 Rewrite Presentation

Consider the following confluent term rewriting system modulo AC:

1. 0⊕ x→ x

2. x⊕ x→ 0

3. f(x⊕ y)→ f(x)⊕ f(y)

4. f(0)→ 0
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3.4.5 Termination

We show termination of the confluent term rewriting system modulo AC by giving a polynomial
interpretation:

• constant: [0] = 0

• variable: [x] = x

• function f : [f(x)] = 2x+ 1

• xor: [x⊕ y] = x+ y + 1

We show that all the rules of the rewriting system modulo AC are decreasing:

• 0⊕ x→ x gives: [0⊕ x] = x+ 1 > x = [x]

• x⊕ x→ 0 gives: [x⊕ x] = 2x+ 1 > 0 = [0]

• f(x⊕ y)→ f(x)⊕ f(y) gives: [f(x⊕ y)] = 2x+ 2y + 3 > 2x+ 2y + 2 = [f(x)⊕ f(y)]

• f(0)→ 0 gives: [f(0)] = 1 > 0 = [0]

Hence, the term rewriting system is terminating .

3.5 The Equational Theory AGh

The equational theory denoted by AGh consists of the laws of Abelian groups with operator ⊕,
plus the law of homomorphism of a function f over ⊕.

3.5.1 Equational Theory

1. (x⊕ y)⊕ z = x⊕ (y ⊕ z) (Associativity)

2. x⊕ y = y ⊕ x (Commutativity)

3. 0⊕ x = x (Unit)

4. x⊕ I(x) = 0 (Nilpotence)

5. f(x⊕ y) = f(x)⊕ f(y) (Homomorphism)

3.5.2 Orientation of the Axioms

Associate the following term rewrite system modulo AC:

1. 0⊕ x→ x

2. x⊕ I(x)→ 0

3. f(x⊕ y)→ f(x)⊕ f(y)

4. f(0)→ 0

The last rewriting rule comes from the study of the ACUNh case (see Section 3.4).
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3.5.3 Local Confluence
We complete the system into a locally confluent system. We compute the critical pairs and add
each time a rule to solve the problem. We see that there are four critical pairs:

1. I(0)← I(0)⊕ 0→ 0

2. I((I(x)⊕ x))⊕ y ← I((I(x)⊕ x))⊕ I(x)⊕ x⊕ y → 0⊕ y

3. 0⊕ x← I((I(x)⊕ x))⊕ I(x)⊕ x⊕ x→ I(I(x))⊕ x

4. f(0)← f(I(x)⊕ x)→ f(I(x))⊕ f(x)

For solve each critical pairs we add the following rules :

• I(0)→ 0

• I(x⊕ y)→ I(x)⊕ I(y)

• I(I(x))→ x

• f(I(x))→ I(f(x))

We can add these rewrite rules without problem because from the initial equations we can
deduce the following properties:

Property 1 The following equations are consequences of the axioms:

1. I(0) = 0

2. I(x⊕ y) = I(x)⊕ I(y)

3. I(I(x)) = x

4. f(I(x)) = I(f(x))

Proof:

1. Axiom 4 applied on 0 gives 0⊕ I(0) = 0, hence I(0) = 0.

2. Axiom 4 yields x⊕I(x) = 0, hence (replacing x by x⊕y) we also obtain x⊕y⊕I(x⊕y) = 0.
Add on each side I(x)⊕ I(y) to obtain I(x⊕ y) = I(x)⊕ I(y).

3. Double application of Axiom 4 yields I(I(x)) ⊕ I(x) = 0. We add on each side x and use
Axiom 4 to obtain I(I(x)) = x.

4. We have already proved that f(0) = 0 then 0 = f(0) = f(I(x) ⊕ x) = f(I(x)) ⊕ f(x) then
f(I(x)) is the inverse of f(x) so I(f(x)) = f(I(x)). 2

All the critical pairs are joinable by the new added rewriting rules, hence the completed system
is locally confluent.

3.5.4 Rewrite Presentation
Consider the following confluent term rewriting system modulo AC:

1. 0⊕ x→ x

2. x⊕ x→ 0

3. f(x⊕ y)→ f(x)⊕ f(y)

4. f(0)→ 0
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5. I(0)→ 0

6. I(x⊕ y)→ I(x)⊕ I(y)

7. I(I(x))→ x

8. f(I(x))→ I(f(x))

3.5.5 Termination
For the termination we consider the following polynomial interpretation :

• For a constant : [0] = 1

• For a variable : [x] = x

• For a function f : [f(x)] = 2x

• For the function inverse I : [I(x)] = 2x+ 1

• For the xor symbol : [x⊕ y] = x+ y + 2

We show that all the rules modulo AC are decreasing.

• 0⊕ x→ x : [0⊕ x] = x+ 3 > x = [x]

• x⊕ I(x)→ 0 : [x⊕ I(x)] = 3x+ 3 > 1 = [0]

• I(I(x))→ x : [I(I(x))] = 4x+ 3 > x = [x]

• I(x⊕ y)→ I(x)⊕ I(y) : [I(x⊕ y)] = 2x+ 2y + 5 > 2x+ 2y + 4 = [I(x)⊕ I(y)]

• I(0)→ 0 : [I(0)] = 3 > 1 = [0]

• f(0)→ 0 : [f(0)] = 2 > 1 = [0]

• f(I(x))→ I(f(x)) : [f(I(x))] = 4x+ 2 > 4x+ 1 = [I(f(x))]

• f(x⊕ y)→ f(x)⊕ f(y) : [f(x⊕ y)] = 2x+ 2y + 4 > 2x+ 2y + 2 = [f(x)⊕ f(y)]

The system is terminating modulo AC.
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Chapter 4

Locality and Complexity of the
Intruder Deduction Problem

4.1 A Generalization of Locality
Our starting point is the locality technique introduced by David McAllester [McA93]. He considers
deduction systems which are represented by finite sets of Horn clauses and he proves that there
exists a polynomial-time algorithm to decide the deducibility of a term w from a finite set of terms
T0 if the deduction system has the so-called locality property. A deduction system has the locality
property if any proof can be transformed into a local proof where a local proof is a proof where all
the nodes are syntactic subterms of T0 and w.

The idea of the proof is as follows: the existence of a local proof can be checked in polynomial
time since there is only a polynomial number of relevant instances of the deduction rules (The
relevant instances are the instances by subterms of the given problem). To check the existence of a
local proof amounts to computing the intersection of the deduction closure of the initial knowledge
with the set of relevant terms. Algorithm 1 computes the restriction of the deduction closure of
T0 to the set of relevant terms.

We say that w is one-step deducible from T , if we can obtain w from T with only one application
of a rule of the proof system. We denote in the following algorithm the one-step deduction relation
by `≤1.

Input: T0, w
T ← T0;
while ∃s ∈ SyntacticSubterms(T0, w) such that (T `≤1 s and s 6∈ T ) do

T ← T ∪ {s};
end
return w ∈ T ;

Algorithm 1: McAllester’s Algorithm to check the existence of a local proof.

There are two main restrictions in this approach :

• The deduction system must be finite.

• The notion of locality is restricted to syntactic subterms.

These restrictions raise a serious problem when we are working modulo AC, as it is already
pointed out in [CLS03]. If we used the binary rule (GX) we would have to consider all possible
subterms modulo AC. Unfortunately, there is in general an exponential number of subterms modulo
AC of a given term. The solution proposed in [CLS03], and which we also adopt here, is to use
the rule (GX) with an arbitrary number of hypotheses. In this way, we can avoid the exponential
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number of subterms. However, we are now stuck with an infinite number of rules. Fortunately, we
can still obtain an polynomial algorithm by implementing the test used in the loop in Algorithm
1 in a clever way.

Definition 5 (S-Local Proof) Let S be a function which maps a set of terms to a set of terms.
A proof P of T ` w is S-local if all nodes are labeled by some T ` v, with v ∈ S(T ∪ {w}).

Definition 6 (S-Locality) A proof system is S-local if whenever there is a proof of T ` w then
there also is a S-local proof of T ` w.

In the following theorem, K1 and K2 are complexity classes which are closed under multiplica-
tion (for instance, PTIME, NPTIME, EXPTIME, etc.).

Theorem 2 (S-Locality) Let S be a function mapping a set of terms to a set of terms, and P
a proof system. If:

• the set S(T ) can be constructed in time K1,

• P is S-local,

• one-step deductibility in P is decidable in time K2,

then provability in the proof system P is decidable in time max(K1,K2).

Proof: Let n be the sum of the size of the set T0 of hypotheses and of the size of the term
w for which we want to check whether T ` w holds. The number of iterations of the loop is
bounded by the number of instances of the conclusions of the rules of the proof system by terms
in S(T0 ∪ {w}). Hence, by hypothesis, the number of iterations of the loop is bounded by K1(n).
As a consequence, execution of the algorithm takes time at most K1(n) ∗ K2(n). By S-locality of
the proof system, existence of a proof is equivalent to existence of a local proof. 2

This theorem generalizes McAllester’s result because in his case:

• The size of the set of syntactic subterms of the set T is polynomial in the size of T .

• One-step deducibility is decidable in polynomial time for a finite proof system.

Hence, in McAllester’s case, it remained only the (S-)locality to show. In our more general setting
we have to do the following steps in order to obtain a decidability result, for instance in polynomial
time, for the Dolev-Yao deduction system modulo a AC -rewrite system:

• define the notion of subterms which can be computed in polynomial time ,

• show locality with respect to this notion of subterms,

• show that one-step deductibility can be tested in polynomial time.

4.2 One-Step Deducibility for AC-like Theories
Definition 7 (Headed with ⊕) Let u be a term in normal form, u is headed with ⊕ if u is of
the form u1 ⊕ . . .⊕ un with n > 1. Otherwise u is not headed with ⊕.

Example 2 u⊕ 〈v, w〉 is headed with ⊕, but 〈u, v ⊕ w〉 is not.

Definition 8 (Atom) Let u be a term, we define the function atoms(u) as following :

• If u = u1⊕. . .⊕un, where each of the ui is not headed with ⊕, then atoms(u) = {u1, . . . , un}.
The ui’s are called the atoms of u.

• If u is not headed with ⊕ then atoms(u) = u.
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The definition of atoms(T ) generalizes in a natural way to sets of terms T in normal form by
atoms(T ) :=

⋃
t∈T atoms(t).

Definition 9 (Idempotent Mapping over Sets of Terms) Let T be a set of terms. The map-
ping S : T → T is idempotent if for every X ⊆ T : S(S(X)) = S(X).

Definition 10 (Monotone Mapping over Set of Terms) Let T be a set of terms. The map-
ping S : T → T is monotone if for all X,Y ⊆ T : if X ⊆ Y then S(X) ⊆ S(Y ) .

Lemma 1 The function atoms is monotone and idempotent.

Proof: Straightforward from the definition. 2

Definition 11 (Binary Proof) A proof P of T ` w is binary if in all nodes labeled T ` v the
term v has at most two atoms.

If the equational theory is AC and if we consider binary proofs only, then one-step deducibility
is in PTIME.

We now investigate the complexity of one-step deducibility for the three equational theories
defined in Sections 3.3 to 3.5.

Our method is inspired by the method used in [Nar96] to solve a unification problem modulo
AC-like theories. We only show how to decide one-step deducibility for the family of rules (GX),
since checking one-step deducibility for the remaining deduction rules is straightforward. We
transform the problem of testing one-step deducibility into the solvability of a system of linear
Diophantine equations. The domain over which this system of equations is solved depends on the
equational theory considered, as discussed below.

• Input :

– a finite set of terms T = {t0, . . . , tn}
– a term s

• Output

– A system D(T, s) of linear Diophantine equations over the variables X = {x0, . . . , xn}
such that T `E s if only if D(T, s) is solvable in a domain which depends on E.

• Algorithm

– To each ti we associate the variable xi for i = 0, . . . , n.
– If u is an atom of t, let δ(u, t) denote the number of occurrences of the atom u in t.
– Let A = {a1, . . . , am} be the set of atoms of T ∪ {s}.
– For each ai atom of s, we introduce the equation:

δ(ai, s) =
n∑

j=0

δ(ai, tj) ∗ xj

which states that the number of occurrences of ai in s is equal to the sum of the number
of occurrences of ai in (a sum of) tj ’s. The system D(T, s) is the conjunction of these
equations:

D(T, s) :=
m∧

i=1

n∑
j=0

δ(ai, tj) ∗ xj = δ(ai, s)

Example 3 Let T = {a1 ⊕ a2 ⊕ a3, a1 ⊕ a4, a2 ⊕ a4} and s = a1 ⊕ a2, where all the ai are not
headed with ⊕. We introduce numerical variables x0, x1, x2, that is one numerical variable for each
element of T :
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x0 for a1 ⊕ a2 ⊕ a3

x1 for a1 ⊕ a4

x2 for a2 ⊕ a4

For every atom ai we create an equation. This yields the following equation system:
a1 : x0 + x1 = 1
a2 : x0 + x2 = 1
a3 : x0 = 0
a4 : x1 + x2 = 0

Lemma 2 Let S be the following system of equations:
c1,1x1 + . . .+ c1,nxn = d1

...
...

...
cm,1x1 + . . .+ cm,nxn = dm

wS = d1 ∗A1 ⊕ . . .⊕ dm ∗Am

Σ = {A1, . . . , Am}, TS = {t1, . . . , tm}
Where ∀i, 1 ≤ i ≤ n, ti = c1,i ∗A1 ⊕ . . .⊕ cm,i ∗Am ∀i, 1 ≤ i ≤ m,Ai are atoms of TS.

The system of equations (S) is satisfiable if and only if TS ` wS using only (A) and (GX).

Proof:

• If (S) is satisfiable then there exists a solution of (S) α such that:
c1,1α(x1) + . . .+ c1,nα(xn) = d1

...
...

...
cm,1α(x1) + . . .+ cm,nα(xn) = dm

Hence, we compute wS from TS and α:

α(x1) ∗ t1 ⊕ . . .⊕ α(xn) ∗ tn
= α(x1) ∗ (c1,1 ∗A1 ⊕ . . .⊕ cm,1 ∗Am)⊕ . . .⊕ α(xn) ∗ (c1,n ∗A1 ⊕ . . .⊕ cm,n ∗Am)
= c1,1 ∗ α(x1) ∗A1 ⊕ . . .⊕ c1,n ∗ α(xn) ∗A1 ⊕ . . .⊕ cm,1 ∗ α(x1) ∗Am ⊕ . . .⊕ cm,n ∗ α(xn) ∗Am

= d1 ∗A1 ⊕ . . .⊕ dm ∗Am

= wS

• Let P be a proof of TS ` wS , using only (A)(GX). We construct the system (S) from TS

and wS .

TS = {t1, . . . , tm},Σ = {A1, . . . , Am} = atoms(TS)

wS = d1 ∗A1 ⊕ . . .⊕ dmAm

∀i, 1 ≤ i ≤ n,∃cj,i1 ≤ j ≤ m, ti = c1,i ∗A1 ⊕ . . .⊕ cm,i ∗Am

We can deduce wS from TS , there exist a decomposition of di into ci,j , hence we obtain the
following system: 

c1,1x1 + . . .+ c1,nxn = d1

...
...

...
cm,1x1 + . . .+ cm,nxn = dm

2

We now explain in which domain this linear Diophantine equation system is solved according
to the equational theory that is considered.
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ACh Case

We obtain a system of linear Diophantine equations over N. This system has a solution iff s
is deducible from T in one step. Since solvability of a system of linear equations over N is a
NP-complete problem [Pap94] we get an algorithm in NP for checking one-step deducibility.

ACUNh Case

In this case we solve a system of linear Diophantine equations over Z/2Z. This system has a
solution iff s is deducible from T in one step. Since the former problem is in PTIME [KKS87], we
get a PTIME algorithm for checking one-step deducibility.

AGh Case

Now we consider the case where ⊕ is the operator of Abelian groups. We can assume w.l.o.g. that
no term headed with ⊕ contains an atom and its inverse because we are only working on terms in
normal form. Now we redefine the function δ:

• if u is an atom of t which is not headed with I then we note δ(u, t) for the number of
occurrences of the atom u in t,

• otherwise if I(u) is an atom of t then we note δ(u, t) for the inverse of the number of
occurrences of I(u) in t.

We get a system of linear Diophantine equations to solve over Z. This system has a solution iff
s is deducible from T in one step. Since the solvability of a system of linear Diophantine equations
over Z is in PTIME [Sch86], we get a PTIME algorithm for checking one-step deducibility.

We denote by n ∗ a := a⊕ a⊕ . . .⊕ a n times.

Example 4 Let T = {a1 ⊕ a2 ⊕ I(a3)⊕ I(a3), a1 ⊕ a4, a2 ⊕ I(a4)} and s = a1 ⊕ a2, where all the
ai are not headed with ⊕. To each element of T we associate one numerical variable:

x0 for a1 ⊕ a2 ⊕ I(a3)⊕ I(a3)
x1 for a1 ⊕ a4

x2 for a2 ⊕ I(a4)

For every atom ai we create an equation, yielding the following equation system:
a1 : x0 + x1 = 1
a2 : x0 + x2 = 1
a3 : −2x0 = 0
a4 : x1 − x2 = 0
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Chapter 5

Locality for AC-Like Equational
Theories with Homomorphism

In the first part of this chapter we list all the definitions and properties we need to decide the
intruder deduction problem modulo AC-like equational theories. Then we show, for our three
equational theories introduced in Chapter 3, that we can define an operator S which in some cases
is polynomial-size, and for which we can show locality.

5.1 Preliminary Definitions and Properties

5.1.1 Vocabulary

We define some notions.

Definition 12 (Headed with f) A term u in normal form is called headed with f if u is of
the form u = f(t) for some term t. Otherwise u is not headed with f .

We need to know the number of applications of f applied at the head of a term.

Definition 13 (#f (t)) We define the number of applications of f at the head of a term t by:

• if t is not headed with f then #f (t) = 0

• otherwise t = f(t′) and #f (t) = #f (t′) + 1

Example 5 Let t = f13(a)⊕f5(〈b, f10(c)〉) be a term in normal form then #f (t) = 0. If we have
t = f5(〈b, f10(c)〉) then we get #f (t) = 5.

Definition 14 (Stripf) Let t be a term. We define Stripf (t) by:

• if t is not headed with f then Stripf (t) = t

• otherwise t = f(t′) and Stripf (t) = Stripf (t′)

Definition 15 (Size of a Term) Let be t a term in normal form, we define recursively the size
|t| of t by:

• |t| = 1 if t is a constant.

• |t| = |〈u, v〉| = 1 + |u|+ |v|

• |t| = |{u}v| = 1 + |u|+ |v|
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• |t| = |u1 ⊕ . . .⊕ un| = 1 +
∑n

i=1 |ti|

• |t| = |f(t1, . . . , tn)| = 1 +
∑n

i=1 |ti|

We extend this notion to the size of a set of terms by |T | =
∑

t∈T |t|.

Example 6 |f(〈a, {b}k〉)| = 6

5.1.2 Different Kinds of Proofs
Now we want to characterize different kinds of proofs.

Definition 16 (Subproof) Let P be a proof of T ` u. A proof P ′ is a subproof of P if P ′ is a
sub-tree of the tree P .

Definition 17 (Size of a Proof) The size of a proof P is the number of nodes in P , denoted
by |P |.

Definition 18 (Minimal Proof) A proof P of T ` u is minimal if there is no proof P ′ of T ` u
such that |P ′| < |P |.

Definition 19 (Simple Proof) A simple proof is a proof where each node T ` v occurs at most
once on each branch.

Property 2 (P Minimal ⇒ P Simple) If P is a minimal proof of T ` u then P is a simple
proof of T ` u.

Proof: Let us assume to the contrary that P is a non-simple proof of T ` u. Then there is a
branch of P in which T ` v occurs twice. We can cut the derivation between these two occurrences
and so get a smaller proof P ′, which is in contradiction to the minimality of P . 2

Definition 20 (Flat Proof) Let P be a proof of T ` w, P is a flat proof if there is no (GX)
rule immediately above another (GX) rule.

Since two successive (GX) rules can be merged into a single (GX) rule a minimal proof is a
flat proof.

Definition 21 (⊕-lazy Proof) Let P be a proof of T ` w, P is a ⊕-lazy proof if P is flat and
there is no (GX) rule immediately above an (F) rule in P .

Definition 22 (⊕-eager Proof) Let P be a proof of T ` w, P is a ⊕-eager proof if P is flat
and if there is at most one (F) rule immediately above a (GX) rule in P .

Intuitively, in a ⊕-lazy proof the (GX) rule is applied as late as possible, and in a ⊕-eager
proof the (GX) rule is applied as early as possible.

Example 7 (A simple proof which is not minimal) Consider the equational theory of ex-
clusive or with homomorphism. The following ⊕-eager proof with T = {u, v, k} is simple:

u ∈ T
(A)

T ` u

v ∈ T
(A)

T ` v
(GX)

T ` u⊕ v
(F)

T ` f(u⊕ v) = f(u)⊕ f(v)

f(v) ∈ T
(A)

T ` f(v)

(GX)
T ` f(u)
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We transform it into a ⊕-lazy simple proof

u ∈ T
(A)

T ` u
(F)

T ` f(u)

v ∈ T
(A)

T ` v
(F)

T ` f(v)

f(v) ∈ T
(A)

T ` f(v)
(GX)

T ` f(u)

However, these proofs are not minimal since there is a smaller proof:

u ∈ T
(A)

T ` u
(F)

T ` f(u)

Example 8 (An ⊕-eager Proof and a ⊕-lazy Proof) The following proof of f(b)⊕f(c) with
T = {a⊕ b, d⊕ c, f(d)⊕ f(a)} is minimal and ⊕-eager but it is not ⊕-lazy.

a⊕ b ∈ T
(A)

T ` a⊕ b

c⊕ d ∈ T
(A)

T ` c⊕ d
(GX)

T ` a⊕ b⊕ c⊕ d
(F)

T ` f(a)⊕ f(b)⊕ f(c)⊕ f(d)

f(a)⊕ f(d) ∈ T
(A)

T ` f(a)⊕ f(d)

(GX)
T ` f(b)⊕ f(c)

We can also construct a ⊕-lazy proof of T ` f(b)⊕ f(c):

a⊕ b ∈ T
(A)

T ` a⊕ b
(F)

T ` f(a)⊕ f(b)

c⊕ d ∈ T
(A)

T ` c⊕ d
(F)

T ` f(c)⊕ f(d)

f(a)⊕ f(d) ∈ T
(A)

T ` f(a)⊕ f(d)
(GX)

T ` f(b)⊕ f(c)

5.1.3 Different Kinds of Subterm

We now list the different definitions of subterms that we will use to prove a locality theorem in
each case.

Definitions of Subterm

Syntactic subterms are defined as usual:

Definition 23 (S(t)) Define the set of syntactic subterms of a term t as the smallest set S(t)
such that:
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• t ∈ S(t)

• if 〈u, v〉 ∈ S(t) then u, v ∈ S(t)

• if {u}k ∈ S(t) then u, k ∈ S(t)

• if u = u1 ⊕ . . .⊕ un ∈ S(t) then atoms(u) ⊆ S(t).

• if f(u) ∈ S(t) then u ∈ S(t)

The definition of S is extended to a set T of terms in normal form by setting S(T ) :=
⋃

t∈T S(t).

Example 9 Let T = {〈a⊕ f(c), {d}k〉, f(a)⊕ f(b)⊕ f2(c)} be a set of terms, we compute S(T ) =
T ∪ {a⊕ f(c), {d}k, a, f(c), c, d, k, f(a), f(b), b, f2(c)}.

Let T be a set of terms, we denote #(T ) the number of terms in the set T .

Property 3 Let T be a set of terms then #(S(T )) ≤ |T |.

Proof: It is enough to show it on a term t since

#(S(T )) = #(
⋃
t∈T

S(t)) ≤
∑
t∈T

#(S(t)) ≤
∑
t∈T

|t| = |T |

By induction on the size of the term t:

• The base case: t is a constant #(S(t)) = 1 = |t|.

We analyze all possible cases to construct S(T ∪ {u}) according the definition:

• #(S(〈u, v〉)) ≤ 1 + #(S(u)) + #(S(v)) ≤ 1 + |u|+ |v| = |〈u, v〉|

• #(S({u}v)) ≤ 1 + #(S(u)) + #(S(v)) ≤ 1 + |u|+ |v| = |{u}v|

• #(S(f(u1, . . . , un)) ≤ 1+#(S(u1))+ . . .+#(S(un)) ≤ 1+ |u1|+ . . .+ |un| = |f(u1, . . . , un)|

• #(S(u1⊕ . . .⊕un)) ≤ 1+#(S(u1))+ . . .+#(S(un)) ≤ 1+ |u1|+ . . .+ |un| = |u1⊕ . . .⊕un|

2

Property 4 atoms(M) ⊆ S(M) for any set of terms M ⊆ TΣ.

Proof: Obvious from the definition. 2

In the definition of S(t) we do not take care of the homomorphism rule. Because we work only
on normal forms the notion of a syntactic subterm ignores the fact that the term f(a)⊕f(b)⊕f(c)
is equal to f(a⊕b⊕c), and that a⊕b⊕c should be considered to be a subterm of f(a)⊕f(b)⊕f(c).
This is accounted for in the next definition.

Definition 24 (ST (t)) For any term t, the set ST (t) is the smallest set such that:

• S(t) ⊆ ST (t)

• If n ≥ 1 and f(u1)⊕ . . .⊕ f(un) ∈ ST (t) then u1 ⊕ . . .⊕ un ∈ ST (t).

By definition S(T ) ⊆ ST (T ). The definition is extended to a set T of terms in normal form by
setting ST (T ) :=

⋃
t∈T ST (t).

Example 10 Let T be as in Example 9. Then

ST (T ) = S(T ) ∪ {a⊕ b⊕ f(c)}

Property 5 atoms(ST (M)) ⊆ ST (M) for any set of terms M ⊆ TΣ.
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Proof: Obvious from Property 4 and the definition of ST . 2

Definition 25 (S⊕(T ) ) Define S⊕ as all the combinations of terms of ST (T ) by the symbol ⊕:

S⊕(T ) :=
{ ⊕

s∈M

s |M ⊆ ST (T )
}

Property 6 For all sets M ⊆ T (Σ) we have that

S⊕(T ) =
{ ⊕

s∈M

s |M ⊆ atoms(ST (T ))
}

Proof: For all sets M ⊆ T (Σ) we have that:

• According to Property 5 we have atoms(ST (M)) ⊆ ST (ST (M)) with the idempotence of ST

we conclude that { ⊕
s∈M

s |M ⊆ atoms(ST (T ))
}
⊆ S⊕(T )

• By definition of atoms and ST , we have that every element of ST (T ) is a sum of some
elements of atoms(ST (M)). Hence, we conclude that

S⊕(T ) ⊆
{ ⊕

s∈M

s |M ⊆ atoms(ST (T ))
}

2

Note that the size of S⊕ is exponential in the size of T and that ST (T ) ⊆ S⊕(T )

Example 11 Let T = {〈a, b〉}. Then we get:

ST (T ) = {〈a, b〉, a, b}

S⊕(T ) = ST (T ) ∪ {a⊕ b, b⊕ 〈a, b〉, a⊕ 〈a, b〉}

Definition 26 (Sf (t, hmax)) Let t be a term, and let hmax be an upper bound on the number of
successive applications of f , to be computed later. We define Sf as:

Sf (t, hmax) =
hmax⋃
i=0

f i(ST (t))

The definition of Sf (T, hmax) is extended to a set of terms T in normal form by setting
Sf (T, hmax) :=

⋃
t∈T Sf (t, hmax).

We remark that if hmax is polynomial in the size of T then the size of the set Sf (T, hmax) is
polynomial in the size of T .

Example 12 Let T = {a, b} be a set of terms and w = f3(a) ⊕ f(b). We assume just for the
example that hmax = 2. We compute the set Sf (T ∪ {w}, hmax). It is the union of:

• ST (T ∪ {w}) = {a, b, f3(a)⊕ f(b), f3(a), f2(a), f(a), f(b), f2(a)⊕ b}

• f1(ST (T ∪ {u})) = {f(a), f(b), f4(a)⊕ f2(b), f4(a), f3(a), f2(a), f2(b), f3(a)⊕ f(b)}

• f2(ST (T ∪ {u})) = {f2(a), f2(b), f5(a)⊕ f3(b), f5(a), f4(a), f3(a), f3(b), f4(a)⊕ f2(b)}
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Properties of Subterm

Lemma 3 (Idempotence of Subterms) The mappings S, ST , Sf and S⊕ are idempotent.

Proof: This is a consequence of the fact that S(T ) and ST (T ) are defined to be the smallest
extensions of T satisfying certain closure properties in Definition 24 and 25. We obtain immediately
the idempotence of Sf and S⊕ according to these definitions. 2

Lemma 4 (Monotonicity of Subterms) The mappings S, ST and S⊕ are monotone.

Proof: Straightforward from the definitions of S(T ), ST (T ) and S⊕(T ). 2

Lemma 5 (Union of Subterms) Let A and B be two sets of terms, the mappings S, ST and
S⊕ have the property:

• S(A ∪B) = S(A) ∪ S(B)

• ST (A ∪B) = ST (A) ∪ ST (B)

• S⊕(A ∪B) = S⊕(A) ∪ S⊕(B)

Proof: Obvious from the way how the definitions of S(T ), ST (T ) and S⊕(T ) are extended to
sets. 2

Definition 27 (Transitive Mapping over Sets of Terms) Let T be a set of terms. The map-
ping S : T → T is transitive if for all X,Y, Z ⊆ T , X ⊆ S(Y ) and Y ⊆ S(Z) implies X ⊆ S(Z).

Property 7 (Idempotence and Monotonicity ⇒ Transitivity) Let be S a mapping from
sets of terms to sets of term. If the mapping S is idempotent and monotone then it is transi-
tive.

Proof: Let be S a idempotent mapping from a set of terms to a set of term. Let X,Y, Z
and T be sets of terms. If X ⊆ S(Y ) and Y ⊆ S(Z) by monotonicity and idempotence we get
S(Y ) ⊆ S(S(Z) = S(Z), hence X ⊆ S(Z). 2

Corollary 6 (Transitivity of Subterms) The mappings S, ST and S⊕ are transitive.

Proof: By Lemma 3 and Lemma 10, and by Proposition 7. 2

5.1.4 Properties and Lemmata
Proof Transformations

In this section we show that it is always possible to transform a proof into a ⊕-lazy proof or an
⊕-eager proof.

• We can always flatten successive applications of (GX) rules into a single one, as shown in
Figure 5.1.

• We can always switch a rule (GX) with a rule (F) if (GX) is immediately above (F), as
shown in Figure 5.2.

• The reverse operation is possible only if all immediate predecessors in the proof tree are
labeled with (F), as shown in Figure 5.3.

Lemma 7 If there is a proof of T ` w then there is also a ⊕-lazy proof and a ⊕-eager proof of
T ` w

Proof:
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T ` x1 . . . T ` xn

(GX)
T ` x1 ⊕ . . .⊕ xn T ` y1 . . . T ` ym

(GX)
T ` x1 ⊕ . . .⊕ xn ⊕ y1 ⊕ . . .⊕ ym

⇓

T ` x1 . . . T ` xn T ` y1 . . . T ` ym

(GX)
T ` x1 ⊕ . . .⊕ xn ⊕ y1 ⊕ . . .⊕ ym

Figure 5.1: Transformation of (GX)-(GX) into (GX)

T ` x1 . . . T ` xn

(GX)
T ` x1 ⊕ . . .⊕ xn

(F)
T ` f(x1)⊕ . . .⊕ f(xn)

=⇒

T ` x1

(F)
T ` f(x1)

. . .

T ` xn

(F)
T ` f(xn)

(GX)
T ` f(x1)⊕ . . .⊕ f(xn)

Figure 5.2: Transformation of (GX)-(F) into (F)-(GX)

T ` x1

(F)
T ` f(x)

. . .

T ` xn

(F)
T ` f(xn)

T ` y1
(G1)

T ` z1
. . .

T ` ym

(Gm)
T ` zm

(GX)
T ` f(x1)⊕ . . .⊕ f(xn)⊕ z1 ⊕ . . .⊕ zm

⇓

T ` x1 . . . T ` xn

(GX)
T ` x1 ⊕ . . .⊕ xn

(F)
T ` f(x1)⊕ . . .⊕ f(xn)

T ` y1
(G1)

T ` z1
. . .

T ` ym

(Gm)
T ` zm

(GX)
T ` f(x1)⊕ . . .⊕ f(xn)⊕ z1 ⊕ . . .⊕ zm

Figure 5.3: Transformation of (F)-(GX) into (GX)-(F) where rules (Gi) are all different from (F)
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• To obtain a ⊕-lazy proof we apply the proof transformation rules given in Figures 5.2 and 5.1.

• To obtain an ⊕-eager proof we apply the proof transformation rules given in Figures 5.3
and 5.1.

2

Definition 28 (Minimal-⊕-lazy Proof) P is a minimal-⊕-lazy proof of T ` w if only if P is
a ⊕-lazy proof of T ` w which is minimal among all ⊕-lazy proofs.

If there is a proof of T ` w then there is also a minimal-⊕-lazy proof and a ⊕-eager proof of
T ` w.

Lemma 8 Let P be a ⊕-lazy simple proof of T ` w. If all terms in T ∪ {w} have at most two
atoms then the proof P is binary ⊕-lazy and simple.

Proof: By Corollary 20, in a ⊕-lazy proof all nodes are in ST (T,w) except those produced by
the rule (F) and which lead by a sequence of (F) rules to (GX). These nodes are binary, too, since
application of (F) preserves the number of atoms of a term. Hence, the proof P is binary ⊕-lazy
and simple. 2

A Lemma about Destruction Rules

Lemma 10 and Lemma 9 are two extensions of a lemma shown in [CLS03] for the ACUN the-
ory. We show that these lemmata hold in the case of Abelian groups with homomorphism, the
demonstration can easily be adapted to the case of AC and ACUN plus homomorphism.

Lemma 9 Let P ′ be a simple proof of the form:

P ′ =

 P ′
1 . . . P

′
n

T ` w

1. If T ` u does not occur in any of P ′
1, . . . , P

′
n and 〈u, v〉 ↓ ∈ S(w) then there is at least one P ′

i

and there exists w′ such that 〈u, v〉 ↓ ∈ S(w′) and either the root of P ′
i is T ` w′ or w′ ∈ T .

2. If T ` u does not occur in any of P ′
1, . . . , P

′
n and {u}v ↓ ∈ S(w) then there is at least one P ′

i

and there exists w′ such that {u}v ↓ ∈ S(w′) and either the root of P ′
i is T ` w′ or w′ ∈ T .

Proof: We only give the proof for the first case (pairing), the second case is similar. We consider
all possible rules for the root of P ′:

• The last rule is (A) it is obvious.

• The last rule is (UL) or (UR): 〈u, v〉 ↓ ∈ S(w) by hypothesis, and by construction w ∈
S(〈u1, u2〉). We deduce by transitivity of the subterm relation that 〈u, v〉 ↓ ∈ S(〈u1, u2〉).

• The last rule is (D): as in the above case but with {u}v instead of 〈u, v〉.

• The last rule is (F): 〈u, v〉 is a subterm of w = f(w1) ↓, it hence is a subterm of w1.

• The last rule is (GX): 〈u, v〉 is a subterm of (u1⊕ . . .⊕ un) ↓, it is hence a subterm of one of
some ui, because 〈u, v〉 is not headed with ⊕.

• The last rule is (P): since T ` u can not be in P then w = 〈w1, w2〉 6= 〈u, v〉. But 〈u, v〉 is a
subterm of w so it is a subterm of w1 or of w2.

• The last rule is (C): since T ` u can not be in P then w = {w1}w2 6= {u}v. But 〈u, v〉 is a
subterm of w so it is a subterm of w1 or of w2. 2

31



...

T ` 〈u, v〉 ↓ = r

(UL)
T ` u

...

T ` 〈u, v〉 ↓ = r

(UR)
T ` v

...

T ` {u}v ↓ = r

...

T ` v ↓
(D)

T ` u

Figure 5.4: Destruction Rules.

Lemma 10 Let P be a simple proof of one of the forms described in Figure 5.4.
Then 〈u, v〉 ↓ ∈ S(T ) (resp. {u}v ↓ ∈ S(T )).

Proof: Assume that the last rule is (UL), the case (UR) is similar.

P =


P1 . . . Pn

T ` 〈u, v〉 ↓ = r

T ` u

P is minimal so T ` u does not occur in any of P1, . . . , Pn. Hence, we can apply the Lemma 9.
The result follows by induction from Lemma 9.

Assume that the last rule is (D):

P =


P1 . . . Pn

T ` {u}v

...

T ` v
(D)

T ` u

P is minimal so T ` u does not occur in any of P1, . . . , Pn. Hence, we can apply the Lemma 9.
The result follows again by induction from Lemma 9. 2

5.2 Locality for the Equational Theory ACh

5.2.1 Observations and Technical Lemmata for the Theory ACh

We remark that:

• If t ∈ ST (u) \ u then t ∈ ST (atoms(u))

• ∀u, ST (atoms(u)) ⊆ ST (u)

The following property holds in the equational theory ACh: ∀u, v, atoms(u) ⊆ atoms(u ⊕ v)
since in this case no term is deleted by the application of ⊕. This property is used to state:

Lemma 11 Let u, v and t be terms in normal form. If t ∈ ST (u) \ u then t ∈ ST (u⊕ v).

Proof: Let u, v and t be terms in normal form, if t ∈ ST (u) \ u then t ∈ ST (atoms(u)). By
monotonicity of ST and the previous observation ∀u, ST (atoms(u)) ⊆ ST (u ⊕ v) we obtain that
t ∈ ST (u⊕ v). 2

Lemma 12 In case of the equational theory ACh we have for all terms t, u, v in normal form: if

• t 6= u or t is not headed with ⊕
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• and t ∈ ST (u)

then t ∈ ST (u⊕ v).

Note that this lemma is no longer true in case of the equational theories ACUNh or AGh.
Proof: We consider two cases:

• If t 6= u then t ∈ ST (u) \ u. By Lemma 12 we conclude that t ∈ ST (u⊕ v).

• If t = u then t is not headed with ⊕. Hence t ∈ ST (u) \ u. By Lemma 12 we conclude that
t ∈ ST (u⊕ v). 2

5.2.2 Lemmata and Locality

Lemma 13 Let P be a ⊕-lazy simple proof of T ` w and let P ′ be a subproof of P with root label
T ` N . If the last rule applied in P ′ is (GX) then N ∈ ST (w) ∪ ST (T ).

Proof: By induction on the size of the proof P . The base case is trivial. Let us assume that P
is of the form

P =


P1 =


...

T ` R1

. . . Pn =


...

T ` Rn

T ` w

Assume that all immediate subproofs Pi of P with root label T ` Ri satisfy the property i.e. if
there is the rule (GX) in Pi then the node resulting from this rule application is labeled by T ` Ni

where Ni ∈ ST (Ri) ∪ ST (T ).
By induction hypothesis, any immediate subproof Pi of P with root label T ` Ri satisfies the

property i.e. if there is the rule (GX) in Pi then the node resulting from this rule application is
labeled by T ` Ni with Ni ∈ ST (Ri) ∪ ST (T ).

We proceed by case analysis on the last rule applied in P :

1. (P), (C), (F): In this case any application of rule (GX) occurs in some subproof Pi. For any
of these rules, ST (Ri) ⊆ ST (w) for all i. The result follows from the induction hypothesis.

2. (UL) (UR) or (D): In this case any application of rule (GX) occurs in some subproof Pi. By
Lemma 10 we have that ST (Ri) ⊆ ST (T ) for all i. The result follows from the induction
hypothesis.

3. (GX): Let PN be a subproof of P which has T ` N as label of the root and which terminates
with an application of the rule (GX).

(a) If PN is P itself then N = w and the claim obviously holds.

(b) If PN is a proper subproof of P then PN is a subproof of some Pi.
By induction hypothesis we have that N ∈ ST (T ) ∪ ST (Ri).
If N ∈ ST (T ) we are done, otherwise let P ′

i be the subproof of Pi such that Pi is
obtained from P ′

i by a sequence (possibly empty) of applications of (F) and such that
the last rule applied in P ′

i is not (F).
Let T ` R′

i be the label of the root of P ′
i .

By induction, it is enough to show that R′
i ∈ ST (T ∪ {w}).

By definition of P ′
i , the last rule application in P ′

i cannot be (F), and since the proof
P is ⊕-lazy it cannot be (GX) neither.
There are two possible cases: R′

i is headed with ⊕ or not.
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i. If R′
i is headed with ⊕: the last rule application in P ′

i cannot be (P) or (C), and
it cannot be (GX) nor (F) as seen above. Hence, the last rule application of P ′

i is
one of (A), (D), (UL) or (UR).
By Lemma 10, we get R′

i ∈ ST (T ).
ii. If R′

i is not headed with ⊕ then Ri is not headed by ⊕ neither. By Lemma 12, we
get N ∈ ST (T ∪ {w}). 2

Lemma 14 Let P be a ⊕-lazy simple proof of T ` w and let P ′ be a subproof of P with root label
T ` N . If the last rule applied in P ′ is (P) or (C), then N ∈ ST (w) ∪ ST (T ).

Proof: By induction on the size of the proof P . The base case is trivial. Let us assume that P
is of the form

P =


P1 =


...

T ` R1

. . . Pn =


...

T ` Rn

T ` w

Assume that all immediate subproofs Pi of P satisfy the property. By definition, if T ` Ri is
the label of the root of Pi and if T ` Ni is the label of a node of Pi obtained by the application
of the rule (P) or (C), we have Ni ∈ ST (Ri) ∪ ST (T ).

We proceed by case analysis on the last rule applied in the proof P :

1. (P), (C): Let PN be a subproof of P which terminates with an application of the rule (P) or
(C) and let T ` N be the label of the root of PN .

(a) If PN is P then N = w and the claim obviously holds.

(b) If PN is a proper subproof of P then PN is a subproof of some Pi.
By induction hypothesis we have that N ∈ ST (T ) ∪ ST (Ri) ⊆ ST (T ) ∪ ST (w).

2. (F): In this case any application of the rule (P) or (C) occurs in some subproof Pi.

By definition of (F) and ST , we have ST (Ri) ⊆ ST (u) for all i.

Then the result follows from the induction hypothesis.

3. (UL) (UR) or (D): In this case any application of rule (P) or (C) occurs in some subproof
Pi.

By Lemma 10 we have that ST (Ri) ⊆ ST (T ) for all i.

Then the result follows from the induction hypothesis.

4. (GX): In this case any application of rule (P) or (C) occurs in a subproof Pi.

By induction hypothesis we have that N ∈ ST (T )∪ ⊆ ST (Ri).

Since N is not headed with ⊕, the result follows from Lemma 12. 2

Lemma 15 Let P be a ⊕-lazy simple proof of T ` w and let P ′ a subproof of P with root label
T ` N . If the last rule applied in P ′ is (F) then N ∈ ST (w) ∪ ST (T ).

Proof: By induction on the size of the proof P . The base case is trivial. Let us assume that P
is of the form

P =


P1 =


...

T ` R1

. . . Pn =


...

T ` Rn

T ` w
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Assume that all immediate subproofs Pi of P with root label T ` Ri satisfy the property, i.e.
if T ` Ni is the label of a node of Pi resulting from the application of the rule (F), then Ni ∈
ST (Ri) ∪ ST (T ).

We proceed by case analysis on the last rule applied in P :

1. (P), (C): In this case any application of rule (F) occurs in some subproof Pi.

For these rules ST (Ri) ⊆ ST (u) for all i.

Then the result holds by induction hypothesis.

2. (F): Let PN be a subproof PN of P which terminates with an application of the rule (F) and
let T ` N the label of PN .

(a) If PN is P then N = w and the claim holds.

(b) If PN is a proper subproof of P then PN is a subproof of some Pi.
By induction hypothesis we have that N ∈ ST (T ) ∪ ST (Ri) ⊆ ST (T ) ∪ ST (w).

3. (UL) (UR) or (D): In this case any application of rule (F) occurs in one subproof Pi.

By Lemma 10 we have that ST (Ri) ⊆ ST (T ) for all i, and the result holds by induction
hypothesis.

4. (GX): In this case any application of rule (F) occurs in one subproofPi, hence we have that
N ∈ ST (T ) ∪ ST (Ri) by induction hypothesis.

If N ∈ ST (T ) we are done, otherwise let P ′
i be the subproof of Pi such that P ′

i does not
terminate on (F), and Pi is obtained from P ′

i by a sequence of applications of (F).

Let T ` R′
i be the label of the root of P ′

i .

We show that R′
i ∈ ST (T ∪ {w}), which yields the result by induction hypothesis.

By definition the last rule application of P ′
i cannot be (F), and since the proof P is ⊕-lazy

it also cannot be (GX) neither.

There are two possible cases: R′
i are headed with ⊕ or not.

(a) If R′
i is headed with ⊕: the last rule application in P ′

i cannot be (P) or (C), and it
cannot be (GX) or (F) as seen above.
Therefore the last rule application of P ′

i is (A), (D), (UL) or (UR).
By Lemma 10 we get R′

i ∈ ST (T ).

(b) If R′
i not headed with ⊕ then then Ri is not headed by ⊕ either, and we conclude by

Lemma 12 that N ∈ ST (T ∪ {w}). 2

Theorem 3 (Locality) The proof system for ` in the case of the equational theory ACh is ST -
local.

Proof: If there is a proof of T ` w then, by Lemma 7 there also is a ⊕-lazy and simple proof of
T ` w. By Lemmata 10, 13, 14 and 15 this proof is ST -local. 2

Lemma 16 Let T ∈ T (Σ) and w ∈ T (Σ) be terms such that atoms(T,w) are constants. If P is a
proof of T ` w then there exist a minimal proof of T ` w using only the rules (A) and (GX).

Proof: Let P be a minimal-⊕-lazy proof of T ` w. 2
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5.3 Locality for the Equational Theory ACUNh

5.3.1 Properties of ⊕-lazy Proofs in the ACUNh Case

Lemma 17 Let P be a minimal-⊕-lazy proof of T ` w and let P ′ be a subproof of P with root
label T ` N . If the last rule application is (GX) then N ∈ ST (w) ∪ ST (T ).

Note that, in contrast to the analogous lemma in the case ACh (Lemma 13), we now assume
a minimal -⊕-lazy proof instead of merely assuming a simple-⊕-lazy proof.

Proof: By induction on the size of the proof P . The base case is trivial. Let us assume that P
is of the form

P =


P1 =


...

T ` R1

. . . Pn =


...

T ` Rn

T ` w

Assume that all immediate subproofs Pi of P with root label T ` Ri verify the property i.e.
if the rule (GX) occurs in Pi and if T ` Ni is the label of the node resulting from this rule
application, then Ni ∈ ST (Ri) ∪ ST (T ).

We proceed by case analysis on the last rule applied in the proof P :

1. (P), (C), (F): In this case any application of rule (GX) occurs in a subproof Pi. For these
rules ST (Ri) ⊆ ST (w) for all i.

Then the result follows from the induction hypothesis.

2. (UL) (UR) or (D): In this case any application of rule (GX) occurs in a subproof Pi.

By Lemma 10 we have that ST (Ri) ⊆ ST (T ) for all i.

Then the result follows from the induction hypothesis.

3. (GX): Consider a subproof PN of P which terminates with an application of the rule (GX)
and whose root is labeled by T ` N .

(a) If PN is P itself then N = w and the claim obviously holds.

(b) If PN is a proper subproof of P then PN is a subproof of one of the Pi.
By induction hypothesis we have that N ∈ ST (T ) ∪ ST (Ri).
If N ∈ ST (T ) we are done, otherwise let P ′

i be the subproof of Pi such that P ′
i does not

terminate on (F), and Pi is obtained from P ′
i by a sequence of n applications of (F),

illustrated in Figure 5.5.
Let T ` R′

i be the label of the root of P ′
i .

It is enough to show that R′
i ∈ ST (T ∪ {w}) since the result will follow by induction

hypothesis.
By definition of P ′

i , the last rule application in P ′
i is not (F), and since the proof P is

⊕-lazy it also cannot be (GX) neither.
There are two possible cases: R′

i is headed with ⊕ or not. Note that R′
i is headed with

⊕ iff Ri is headed with ⊕.

i. If R′
i is headed with ⊕: the last rule application in P ′

i cannot be (P) or (C), and it
cannot be (GX) or (F) as seen above.
Hence, the last rule application of P ′

i is one of (A), (D), (UL) or (UR).
By Lemma 10, we get R′

i ∈ ST (T ).
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. . .

...
(6= F,GX)

T ` R′
i

(F)
...

(F)
T ` Ri = fn(R′

i) . . .

...
(6= F,GX)

T ` R′
j = R′

i ⊕A′
i

(F)
...

(F)
T ` Rj = Ri ⊕Ai

. . .

(GX)
T ` R1 ⊕ . . .⊕Rn = w

Figure 5.5: Illustration of the decomposition used in the proofs of Lemmata 17 and 18.

ii. If R′
i is not headed with ⊕: Either Ri ∈ ST (w) and we are done, or Ri 6∈ ST (w)

and Ri is canceled out by another term in the (GX) rule.
Since the proof P is minimal, Ri must be canceled out by some term Rj which
is headed with ⊕ and which is obtained by a subproof Pj : otherwise the same
term would appear twice in the sum, and a smaller proof could be obtained just
by omitting these two terms, which contradicts the minimality of P .
Therefore we can write Rj = Ri ⊕Ai.
Since P is a ⊕-lazy proof and since the last rule of P ′

i cannot be (GX) or (F) by
definition, Lemma 10 yields the result if the last rule of P ′

i is one of (UL), (UR),
(D) or (A).
The remaining case is when this rule is (P) or (C).
In this case we observe that R′

i is not headed by f and that #f (Ri) = n.
We now go up from Rj = Ri⊕Ai as long as possible along a sequence of (F) rules:
let P ′

j be the subproof of Pj such that P ′
j does not terminate on (F), and such that

Pj is obtained from P ′
j by a sequence of m applications of (F).

Since Ri ∈ atoms(Rj), we have m ≤ #f (Rj) ≤ #f (Ri) = n.
Let R′′

i ⊕A′′
i be the label of the root of P ′

j .
Since P is a ⊕-lazy proof, the last rule of P ′

j cannot be (GX) or (F) by construction.
It also cannot be (P) nor (C) because R′′

i ⊕A′′
i is headed with ⊕.

Hence, the last rule of P ′
j must be one of (A), (UR), (UL), (D). We have that

ST (R′′
i ⊕Ai) ⊆ ST (T ) by Lemma 10.

It follows that R′
i ∈ ST (R′′

i ⊕ A′′
i ) ⊆ ST (T ) because m ≤ n, and we conclude by

applying the induction hypothesis. 2

Lemma 18 Let P be a minimal-⊕-lazy proof of T ` w and let P ′ be a subproof of P with root
label T ` N . If the last rule applied in P ′ is (P) or (C), then N ∈ ST (w) ∪ ST (T ).

Proof: By induction on the size of the proof P . The base case is trivial. Let us assume that P
is of the form

P =


P1 =


...

T ` R1

. . . Pn =


...

T ` Rn

T ` w
Assume that all immediate subproofs Pi of P with root label T ` Ri verify the property i.e. if
there is the rule (P) or (C) in Pi then the node resulting from this rule application and labeled by
T ` Ni satisfies that Ni ∈ ST (Ri) ∪ ST (T ).

We proceed by case analysis on the last rule applied in the proof P :

1. (P), (C): Let PN be a subproof of P which terminates with an application of the rule (P) or
(C) and let T ` N be the label of the root of PN .
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(a) If PN is P then N = w and the claim obviously holds.
(b) If PN is a proper subproof of P then PN is a subproof of one of the Pi.

By induction hypothesis we have that N ∈ ST (T ) ∪ ST (Ri) ⊆ ST (T ) ∪ ST (w).

2. (F): In this case any application of rule (P) or (C) occurs in some subproof Pi.

Since ST (Ri) ⊆ ST (u) for all i for this rule, the result follows from the induction hypothesis.

3. (UL), (UR) or (D): In this case any application of rule (P) or (C) occurs in some subproof
Pi.

By Lemma 10, ST (Ri) ⊆ ST (T ) for all i, and the result follows from the induction hypothesis.

4. (GX): In this case any application of rule (P) or (C) occurs in some subproof Pi.

By induction hypothesis we have that N ∈ ST (T ) ∪ ST (Ri).

If N ∈ ST (T ) we are done, otherwise let P ′
i be the subproof of Pi such that P ′

i does not
terminate on (F), and Pi is obtained from P ′

i by a sequence of n applications of (F), as
illustrated in Figure 5.5.

Let T ` R′
i be the label of the root of P ′

i .

It is enough to show that R′
i ∈ ST (T ∪ {w}) since the result will follow from the induction

hypothesis.

By definition the last rule application of P ′
i cannot be (F) and it and cannot be (GX) since

the proof P is ⊕-lazy .

There are two possible cases: R′
i is headed with ⊕ or not. Note that R′

i is headed with ⊕ iff
Ri is headed with ⊕.

(a) If R′
i is headed with ⊕: the last rule application in P ′

i cannot be (P) or (C), and it
cannot be (GX) or (F) as seen above. Hence, the last rule application of P ′

i must be
one of (A), (D), (UL) or (UR).
By Lemma 10 we get R′

i ∈ ST (T ) .
(b) If R′

i is not headed with ⊕: Either Ri ∈ ST (w) and we are done, or Ri 6∈ ST (w) and
Ri is canceled out by another term in the (GX) rule.
Since P is minimal, Ri must be canceled out by some term Rj which is headed with ⊕
and which is obtained by a subproof Pj : otherwise the same term would appear twice
in the sum, and we could obtain a smaller proof just by omitting these two terms, which
contradicts the minimality of P .
Therefore Rj = Ri ⊕Ai.
Since P is a ⊕-lazy proof and since the last rule of P ′

i cannot be (GX) or (F), the result
holds by Lemma 10 if it is one of (UL), (UR), (D) or (A).
The remaining case is when the last rule of P ′

i is one of the rules (P) or (C)
In this case we observe that R′

i is not headed by f , and #f(Ri) = n.
We now go up from Rj = Ri⊕Ai as long as possible along a sequence of (F) rules : let
P ′

j be the subproof of Pj such that P ′
j does not terminate on (F), and such that Pj is

obtained from P ′
j by a sequence of m applications of (F).

Since Ri ∈ atoms(Rj) we have m ≤ #f(Rj) ≤ #f(Ri) = n.
Let R′′

i ⊕A′′
i be the label of the root of P ′

j .
Since P is a ⊕-lazy proof and by construction, the last rule of P ′

j cannot be (GX) or
(F). It also cannot be (P) or (C) because R′′

i ⊕A′′
i is headed with ⊕.

Hence, the last rule of P ′
j must be one of (A), (UR), (UL), (D). By the Lemma 10 we

have that ST (R′′
i ⊕Ai) ⊆ ST (T ).

If follows that R′
i ∈ ST (R′′

i ⊕A′′
i ) ⊆ ST (T ) because m ≤ n, and we conclude by applying

the induction hypothesis. 2
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Lemma 19 Let P be a proof which is minimal-⊕-lazy proofs of T ` w, and let P ′ be a subproof
of P with root label T ` N such that the last rule applied in P ′ is (F). If all nodes from the root
of P ′ to the root of P are (F), or if the first successor not labeled by (F) of the root of P ′ in P is
labeled by a rule different from (GX), then N ∈ ST (T ∪ {w}).

This lemma states that (F) nodes are harmless as long as they do not produce an hypothesis of a
(GX) rule with a sequence of successive (F) nodes.
Proof: If all nodes from the root of P ′ to the root of P are obtained by (F) rules, then we get
N ∈ ST (w) by induction hypothesis: otherwise let (Z) (different from (GX)) be the label of the
first successor in P of the root of P ′ which is not labeled by (F):

• (Z) cannot be (A).

• (Z) cannot be (UL), (UR), (D) since the hypothesis of (Z) is headed by f .

• Therefore (Z) must be (P) or (C), and in this case we conclude by Lemma 18. 2

Corollary 20 Let P be a minimal-⊕-lazy proof of T ` w. All nodes of P are labeled by terms in
ST (T,w) except the nodes which are constructed by (F) and which lead to a hypothesis of a (GX)
rule by a sequence of (F) rules.

Proof: By Lemmata 17, 18, and 19. 2

Since the application of rule (F) to a binary term yields a binary term we obtain immediately:

Corollary 21 If T and w are binary then every minimal-⊕-lazy proof of T ` w is binary.

Proof: According to Lemma 20 all nodes are in ST (T,w) except the nodes which are constructed
by (F) and which yield an hypothesis of a (GX) rule by a sequence of (F) rules. If T and w are
binary then the construction of ST (T,w) does not generate any term headed with ⊕ which is not
binary. Since (F) cannot create binary terms, every minimal-⊕-lazy proof of T ` w is binary. 2

Example 13 We present a minimal proof of T ` w, where T = {u⊕ v, f(v)}, w = f(u).

u⊕ v ∈ T
(A)

T ` u⊕ v
(F)

T ` f(u)⊕ f(v)

f(v) ∈ T
(A)

T ` f(v)
(GX)

T ` f(u)

We compute ST (T ∪{w}) = {u, v, u⊕v, f(u), f(v)}. This proof is not ST -local since f(u)⊕f(v) 6∈
ST (T ∪ {w})

As seen in this example, the problem in defining S-locality for a polynomial-size S is to bound
the number of applications of the (F) proof rule when constructing hypotheses to a (GX) rule.

5.3.2 Locality in the Binary Case
In the binary case, that is when all terms in ST (T,w) have at most two atoms, we can actually find
an upper bound for the number of applications of (F). The key to this upper bound is a technical
lemma about counter automata which is proved in the appendix.

In the binary case we associate a one-counter automaton to the set ST (T,w). The states of
the automaton are atoms of ST (T,w) without top-level f -symbols, and the counter represents the
number of applications of f to a term. We first give an informal explanation of the construction.
The formal definition of the automaton is given below (Definition 29).
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• First Step: For every term t ∈ ST (T,w):

– If t is headed with ⊕ then for each atom a of t the term Stripf (a) is a state of the
automaton. As we can see in Example 14, the term a⊕f2(b) gives raise to two states a
and b. We add oriented transitions between the two states. If the transition starts from
a which stems from fn(a) and goes to state b which stems from fm(b), the transition
has condition c ≥ n and action c := c+m− n. We add the symmetric transition from
b to a.

– If t is not headed with ⊕ we create a state Stripf (t) decorated with a prime, and a
transition from this state to itself, without condition and with action c := c+ 1.

• Second Step: Merge all states labeled with the same term.

• Third Step: Connect every primed state a′ stemming from some term fn(t) to its unprimed
equivalent a by a transition oriented from the primed state to the unprimed state with
condition c ≥ n and with action c := c.

• Forth Step: Create a new initial state, and a transition with (vacuous) condition c ≥ 0 and
with action c := c from the initial state to any primed state.

We now give the formal definition of the automaton:

Definition 29 Let T be a set of terms such that every term in T has at most two atoms. The
automaton associated with T , abbreviated AT , is a one-counter automaton without input defined
as follows:

We partition T = T1 ] T2 where T1 is the set of terms not headed with ⊕, and T2 is the set of
terms headed with ⊕.

• The set of states QT of AT is defined as

QT = PT ∪RT ∪ {init}
PT = {p′ | p ∈ Stripf (T1)}
RT = {r | r ∈ Stripf (T1) ∪ Stripf (atoms(T2))}

• init is the initial state of AT .

• The set of transitions is:

From To Condition Action
∀t ∈ T1 : init (Stripf (t))′ c ≥ 0 c := c
∀t ∈ T1 : (Stripf (t))′ (Stripf (t))′ c ≥ 0 c := c+ 1
∀t ∈ T1 : (Stripf (t))′ Stripf (t) c ≥ #f (t) c := c
∀t⊕ s ∈ T2 : Stripf (t) Stripf (s) c ≥ #f (t) c := c−#f (t) + #f (s)

In the definition of the automaton, the primed states in PT are only intermediate states which do
not correspond to a proof; only the states in RT correspond to proofs in a sense to be made precise
below. Note that in the last line of the above transition table the statement “t⊕ s ∈ T2” is to be
understood modulo AC, such that we obtain from a binary clause a back and a forth transition,
as already explained in the informal definition of the automaton.

Example 14 The automaton AT for T = {a⊕ f2(b), a} is as follows, where I denotes the initial
state:

Lemma 22 Let T be a set of binary terms. For all terms t0, t1, . . . , tn ∈ Stripf (atoms(T )) and
all natural numbers c0, c1, . . . , cn we have that:

AT |= (init, 0)→ (t′0, 0)→ . . .→ (t′0, c0)→ (t0, c0)→ (t1, c1)→ . . .→ (tn, cn)

iff there are terms s0, s1, . . . , sn ∈ T and natural numbers d0, d1, . . . , dn such that:
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I aa’ b

c ≥ 2
c := c− 2

c ≥ 0
c := c+ 2

c ≥ 0
c := c

c ≥ 0
c := c

c ≥ 0
c := c+ 1

1. s0 is not headed with ⊕, and for 1 ≤ i ≤ n the term si is headed with ⊕ and has exactly two
atoms, that is si = s1i ⊕ s2i

2. fd0(s0) = fc0(t0)

3. ∀1 ≤ i ≤ n : fdi(s1i ) = fci−1(ti−1)

4. ∀1 ≤ i ≤ n: fdi(s2i ) = fci(ti)

As a consequence, we obtain that

n⊕
i=0

fdi(si) ↓ = fdn(s2n) = fcn(tn)

Example 15 We continue Example 14. With this automaton, we have a run

(init, 0)→ (a′, 0)→ (a′, 1)→ (a, 1)→ (b, 3)

In the formalism of Lemma 22 this means

t0 = a
t1 = b

c0 = 1
c1 = 3

The claim of Lemma 22 is illustrated by the choice

s0 = a
s1 = a⊕ f2(b)
s11 = a
s21 = f2(b)

d0 = 1
c1 = 1

Lemma 23 Let T be a set of binary terms. For all t0, . . . , tn ∈ Stripf (atoms(T )) and all natural
numbers c0, . . . , cn we have that

AT |= (t0, c0)→ (t1, c1)→ . . .→ (tn, cn)

iff there are terms s1, . . . , sn ∈ T and natural numbers d1, . . . , dn such that:

1. for 1 ≤ i ≤ n the term si is headed with ⊕ and has exactly two atoms, that is si = s1i ⊕ s2i
2. ∀1 ≤ i ≤ n : fdi(s1i ) = fci−1(ti−1)

3. ∀1 ≤ i ≤ n : fdi(s2i ) = fci(ti)

As a consequence, we obtain that

n⊕
i=1

fdi(si) ↓ = fd1(s11)⊕ fdn(s2n) = fc0(t0)⊕ fcn(tn)

We can now give the definition of hmax: Given T a set of terms and w a term, we define
hmax = n′2 + n′3 + gmax where:
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Figure 5.6: Illustration of Lemma 22
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Figure 5.7: Illustration of Lemma 22
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n′ = |AST (T,w)| ∗ cmax

cmax = maxdiff(ST (T,w))
maxdiff(T ) = max{|#f (u)−#f (v)| | u⊕ v ∈ T}

gmax = max{#f (t) | t ∈ ST (T,w)}

Lemma 24 Let P be a minimal-⊕-lazy proof of T ` w. All nodes of P are in Sf (T,w, hmax).

Proof: Let P be a minimal-⊕-lazy proof of T ` w. First note that, by Corollary 20, all nodes
except those that are obtained by rule (F) and which yield by a sequence of successive applications
of (F) a hypothesis of rule (GX), are labeled by terms in ST (T,w) ⊆ Sf (T,w, hmax).

Let P ′ be a maximal subtree of the proof P such that its root is obtained by rule (GX) and
all non-root nodes are obtained by rule (F). Let the root of P ′ be labeled with T ` u. Again by
Corollary 20, both u and the labels at all the leaves of P ′ are in ST (T,w). There are two cases:

1. u is not headed with ⊕.

By minimality of the proof P , there is no non-empty subset of the hypotheses to the rule
(GX) at the root of P ′ for which their combination by ⊕ yields 0. Hence, the leaves of P ′ are
marked with exactly one term s which is not headed with ⊕, and a set of terms s1, . . . , sn

which are headed with ⊕ and have exactly two atoms. This is illustrated in Figure 5.7(a).

In this case, there are terms s0, s1, . . . , sn ∈ T and natural numbers d0, d1, . . . , dn such that

• s0 is not headed with ⊕, and for 1 ≤ i ≤ n the term si is headed with ⊕ and has exactly
two atoms, that is si = s1i ⊕ s2i
• fd0(s0) = fd1(s11)

• ∀1 ≤ i ≤ n− 1: fdi(s2i ) = fdi+1(s1i+1)

The di are the respective lengths of the chains of (F) rules. By Lemma 22, Corollary 25,
and the minimality of the proof we obtain that all the di are smaller than or equal to hmax.

2. u is headed with ⊕, that is u = u1 ⊕ u2.

By minimality of the proof P , there is no non-empty subset of the hypotheses to the rule
(GX) at the root of P ′ for which their combination by ⊕ yields 0. There are two possibilities:

(a) there are terms s0, s1, . . . , sn ∈ T and natural numbers d0, d1, . . . , dn such that

• s0 is not headed with ⊕, and for 1 ≤ i ≤ n the term si is headed with ⊕ and has
exactly two atoms, that is si = s1i ⊕ s2i

• fd0(s0) = fd1(s11)
• ∀1 ≤ i ≤ n− 1: fdi(s2i ) = fdi+1(s1i+1)

and there are terms r0, r1, . . . , rm ∈ T and natural numbers e0, e1, . . . , em such that

• r0 is not headed with ⊕, and for 1 ≤ i ≤ m the term ri is headed with ⊕ and has
exactly two atoms, that is ri = r1i ⊕ r2i
• fe0(r0) = fe1(r11)
• ∀1 ≤ i ≤ n− 1: fei(r2i ) = fei+1(r1i+1)

This is illustrated in Figure 5.7(b). In this case we conclude as in the first case.

(b) there are terms s1, . . . , sn ∈ T and natural numbers d1, . . . , dn such that

• for 1 ≤ i ≤ n the term si is headed with ⊕ and has exactly two atoms, that is
si = s1i ⊕ s2i

• ∀1 ≤ i ≤ n− 1: fdi(s2i ) = fdi+1(s1i+1)
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This is illustrated in Figure 5.7(c).
The di are the respective lengths of the chains of (F) rules. By Lemma 22, Corollary 25,
and the minimality of the proof we obtain that all the di are smaller than or equal to
hmax. 2

Corollary 25 Let A be a one-counter automaton and π : (q, cq)→? (r, rq) a path between the state
q with the counter cq ≥ 0 and the state r with the counter cr ≥ 0. Let n′ = max(n, d√cqe, d

√
cre).

There exists a path π′ : (q, cq)→? (r, cr) between the state q with the counter cq ≥ 0 and the state
r with the counter cr ≥ 0 such that the counter is always smaller than n′3 + n′2 + gmax.

The proof of this lemma is given in the appendix.

5.3.3 Locality in the General Case

In the general case we obtain a locality result for a notion of subterm which may yield an expo-
nential blow-up.

Lemma 26 Let M ⊆ T (Σ), t0 ∈ T (Σ), and t1, . . . , tn ∈ ST (M).
If (t0 ⊕ t1 ⊕ . . .⊕ tn) ↓ ∈ S⊕(M) then t0 ∈ S⊕(M).

Proof: By Property 6, t0 ∈ S⊕(M) if every atom of t0 is an element of ST (M). This is obvious
since every atom of t0 either appears in the final sum, or is canceled out by an atom of one of the
terms t1, . . . , tn. 2

Theorem 4 (Locality) If there is a proof P of T ` u then there is a S⊕-local proof of T ` u.

Proof: If there is a proof of T ` w then there also is a ⊕-lazy and minimal proof of T ` w. By
Corollary 20, all nodes except those that are obtained by rule (F) and which lead to a hypothesis
of rule (GX) by a sequence of successive applications of (F), are labeled by terms in ST (T,w) ⊆
S⊕(T,w).

In particular, all labels at the nodes obtained by (GX) are in S⊕(T,w).
We now transform this proof into an ⊕-eager proof by pushing all applications of (GX) as far

as possible to the leaves. Note that if a label in some node is in S⊕(T,w) then its predecessor by
rule (F) is also in S⊕(T,w).

Hence we obtain that the labels of all nodes are in S⊕(T,w) by applying inductively Lemma 26
on this ⊕-eager proof. 2

The construction is illustrated in the following example:

Example 16 (Transformation of a ⊕-lazy Proof into S⊕-Local Proof) Let T be the set of
terms T = {a⊕ d, b⊕ c, f(b)}. The following proof of T ` f2(a)⊕ f2(d)⊕ f(b)⊕ f(c) is ⊕-lazy:

a⊕ d ∈ T
(A)

T ` a⊕ d
(F)

T ` f(a)⊕ f(d)
(F)

T ` f2(a)⊕ f2(d)

b⊕ c ∈ T
(A)

T ` b⊕ c
(F)

T ` f(b)⊕ f(c)

f(b) ∈ T
(A)

T ` f(b)

(GX)
T ` f2(a)⊕ f2(d)⊕ f(c)

We transform it into a S⊕-local proof.
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a⊕ d ∈ T
(A)

T ` a⊕ d
(F)

T ` f(a)⊕ f(d)

b⊕ c ∈ T
(A)

T ` b⊕ c
(GX)

T ` f(a)⊕ f(d)⊕ b⊕ c
(F)

T ` f2(a)⊕ f2(d)⊕ f(b)⊕ f(c)

f(b) ∈ T
(A)

T ` f(b)

(GX)
T ` f2(a)⊕ f2(d)⊕ f(c)

5.4 Locality for the Equational Theory AGh

5.4.1 Some New Definitions
We have to adapt some definitions in the presence of the inverse operator I. First note that, in
the definition of subterm we can now also decompose an I operator. The definition 23 of syntactic
subterms now becomes:

Definition 30 (Syntactic Subterm S) We define the set of syntactic subterms S(t) of a term
t as the smallest set S(t) such that:

• t ∈ S(t)

• 〈u, v〉 ∈ S(t) then u, v ∈ S(t)

• {u}k ∈ S(t) then u, k ∈ S(t)

• if t ∈ S(t) then atoms(t) ⊆ S(t)

• f(u) ∈ S(t) then u ∈ S(t)

• I(u) ∈ S(t) then u ∈ S(t)

Definition 31 (I(T )) Let T be a set of terms, I(T ) is the set of the normal forms of all terms
of T where the operator I is applied once, that is

I(T ) := {I(t) ↓ | t ∈ T}

Example 17 If T = {I(a), b⊕ f(c), I(f(c))⊕ a} then I(T ) = {a, I(b)⊕ I(f(c)), f(c)⊕ I(a)}.

Definition 32 (STI
) STI

= ST (T ∪ I(T )) = ST (T ) ∪ ST (I(T ))

Definition 33 (SI⊕(T )) SI⊕(T ) = S⊕(STI
(T ))

Definition 34 (I-⊕-lazy Proof) Let P a proof of T ` w, P is a I-⊕-lazy proof if P is ⊕-lazy,
there is no (GX) immediately above (I) in P and there is no (I) immediately above (F) in P .

Definition 35 (I-Minimal-⊕-lazy Proof) P is a I-minimal-⊕-lazy proof of T ` w if only if P
is a I-⊕-lazy proof of T ` w which is minimal among all I-⊕-lazy proofs.

Notice that there are never two successive applications of (I) in a minimal proof. We obtain
again that

Lemma 27 If there is a proof of P ` w then there is also an I-⊕-lazy proof of P ` w.

Proof: To obtain a I-⊕-lazy proof we apply the proof transformation rules given in Figures 5.2,
5.1, 5.8 and 5.9.

2

Obviously, if there is a proof of T ` w then there is also an I-minimal-⊕-lazy proof of T ` w.
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T ` x
(I)

T ` I(x)
(F)

T ` f(I(x)) ↓ = I(f(x))

⇐⇒

T ` x
(F)

T ` f(x)
(I)

T ` I(f(x))

Figure 5.8: Equivalence between (I)-(F) and (F)-(I)

T ` x1 . . . T ` xn

(GX)
T ` x1 ⊕ . . .⊕ xn

(I)
T ` I(x1)⊕ . . .⊕ I(xn)

=⇒

T ` x1

(I)
T ` I(x1)

. . .

T ` xn

(I)
T ` I(xn)

(GX)
T ` I(x1)⊕ . . .⊕ I(xn)

Figure 5.9: Transformation of (GX)-(I) into (I)-(GX)

5.4.2 Some Lemmata and Properties in the AGh Case

The following lemma is similar to Lemma 17:

Lemma 28 Let P be a I-minimal-⊕-lazy proof of T ` w and let P ′ be a subproof P with root label
T ` N . If the last rule applied in P ′ is (GX) then N ∈ STI

(w) ∪ STI
(T ).

Proof: By induction on the size of the proof P . The base case is trivial. Let us assume that P
is of the form

P =


P1 =


...

T ` R1

. . . Pn =


...

T ` Rn

T ` w

Assume that all immediate subproofs Pi of P with root label T ` Ri verify the property i.e. if
there is the rule (GX) in Pi then the node resulting from this rule application and labeled by
T ` Ni satisfies that Ni ∈ STI

(Ri) ∪ STI
(T ).

We proceed by case analysis on the last rule applied in the proof P :

1. (P), (C), (F), (I): In this case any application of rule (GX) occurs in a subproof Pi. For
these rules STI

(Ri) ⊆ STI
(w) for all i and the result follows from the induction hypothesis.

2. (UL), (UR) or (D): In this case any application of rule (GX) occurs in a subproof Pi.
By Lemma 10 we have that STI

(Ri) ⊆ STI
(T ) for all i, we hence conclude by induction

hypothesis.

3. (GX): Let PN be a subproof of P with root label T ` N which terminates with an application
of the rule (GX).

(a) If PN is P itself then N = w and the claim holds.

(b) If PN is a proper subproof of P then PN is a subproof of one of the Pi’s.
By induction hypothesis we have that N ∈ STI

(T ) ∪ STI
(Ri).

If N ∈ STI
(T ) we are done, otherwise let P ′

i be the subproof of Pi such that P ′
i does

not terminate on (F) or (I), and Pi is obtained from P ′
i by a sequence of n applications

of (F) or (I).
Let T ` R′

i be the label of the root of P ′
i .

47



It is enough to show that R′
i ∈ STI

(T ∪ {w}) since the result then follows by induction
hypothesis.
By construction the last rule application of P ′

i cannot be (F), and since the proof P is
⊕-lazy it also cannot be (GX) or (I).
There are two possible cases: R′

i is headed with ⊕ or not. Note that R′
i is headed with

⊕ iff Ri is headed with ⊕.

i. If R′
i is headed with ⊕: the last rule application in P ′

i cannot be (P) or (C), and it
cannot be (GX) or (F) or (I) as seen above.
Hence, the last rule application of P ′

i must be one of (A), (D), (UL) or (UR).
By Lemma 10, we get R′

i ∈ STI
(T ).

ii. If R′
i is not headed with ⊕: Either Ri ∈ STI

(w) and we are done, or Ri 6∈ STI
(w)

and Ri is canceled out by another term in the (GX) rule.
Since P is minimal, Ri must be canceled out by some term Rj which is headed with
⊕ and which is obtained by a subproof Pj : otherwise the same term would appear
twice in the sum, and we could obtain a smaller proof just by omitting these two
terms, which contradicts the minimality of P .
Therefore we can write Rj = Ri ⊕Ai.
Since P is a ⊕-lazy proof the last rule of P ′

i cannot be (GX) nor (F) nor (I) by
definition.
If it was one of (UL), (UR), (D) or (A) then we are done by applying as before
Lemma 10.
If it is (P) or (C), we observe that R′

i is not headed by f and that #f (Ri) = n.
We now go up from Rj = Ri⊕Ai as long as possible along a sequence of (F) or (I)
rules: let P ′

j be the subproof of Pj such that P ′
j does not terminate on (F) or (I),

and such that Pj is obtained from P ′
j by a sequence of m applications of (F) or (I).

Since Ri ∈ atoms(Rj) we get m ≤ #f (Rj) ≤ #f (Ri) = n.
Let R′′

i ⊕ A′′
i be the label of the root of P ′

j . Since the proof is I-⊕-lazy proof and
by construction, the last rule of P ′

j cannot be (GX) or (F) or (I).
It also cannot be (P) nor (C) because R′′

i ⊕A′′
i is headed with ⊕.

Hence, the last rule of P ′
j must be one of (A), (UR), (UL), (D). By the Lemma 10

we have that STI
(R′′

i ⊕Ai) ⊆ STI
(T ).

It follows that R′
i ∈ STI

(R′′
i ⊕ A′′

i ) ⊆ STI
(T ) because m ≤ n, and we conclude by

applying the induction hypothesis. 2

The next lemma is similar to Lemma 18:

Lemma 29 Let P be a I-minimal-⊕-lazy proof of T ` w. For every subproof P ′ of P with root
label T ` N , and where the last rule application is (P) or (C), we have that N ∈ STI

(w)∪STI
(T ).

Proof: By induction on the size of the proof P . The base case is trivial. Let us assume that P
is of the form

P =


P1 =


...

T ` R1

. . . Pn =


...

T ` Rn

T ` w

Assume that all immediate subproofs Pi of P with root label T ` Ri verify the property i.e. if
there is the rule (P) or (C) in Pi then the node resulting from this rule application and labeled by
T ` Ni satisfies that Ni ∈ STI

(Ri) ∪ STI
(T ).

We proceed by case distinction on the last rule applied in the proof P :

1. (P), (C): Consider a subproof PN of P which terminates with an application of the rule (P)
or (C) and whose root is labeled by T ` N .
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(a) If PN is P itself then N = w and the claim obviously holds.
(b) If PN is a proper subproof of P then PN must be a subproof of one of the Pi, hence by

induction hypothesis we have that N ∈ STI
(T ) ∪ STI

(Ri) ⊆ ST (T ) ∪ STI
(w).

2. (F): In this case any application of rule (P) or (C) must be in one of the the subproofs
Pi. We conclude immediately by induction hypothesis and by the fact that for this rule
STI

(Ri) ⊆ STI
(u) for all i.

3. (UL) (UR) or (D): In this case any application of rule (P) or (C) must be in one of the
subproofs Pi. By Lemma 10 we have that STI

(Ri) ⊆ STI
(T ) for all i, we hence conclude by

induction hypothesis.

4. (GX): In this case any application of rule (P) or (C) must be in one of the the subproofs Pi,
hence by induction hypothesis we have that N ∈ STI

(T ) ∪ STI
(Ri). If N ∈ STI

(T ) we are
done, otherwise let P ′

i be the subproof of Pi such that P ′
i does not terminate on (F) or (I),

and Pi is obtained from P ′
i by a sequence of n applications of (F) or (I). Let the root of P ′

i

be labeled by T ` R′
i. By induction, it is enough to show that R′

i ∈ STI
(T ∪ {w}).

By construction the last rule application of P ′
i cannot be (F), and since the proof P is ⊕-lazy

it also cannot be (GX) or (I). There are two possible cases: R′
i is headed with ⊕ or not.

Note that R′
i is headed with ⊕ iff Ri is headed with ⊕.

(a) If R′
i is headed with ⊕: the last rule application in P ′

i cannot be (P) or (C), and it
cannot be (GX), (F) or (I) as seen above. Hence, the last rule application of P ′

i must
be one of (A), (D), (UL) or (UR). As a consequence, R′

i ∈ STI
(T ) by Lemma 10.

(b) If R′
i is not headed with ⊕: Either Ri ∈ STI

(w) and we are done, or Ri 6∈ STI
(w) and

Ri is canceled out by another term in the (GX) rule. By minimality of the proof P , Ri

must be canceled out by some term Rj , which is obtained by a subproof Pj , and which
is headed with ⊕ (otherwise we would have twice the same term in the sum, and we
could obtain a smaller proof just by omitting these two terms, which is contradiction
to the minimality of the proof). We can hence write Rj = Ri ⊕Ai.
Since we have a ⊕-lazy proof and by construction, the last rule of P ′

i cannot be (GX),
(F) or (I) and if it was one of (UL), (UR), (D) or (A) then we are done by applying as
before Lemma 10. It remains the case that the last rule of P ′

i is one of the rules (P)
or (C). In this case we observe that R′

i is not headed by f , and that by consequence
#f(Ri) = n.
We now mount up from Rj = Ri ⊕ Ai as long as possible over a sequence of (F) or
(I) rules : let P ′

j be the subproof of Pj such that P ′
j does not terminate on (F) or (I),

and such that Pj is obtained from P ′
j by a sequence of m applications of (F) or (I).

Obviously, m ≤ #f(Rj) ≤ #f(Ri) = n, since Ri ∈ atoms(Rj). Let the root of P ′
j be

labeled by R′′
i ⊕A′′

i .
Since we have a ⊕-lazy proof and by construction, the last rule of P ′

j cannot be (GX),
(F) or (I). It also cannot be (P) or (C) because R′′

i ⊕A′′
i is headed with ⊕. Finally, if it is

one of (A), (UR), (UL), (D) then by the Lemma 10 we have that STI
(R′′

i ⊕Ai) ⊆ STI
(T ).

In this case, R′
i ∈ STI

(R′′
i ⊕A′′

i ) ⊆ STI
(T ) because m ≤ n, and we conclude by applying

the induction hypothesis. 2

The next lemma is similar to Lemma 19.

Lemma 30 Let P be an I-minimal-⊕-lazy proof of T ` w and consider a subproof P ′ with root
label T ` N , such that the last rule of P ′ is (F) or (I). If all nodes from the root of P ′ to the root
of P are (F) or (I), or if the first successor not labeled by (F) or (I) of the root of P ′ in P is
labeled by a rule different from (GX), then N ∈ STI

(T ∪ {w}).

This lemma states that (F) or (I) nodes are harmless as long as they do not yield via a sequence
of successive (F) or (I) nodes to a hypothesis of a (GX) rule.
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Proof: If all nodes from the root of P ′ to the root of P are (F) or (I), then obviously by induction
N ∈ STI

(w). Otherwise, if the first successor of the root of P ′ in P which is not labeled by (F) is
labeled by a rule (Z) different from (GX) we consider the different possibilities for (Z):

• (Z) cannot be (A)

• (Z) cannot be (UL), (UR), (D) since the hypothesis to (Z) is headed by f .

• (Z) can only be (P) or (C), and in this case we conclude by Lemma 29. 2

The following corollary summarizes the lemmata of this subsection analogously to Corollary 20:

Corollary 31 Let P be a I-minimal-⊕-lazy proof of T ` w. All nodes of P are labeled by terms
in STI

(T,w) except the nodes which are constructed by (F) or (I) and which yield by a sequence
of (F) or (I) steps to a hypothesis of a (GX) rule.

5.4.3 Locality in the Binary Case

In the binary case, that is when all terms in ST (T,w) have at most two atoms, we can in fact find
an upper bound for the number of applications of (F). The key to this upper bound is a technical
lemma about counter automata which is proven in the appendix. The construction is similar to
the one used in the binary case for the equational theory ACUNh.

Definition 36 Let T be a set of terms such that every term in T has at most two atoms. The
automaton associated with T , abbreviated AT , is a one-counter automaton without input defined
as follows:

We partition T = T1 ] T2 where T1 is the set of terms not headed with ⊕, and T2 is the set of
terms headed with ⊕.

• The set of states QT of AT is defined as

QT = PT ∪RT ∪ {init}
PT = {p′, I(p′) | p ∈ Stripf (T1)}
RT = {r, I(r′) | r ∈ Stripf (T1) ∪ Stripf (atoms(T2))}

• init is the initial state of AT .

• The set of transitions is:

From To Condition Action
∀t ∈ T1 : init (Stripf (t))′ c ≥ 0 c := c
∀t ∈ T1 : (Stripf (t))′ (Stripf (t))′ c ≥ 0 c := c+ 1
∀t ∈ T1 : (Stripf (t))′ (I(Stripf (t)))′ c ≥ 0 c := c
∀t ∈ T1 : (Stripf (t))′ Stripf (t) c ≥ #f (t) c := c
∀t ∈ T1 : (I(Stripf (t)))′ I(Stripf (t)) c ≥ #f (t) c := c
∀t⊕ s ∈ T2 : I(Stripf (t)) Stripf (s) c ≥ #f (t) c := c−#f (t) + #f (s)

In the definition of the automaton, the primed states in PT are only intermediate states which do
not correspond to a proof; only the states in RT correspond to proofs in a sense to be made precise
below. Note that in the last line of the above transition table the statement “t⊕ s ∈ T2” is to be
understood modulo AC, such that we obtain from a binary clause a back and a forth transition,
as already explained in the informal definition of the automaton given in Section 5.3.2.

Example 18 The automaton AT for T = {a⊕ f2(b), a} is as follows, where I denotes the initial
state:
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I a

Ia

a’

Ia’

Ib

b

c ≥ 2,
c := c− 2

c ≥ 0,
c := c+ 2

c ≥ 2,
c := c− 2

c ≥ 0,
c := c+ 2

c ≥ 0,
c := c+ 0

c ≥ 0,
c := c

c ≥ 0,
c := c

c ≥ 0,
c := c

c := c+ 1

Lemma 32 Let T be a set of binary terms. For all terms t0, t1, . . . , tn ∈ Stripf (atoms(T )) ∪
I(Stripf (atoms(T ))) and all natural numbers c0, c1, . . . , cn we have that

AT |= (init, 0)→ (t′0, 0)→ . . .→ (t′0, c0)→ (t0, c0)→ (t1, c1)→ . . .→ (tn, cn)

iff there are terms s0, s1, . . . , sn ∈ T ∪ I(T ) and natural numbers d0, d1, . . . , dn such that:

1. s0 is not headed with ⊕, and for 1 ≤ i ≤ n the term si is headed with ⊕ and has exactly two
atoms, that is si = s1i ⊕ s2i

2. fd0(s0) = fc0(t0)

3. ∀1 ≤ i ≤ n : fdi(s1i ) = I(fci−1(ti−1))

4. ∀1 ≤ i ≤ n: fdi(s2i ) = fci(ti)

As a consequence, we obtain that

n⊕
i=0

fdi(si) ↓ = fdn(s2n) = fcn(tn)

Lemma 33 Let T be a set of binary terms. For all terms t0, . . . , tn ∈ Stripf (atoms(T )) ∪
I(Stripf (atoms(T ))) and all natural numbers c0, . . . , cn we have that

AT |= (t1, c1)→ . . .→ (tn, cn)

iff there are terms s1, . . . , sn ∈ T ∪ I(T ) and natural numbers d0, d1, . . . , dn such that:

1. for 1 ≤ i ≤ n the term si is headed with ⊕ and has exactly two atoms, that is si = s1i ⊕ s2i

2. ∀1 ≤ i ≤ n : fdi(s1i ) = I(fci−1(ti−1))

3. ∀1 ≤ i ≤ n : fdi(s2i ) = fci(ti)

As a consequence, we obtain that

n⊕
i=1

fdi(si) ↓ = fd1(s11)⊕ fdn(s2n) = fc0(t0)⊕ fcn(tn)

We can now give the definition of hmax: Given T and w, we define hmax = n′2 + n′3 + gmax
where:
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n′ = |AST (T,w)| ∗ cmax

cmax = maxdiff(ST (T,w))
maxdiff(T ) = max{|#f (u)−#f (v)| | u⊕ v ∈ T}

gmax = max{#f (t) | t ∈ ST (T,w)}

Lemma 34 Let be P an I-minimal-⊕-lazy proof of T ` w. All nodes of P are in Sf (T,w, hmax).

Proof: Let be P an I-minimal-⊕-lazy proof of T ` w. First note that, by Corollary 31, all nodes
except those that are obtained by rule (F) and which yield by a sequence of successive applications
of (F) or (I) a hypothesis of rule (GX), are labeled by terms in ST (T,w) ⊆ Sf (T,w, hmax).

Let P ′ be a maximal subtree of the proof P such that its root is obtained by rule (GX) and all
non-root nodes are obtained by rule (F) or (I). Let the root of P ′ be labeled with T ` u. Again by
Corollary 20, both u and the labels at all the leaves of P ′ are in ST (T,w). There are two cases:

1. u is not headed with ⊕.
By minimality of the proof P , there is no non-empty subset of the hypotheses to the rule
(GX) at the root of P ′ for which their combination by ⊕ yields 0. Hence, the leaves of P ′ are
marked with exactly one term s which is not headed with ⊕, and a set of terms s1, . . . , sn

which are headed with ⊕ and have exactly two atoms.
In this case, there are terms s0, s1, . . . , sn ∈ T and natural numbers d0, d1, . . . , dn such that

• s0 is not headed with ⊕, and for 1 ≤ i ≤ n the term si is headed with ⊕ and has exactly
two atoms, that is si = s1i ⊕ s2i
• fd0(s0) = fd1(s11)
• ∀1 ≤ i ≤ n− 1: fdi(s2i ) = fdi+1(s1i+1)

The di are the respective lengths of the chains of (F) rules. By Lemma 32, Corollary 25,
and the minimality of the proof we obtain that all the di are smaller than or equal to hmax.

2. u is headed with ⊕, that is u = u1 ⊕ u2.
By minimality of the proof P , there is no non-empty subset of the hypotheses to the rule
(GX) at the root of P ′ for which their combination by ⊕ yields 0. There are two possibilities:

(a) there are terms s0, s1, . . . , sn ∈ T ∪ I(T ) and natural numbers d0, d1, . . . , dn such that
• s0 is not headed with ⊕, and for 1 ≤ i ≤ n the term si is headed with ⊕ and has

exactly two atoms, that is si = s1i ⊕ s2i
• fd0(s0) = fd1(s11)
• ∀1 ≤ i ≤ n− 1: fdi(s2i ) = fdi+1(s1i+1)

and there are terms r0, r1, . . . , rm ∈ T and natural numbers e0, e1, . . . , em such that
• r0 is not headed with ⊕, and for 1 ≤ i ≤ m the term ri is headed with ⊕ and has

exactly two atoms, that is ri = r1i ⊕ r2i
• fe0(r0) = fe1(r11)
• ∀1 ≤ i ≤ n− 1: fei(r2i ) = fei+1(r1i+1)

In this case we conclude as in the first case.
(b) there are terms s1, . . . , sn ∈ T ∪ I(T ) and natural numbers d1, . . . , dn such that

• for 1 ≤ i ≤ n the term si is headed with ⊕ and has exactly two atoms, that is
si = s1i ⊕ s2i

• ∀1 ≤ i ≤ n− 1: fdi(s2i ) = fdi+1(s1i+1)
The di are the respective lengths of the chains of (F) rules. By Lemma 32, Corollary 25,
and the minimality of the proof we obtain that all the di are smaller than or equal to
hmax. 2
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5.4.4 Locality in the General Case
In the general case we obtain a locality result for a notation of subterm which is of exponential
size.

Lemma 35 Let M ⊆ T (Σ), t0 ∈ T (Σ), and t1, . . . , tn ∈ STI
(M).

If (t0 ⊕ t1 ⊕ . . .⊕ tn) ↓ ∈ SI⊕(M) then t0 ∈ SI⊕(M).

Proof: In order to show that t0 ∈ S⊕(M) it is by Property 6 sufficient to show that every atom
of t0 is an element of STI

(M), which is obvious since every atom of t0 either appears in the final
sum, or is canceled out by an atom of one of the terms t1, . . . , tn. 2

Theorem 5 (Locality) If there is a proof P of T ` u then there is a SI⊕-local proof of T ` u.

Proof: If there is a proof of T ` w then there also is an I-minimal-⊕-lazy proof of T ` w. Since
the proof has a minimal number of nodes among all I-⊕-lazy proofs of T ` w there cannot be two
(I)-steps which are connected by a sequence of (F)-steps (otherwise we could obtain a smaller and
still I-⊕-lazy proof by omitting the two (I)-steps). We can now commute the (I) steps with the
(F) steps according to Figure 5.8 and push the (I) steps as far as possible towards the leaves. The
resulting proof is still I-minimal-⊕-lazy .

By Corollary 31, all nodes except those that are obtained by rule (F) and which yield by
a sequence of successive applications of (F) a hypothesis of rule (GX), are labeled by terms in
ST (T,w) ⊆ S⊕(T,w). In particular all labels at the nodes obtained by (GX) are in SI⊕(T,w).
We now transform this proof into an ⊕-eager proof by pushing all application of (GX) as far as
possible to the leaves. Note that if a label in some node is in SI⊕(T,w) then its predecessor by
rule (F) is also in SI⊕(T,w). Hence we obtain on this ⊕-eager proof, by applying inductively
Lemma 35, that the labels of all nodes are in SI⊕(T,w). 2
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Chapter 6

Locality in Case of a Homomorphic
Encryption Operation

In this section we generalize the problem and replace the homomorphism symbol f by the encryp-
tion operation { }k. More precisely, we replace the law of homomorphism for one function symbol
f by the new equational axiom

{x⊕ y}z = {x}z ⊕ {y}z

In some sense we now get an infinite family of homomorphism functions, one for each possible
key. Note, however, that the encryption key is a first-class value, and that now the homomorphic
operation can also be decomposed by virtue of the (D) rule.

We have to push up the application of the rule (GX) over the rule (D). This transformation is
possible as it is shown by Figure 6.2

The Lemmata 10 and 9 are easily adapted to the case where the homomorphism symbol f is
{ }k.

6.1 Locality in the ACh Case

Lemma 12 and Lemma 11 still hold in this case.

Lemma 36 Let P be a ⊕-lazy simple proof of T ` w and let P ′ be a subproof P ′ of P with root
label T ` N . If the last rule applied in P ′ is (GX) then N ∈ ST (w) ∪ ST (T ).

...
(X)

T ` {x}k
(I)

T ` I({x}k)

k ∈ T
(A)

T ` k
(D)

T ` I(x)

⇐⇒

...
(X)

T ` {x}k

k ∈ T
(A)

T ` k
(D)

T ` x
(I)

T ` I(x)

Figure 6.1: Commutation of (D) and (I)
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T ` {x1}k T ` k
(D)

T ` x1

. . .

T ` {xn}k T ` k
(D)

T ` xn

(GX)
T ` x1 ⊕ . . .⊕ xn

⇓

T ` {x1}k . . . T ` {xn}k
(GX)

T ` {x1}k ⊕ . . .⊕ {xn}k T ` k
(D)

T ` x1 ⊕ . . .⊕ xn

Figure 6.2: Transformation of (D)-(GX) into (GX)-(D) in case that all hypotheses of (GX) are
obtained by (D) with the same key

Proof: By induction on the size of the proof P . The base case is trivial. Let us assume that P
is of the form

P =


P1 =


...

T ` R1

. . . Pn =


...

T ` Rn

T ` w
Assume that all immediate subproofs Pi of P with root label T ` Ri satisfy the property i.e.
if there is the rule (GX) in Pi then the node resulting from this rule application and labeled by
T ` Ni satisfies that Ni ∈ ST (Ri) ∪ ST (T ).

We proceed by case analysis on the last rule applied in the proof P :

1. (P), (C): In this case any application of rule (GX) must be in one of the the subproofs
Pi. We conclude immediately by induction hypothesis and by the fact that for these rules
ST (Ri) ⊆ ST (w) for all i.

2. (UL), (UR) or (D): In this case any application of rule (GX) must be in one of the subproofs
Pi. By Lemma 10 we have that ST (Ri) ⊆ ST (T ) for all i, we hence conclude by induction
hypothesis.

3. (GX): Consider a subproof PN of P which terminates with an application of the rule (GX)
and whose root is labeled by T ` N .

(a) If PN is P itself then N = w and the claim obviously holds.
(b) If PN is a proper subproof of P then PN must be a subproof of one of the Pi, hence by

induction hypothesis we have that N ∈ ST (T ) ∪ ST (Ri).
If N ∈ ST (T ) we are done, otherwise let P ′

i be the subproof of Pi such that P ′
i does

not terminate on (C), and Pi is obtained from P ′
i by a sequence of applications of (C).

Let T ` R′
i be the label of the root of P ′

i . It is enough to show that R′
i ∈ ST (T ∪ {w})

since the result then follows by induction hypothesis.
By construction the last rule application of P ′

i cannot be (C), and since the proof P is
⊕-lazy it also cannot be (GX).
There are two possible cases: R′

i is headed with ⊕ or not.
i. If Ri is headed with ⊕: the last rule application in P ′

i cannot be (P), and it cannot
be (GX) or (C) as seen above. Hence, the last rule application of P ′

i must be one
of (A), (D), (UL) or (UR). By Lemma 10 we get R′

i ∈ ST (T ).
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ii. If R′
i is not headed with ⊕ then Ri is not headed by ⊕ either, and we conclude by

Lemma 12 that N ∈ ST (T ∪ {w}). 2

The proof of the Lemma 14 for the case (P) and the proof of the Lemma 15 can be adapted
to the general setting of this chapter following the same way than for the Lemma 36.

Hence, we obtain the locality result.

6.2 Locality in the ACUNh Case

6.2.1 Properties of ⊕-lazy Proofs in the ACUNh Case

Corollary 37 Let P be a ⊕-lazy proof of T ` w. All the keys used in the proof P are in ST (T,W ).

Proof: It is an immediate consequence of Corollary 20 because in a ⊕-lazy proof all nodes are
in ST (T,w) except those which are produced by the rule (F) and ended on (GX), so all the keys
used in the proof P are in ST (T,W ). 2

The consequence of this lemma is that in a minimal and ⊕-lazy proof, only a finite number of
different encryption keys is used. We can hence generalize the automata technique of Section 5.3.2
from a one-counter automaton to a pushdown automaton, where now every encryption key cor-
responds to a stack symbol. As a consequence of the above corollary we only get a finite stack
alphabet.

Using the same technique than in the previous section, the Lemmata 17 and 18 in the case of
(P) can be adapted to the more general setting of this chapter.. Lemma 19 can be easily adapted
in the ACUNh case. We deduce again Corollary 20.

6.2.2 Locality in the Binary Case

In the binary case, that is when all terms in ST (T,w) have at most two atoms, we can in fact find
an upper bound for the number of applications of (C). The key to this upper bound is a technical
lemma about push down automata which is proven in the appendix.

In the binary case we associate to the set ST (T,w) a push down automaton. The states of
the automaton are atoms of ST (T,w) without top-level f -symbols, and the stack represents the
number of applications of C to a term. We first give an informal explanation of the construction.
The formal definition of the automaton is the same that in Definition 29 replacing one-counter
automaton by push down automata. We obtain all the lemmata, in particular:

Lemma 38 Let be P a minimal-⊕-lazy proof of T ` w. All nodes of P are in Sf (T,w, hmax).

6.2.3 Locality in the General Case

In the general case we obtain a locality result for a notation of subterm which is of exponential
size.

We have to define a new notion of a ⊕-eager proof, because now there are many homomorphic
function symbols.

Definition 37 (C-⊕-eager Proof) Let P be a proof of T ` w, P is a C-⊕-eager proof if P is
flat and if for every k there is at most one (F) with encryption key k immediately above (GX) in
P .

Example 19 (⊕-lazy Proof Transforms into a C-⊕-eager Proof) Here is a ⊕-lazy proof
of T ` w ⊕ {v}k where T = {u, v, w ⊕ {u}k, k}.
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u ∈ T
(A)

T ` u

k ∈ T
(A)

T ` k
(C)

T ` {u}k

v ∈ T
(A)

T ` u

k ∈ T
(A)

T ` k
(C)

T ` {v}k

w ⊕ {u}k ∈ T
(A)

T ` w ⊕ {u}k
(GX)

T ` w ⊕ {v}k
We transform it into a C-⊕-eager proof

u ∈ T
(A)

T ` u

v ∈ T
(A)

T ` v
(GX)

T ` u⊕ v

k ∈ T
(A)

T ` k
(C)

T ` {u⊕ v}k = {u}k ⊕ {v}k

w ⊕ {u}k ∈ T
(A)

T ` w ⊕ {u}k

(GX)
T ` w ⊕ {v}k

We have to generalize Lemma 26 in order to cope with an infinite number of homomorphic
functions. This yields

Lemma 39 Let M ⊆ T (Σ), t01 , . . . t0k
∈ T (Σ), and t1, . . . , tn ∈ ST (M) and for all i, j if i 6= j

then t0i
6= t0j

. If (t01 ⊕ . . .⊕ t0k
⊕ t1 ⊕ . . .⊕ tn) ↓ ∈ S⊕(M) then ∀i ∈ {1, 2, . . . , k}, t0i

∈ S⊕(M).

Proof: In order to show that ∀i ∈ {1, 2, . . . , k}, t0i
∈ S⊕(M) it is by Property 6 sufficient to

show that every atom of t0i
is an element of ST (M), which is obvious since every atom of t0i

either
appears in the final sum, or is canceled out by an atom of one of the terms t1, . . . , tn. 2

Theorem 6 (Locality) If there is a proof P of T ` u then there is a S⊕-local proof of T ` u.

Proof: If there is a proof of T ` w then there also is a minimal-⊕-lazy proof of T ` w.
By Corollary 20, all nodes except those that are obtained by rule (C) and which yield by a
sequence of successive applications of (C) a hypothesis of rule (GX), are labeled by terms in
ST (T,w) ⊆ S⊕(T,w). In particular, all labels at the nodes obtained by (GX) are in S⊕(T,w).
We now transform this proof into an C-⊕-eager proof by pushing all application of (GX) as far
as possible to the leaves. Note that if a label in some node is in S⊕(T,w) then its predecessor
by rule (C) is also in S⊕(T,w). Hence we obtain on this C-⊕-eager proof (there is at most one
application of (C) with the same key, hence we get that for all i, j if i 6= j then t0i 6= t0j ), by
applying inductively Lemma 39, that the labels of all nodes are in S⊕(T,w). 2

6.3 Locality in the Case of Abelian Groups

6.3.1 Some New Definitions

The rule (I) and (C) commute, because (F) and (I) commute. However (I) and (D) commute like
it is shown in Figure 6.1.

We use all definitions of the previous section.

6.3.2 Some Lemmata and Properties in the AGh Case

Lemmata 28, 29, 19 still hold, and we obtain an analogon of Corollary 31.

6.3.3 Locality in the Binary Case

The same construction is still available considering now a push down automaton. Hence, we obtain
the same result as in the AGh case (lemmata about push down automata are given in Appendix).
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6.3.4 Locality in the General Case
In the general case we obtain a locality result for a notation of subterm which is of exponential
size.

Lemma 40 Let M ⊆ T (Σ), t01 , . . . t0k
∈ T (Σ), and t1, . . . , tn ∈ STI

(M) and for all i, j if i 6= j
then t0i

6= t0j
. If (t01 ⊕ . . .⊕ t0k

⊕ t1⊕ . . .⊕ tn) ↓ ∈ SI⊕(M) then ∀i ∈ {1, 2, . . . , k}, t0i
∈ SI⊕(M).

Proof: In order to show that ∀i ∈ {1, 2, . . . , k}, t0i
∈ S⊕(M) it is by Property 6 sufficient to

show that every atom of t0i
is an element of STI

(M), which is obvious since every atom of t0i

either appears in the final sum, or is canceled out by an atom of one of the terms t1, . . . , tn. 2

Theorem 7 (Locality) If there is a proof P of T ` u then there is a SI⊕-local proof of T ` u.

Proof: If there is a proof of T ` w then there also is a I-minimal-⊕-lazy proof of T ` w. Since
the proof has a minimal number of nodes among all I-⊕-lazy proofs of T ` w there cannot be two
(I)-steps which are connected by a sequence of (C)-steps (otherwise we could obtain a smaller and
still I-⊕-lazy proof by omitting the two (I)-steps). We can now commute the (I) steps with the
(C) steps like in Figure 5.8 and push the (I) steps as far as towards the leaves. The resulting proof
is still I-minimal-⊕-lazy .

By Corollary 20, all nodes except those that are obtained by rule (C) and which yield by
a sequence of successive applications of (C) a hypothesis of rule (GX), are labeled by terms in
ST (T,w) ⊆ S⊕(T,w). In particular all labels at the nodes obtained by (GX) are in SI⊕(T,w).
We now transform this proof into an ⊕-eager proof by pushing all application of (GX) as far as
possible to the leaves. Note that if a label in some node is in SI⊕(T,w) then its predecessor by
rule (C) is also in SI⊕(T,w). Hence we obtain on this ⊕-eager proof, by applying inductively
Lemma 40, that the labels of all nodes are in SI⊕(T,w). 2
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Chapter 7

Conclusion

A summary of the results obtained on the complexity of the intruder deduction system modulo
AC-like equational theories with homomorphism is given in the following table. The results for
homomorphism only (without AC axioms) have been shown in a different paper [CLT03] and are
here cited only for completeness.

Intruder deduction problem ground case
Binary case General case

Homomorphism PTIME [CLT03]
AC and

Homomorphism
PTIME NP-Complete

ACUN and
Homomorphism

PTIME EXPTIME

Abelian Groups
and

Homomorphism

PTIME EXPTIME

The reason for the high complexity in the general case is a different one for the different
equational theories considered, as shown in the following table:-

Complexity in general case
Computation of

sub-terms
One step

deductibility
General deductibility

Homomorphism PTIME PTIME PTIME
AC and

Homomorphism
PTIME NP-Complete NP-Complete

ACUN and
Homomorphism

EXPTIME PTIME EXPTIME

Abelian Groups
and

Homomorphism

EXPTIME PTIME EXPTIME

As future work, we plan to investigate the case of an active intruder. We can yet observe that
it has been shown in [CDL04] that decidability of unification modulo an equational theory E is
a necessary condition for the decidability of the security of a protocol for a bounded number of
sessions and in presence of this equational theory E. Since unification modulo AC plus homomor-
phism is known undecidable [Nar96], the security against active attackers is undecidable at least
for this equational theory as well.
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Chapter 8

Appendix

8.1 One-Counter Automata

In this report we consider one-counter automata, which are non-deterministic finite-state automata
operating on a single counter variable which takes values into N. We denote by |A| the number of
states of the automaton A.

Definition 38 (One-Counter Automata) A one-counter automaton A is a tuple (Q,∆, q0)
where:

• Q is a finite set of control states.

• q0 ∈ Q is a distinguished initial control state.

• ∆ ⊆fin Q×Q× N× Z is a finite transition relation.

A configuration of a one-counter automaton is a pair (q, c) composed of a state q ∈ Q and
of a natural number c which represents the current value of the counter variable. The transition
relation between configurations is defined by (q1, c1) → (q2, c2) if there is some (q1, q2,m, c) ∈ ∆
such that c1 ≥ m and c2 = c1 + c. The reflexive transitive closure of → is denoted by →?. A
sequence of transitions leading from a configuration (q1, c1) to a configuration (q2, c2) is called a
path. We denote by π : (q1, c1) →? (q2, c2) the fact that π is a path from (q1, c1) to (q2, c2). A
path π′ is a subpath of π iff π = π1π

′π2.
Given a one-counter automaton A = (Q,∆, q0) we define:

• cmax = max{c | ∃q1, q2,m : (q1, q2,m, c) ∈ ∆}

• gmax = max{m | ∃q1, q2, c : (q1, q2,m, c) ∈ ∆}

• n = |A| ∗ cmax

Figure 8.1: Illustration of Lemma 42

Lemma 41 Let A be a one-counter automaton and let π : (q, c)→? (q′, c+ n) be a path between
the configuration (q, c) and the configuration (q′, c+ n). Then there exists a subpath π′ of π such
that π′ : (q′′, c′′) →? (q′′, c′′ + d) where q′′ is some state and c′′, d are natural numbers such that
0 < d ≤ n.
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Proof: We have a path between the state q with the counter c and the state q′ with the counter
q + n, where n = |A| ∗ cmax. A transition increments or decrements the counter by at most cmax.
Therefore there is a sequence (q, c) = (q1, c1)→? (q2, c2)→? . . .→? (qp, cp) = (q′, c+n) such that
c1 < c2 < . . . < cp, ci − ci−1 ≤ cmax for i = 2, . . . , p and p > |A|. Therefore there exists a state q′′
that appears twice in the sequence yielding a subpath π′ : (q′′, c′′)→? (q′′, c′′ + d) with 0 < d ≤ n.

2

Lemma 42 Let A be a one-counter automaton and let π be a path such that π : (q, 0) →? (r, 0).
Then there exists a path π′ : (q, 0)→? (r, 0) such that for any configuration (s,m) in π′ the value
m′ of the counter is smaller than n3 + n2 + gmax.

Proof:
Assume that π : (q, 0) →? (r, 0) is a path and that there exists a part of this path where the

counter is greater than or equal to n3 + n2 + gmax. We may assume that nowhere in this path the
counter has the value zero, otherwise we cut this path into two and analyze each part separately.

We aim at constructing a new path from π where the counter is always smaller than n3 +n2 +
gmax and with the same starting and ending configurations.

A peak is a subpath of π where the value of the counter is greater or equal to n3 + n2 + gmax
and the idea of the proof is to decrease a peak by removing parts of the path.

If between two peaks there is a “valley”, i.e. the part between two peaks, which has a counter
smaller than n2 + gmax, then we divide the problem into two parts: the first part between q and
the lowest point of the valley, the second between the lowest point of the valley and the rest. We
divide thus the path into several parts on which we can now perform some cuts.

We are going to delete some parts of the path. Everywhere on each deleted part the counter
is between n2 + gmax and n2 + n3 + gmax. We distinguish the “ascent”, i.e. the subpath between
the last point where the counter is smaller than n2 + gmax and the peak, and the descent which is
the subpath from the peak to the first point where the counter is smaller than n2 + gmax.

We partition the ascent into slices where on each slice the counter increases by n; analogously
we partition the descent into slices where on each slice the counter decreases by n, we can see this
partition on Figure 8.1. There are at least n2 slices between n2 + gmax and n2 + n3 + gmax. Using
Lemma 41, we find in each slice a value d in the ascent and a value d′ in the descent. Since there
are n possible values for d, n possible values ford d′ and n2 slices there is one value for d which
occurs at least n times, and one value for d′ which occurs at least n times.

We remove d′ ≤ n parts of size d from the ascent and d ≤ n parts of size d′ from the descent.
Since we cut only parts above n2 +gmax, there are at most n “cuts” and each cut reduces the value
of the counter by at most n, the counter cannot fall below 0, and all conditions remain valid. We
have the same initial and final state and the height of the peak has decreased. By repeating this
process we get a path such that the counter is always smaller than n3 + n2 + gmax. 2

Corollary 43 Let A be a one-counter automaton and π : (q, cq)→? (r, cr) a path between the state
q with the counter cq ≥ 0 and the state r with the counter cr ≥ 0. Let n′ = max(n, d√cqe, d

√
cre).

There exists a path π′ : (q, cq)→? (r, cr) between the state q with the counter cq ≥ 0 and the state
r with the counter cr ≥ 0 such that the counter is always smaller than n′3 + n′2 + gmax.

Proof: In the proof of Lemma 42 we have used the fact that the counter is initially and finally
0 only to obtain that the start and the end of the path are in a valley, that is below n2 + gmax.
Hence, we can reuse exactly the same proof where we have exchanged n by n′. 2

8.2 Pushdown Automata
One-counter automata are a special case of pushdown automata when the stack vocabulary con-
sists of a single letter (plus the special symbol denoting the bottom of the stack). This leads us to
generalizing the previous lemma to pushdown automata. First, we recall the definitions of push-
down automata, then we prove the corresponding lemmata. Several definitions can be given for
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pushdown automata. Since we use pushdown automata as computing devices instead of accepting
devices, we use the following definition.

Definition 39 ( Pushdown Automaton ) A pushdown automaton M is defined as a system
(Q,Γ,∆, q0, Z0) where:

• Q is a finite set of states, including q0.

• Γ is a finite alphabet called the stack alphabet including Z0.

• ∆ ⊆fin Q×Q× Γ? × Γ? is a transition relation.

• q0 is the initial state, an element of Q.

• Z0 is the start symbol of the stack, an element of Γ.

The additional power of pushdown automata (with respect to finite automata) comes from
the stack which can be used as an infinite memory. A configuration is a pair (q, Z0w) with
q ∈ Q,w ∈ (Γ − {Z0})∗. The initial configuration is (q0, Z0). The transition relation is extended
to configurations by setting (q, w)→ (q′, w′) iff w = mv,w′ = cv′ and (q, q′,m, c) ∈ ∆. As in the
case of one-counter automata, we denote by →? the reflexive transitive closure of → and a path
π between two configurations is a sequence of transitions that allows to go from the first one to
the second one.

Given a one-counter automaton A = (Q,Γ,∆, q0, Z0) we define:

• cmax = max{|c| | ∃q1, q2,m : (q1, q2,m, c) ∈ ∆}

• gmax = max{|g| | ∃q1, q2, c : (q1, q2, g, c) ∈ ∆}

• n = |A| ∗ cmax

Lemma 44 Let A be a pushdown automaton and let π : (q, w)→? (q′, w′ = wu) be a path between
the configuration (q, w) and the configuration (q′, w′) such that |w′| = |w| + n. Then there exists
a subpath π′ of of π such that π′ : (q′′, w′′)→? (q′′, w′′t) with 0 < |t| ≤ n.

Proof: We have a path between the state q with word w into the stack and the state q′ with
the word w′ = wt into the stack, where |t| = n which is globally increasing.

We can push and pop by at most cmax symbols into the stack, so there is a sequence of at least
n + 1 configurations (q0, w0) →? . . . →? (qn, wn) such that the word wi is a prefix of the word
wi+1 for i = 0, . . . , n− 1, |w| ≤ |w0|, and wn is a prefix of w′.

Therefore there is a state q′′ that appears twice in the sequence.
One occurrence is in a configuration (q′′, w′′ = wi), where w′′ is a prefix of w′.
Another occurrence is in a configuration (q′′, w′′t = wj) (j > i) such that |t| = d, 0 < d ≤ n,

and w′′t is prefix a of w′. 2

Lemma 45 Let A be a pushdown automaton and π : (s, ε) →? (s′, ε) a path between the state s
with the word ε into the stack and the state s′ with the word ε into the stack. There exists a path
π′ : (s, ε) →? (s′, ε) between the state s with the word ε into the stack and the state s′ with the
word ε into the stack such that the size of the stack is always smaller than n3 + n2 + gmax.

Proof:
Assume that π : (s, ε)→? (s′, ε) is a path of A a pushdown automaton, with n states, and that

there exists a part of this path where the size of the stack is greater than n3 + n2 + gmax. We
assume that nowhere in this path the stack has the value ε, otherwise we cut this path into two
and analyze each part separately. We are going to construct a new path from π where the size of
the stack is always smaller than n3 + n2 + gmax. We use the same method that in the proof of
Lemma 42 using now Lemma 44.
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To this end, we try to lower a peak by removing parts of the path. We first find the peaks i.e.
the parts of the path where the size of the stack is greater or equal to n3 + n2 + gmax. If between
two peaks there is a “valley”, i.e. the part between two peaks, which has a size of the stack smaller
than n2 +gmax, then we divide the problem into two parts: the first part between q and the lowest
point of the valley, the second between the lowest point of the valley and the rest. We divide thus
the path into several parts on which we can now perform some cuts.

We are going to delete some parts of the path. Everywhere on each deleted part the size of
the stack is between n2 + gmax and n2 + n3 + gmax. We distinguish the “ascent”, i.e. the subpath
between the last point where the size of the stack is smaller than n2 + gmax and the peak, and the
descent which is the subpath from the peak to the first point where the size of the stack is smaller
than n2 + gmax.

We partition the ascent into slices where on each slice the size of the stack increases by n;
analogously we partition the descent into slices where on each slice the size of the stack decreases
by n, we can see this partition on Figure 8.1. There are at least n2 slices between n2 + gmax and
n2 + n3 + gmax. Using Lemma 44, we find in each slice a value d in the ascent and a value d′ in
the descent. Since there are n possible values for d, n possible values ford d′ and n2 slices there is
one value for d which occurs at least n times, and one value for d′ which occurs at least n times.

We remove d′ ≤ n parts of size d from the ascent and d ≤ n parts of size d′ from the descent.
Since we cut only parts above n2 +gmax, there are at most n “cuts” and each cut reduces the value
of the counter by at most n, the size of the stack cannot fall below ε, and all conditions remain
valid. We have the same initial and final state and the height of the peak has decreased. By
repeating this process we get a path such that the counter is always smaller than n3 + n2 + gmax.

2

Corollary 46 Let A be pushdown automaton and π : (q, wq) →? (r, wr) a path between the state
q with the word wq with |wq| ≥ 0 into the stack and the state r with the word wr with |wr| ≥ 0 into
the stack. Let n′ = max(n, d

√
|wq|e, d

√
|wr|e) there exists a path π′ : (q, wq) →? (r, wr) between

the state q with the word wq with |wq| ≥ 0 into the stack and the state r with the word wr with
|wr| ≥ 0 into the stack such that the size of the stack is always smaller than n′3 + n′2 + gmax.

Proof: In the proof of Lemma 45 we have used the fact that the size of the stack is initially and
finally ε only to obtain that the start and the end of the path are in a valley, that the size of the
stack is below n2 + gmax. Hence, we can reuse exactly the same proof where we have exchanged
n by n′. 2
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