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Intruder Deduction for the Equational
Theory of Exclusive-or with Commutative

and Distributive Encryption

Pascal Lafourcade
Information Security ETH Zentrum, IFW C41.2
Haldeneggsteig 4 CH-8092 Zürich Switzerland

Abstract

The first step in the verification of cryptographic protocols is to decide
the intruder deduction problem, that is the vulnerability to a so-called
passive attacker. We extend the Dolev-Yao model in order to model this
problem in presence of the equational theory of a commutative encryption
operator which distributes over the exclusive-or operator. The interaction
between the commutative distributive law of the encryption and exclusive-or
offers more possibilities to decrypt an encrypted message than in the non-
commutative case, which imply a more careful analysis of the proof system.
We prove decidability of the intruder deduction problem for a commutative
encryption which distributes over exclusive-or with a DOUBLE-EXP-TIME
procedure. And we obtain that this problem is EXPSPACE-hard in the
binary case.

1 Introduction

Today, the number of interactive services proposed on the Internet is exploding.
Most of them use cryptographic protocols to guarantee some level of security.
They can be seen as relatively simple programs which are executed in an unse-
cure environment. There are different approaches for modeling cryptographic
protocols and analyzing their security properties. One of them is the approach
of Dolev and Yao [DY83], which models the attacker capabilities by a deduction
system. This model is often used to analyze the security of protocols against
a passive attacker, i.e an intruder which obtains information by eavesdropping
on the communications between honest participants and deduces some infor-
mation from these messages. The question whether a passive attacker gets
a certain information from observed messages on the network is called the
intruder deduction problem.

Algebraic Properties: Usually the capabilities of the intruder are based
on the so-called perfect cryptography assumption, i.e. it is impossible to obtain
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any information about an encrypted message without knowing the exact key
necessary to decrypt this message. Unfortunately, this perfect cryptography
assumption is too idealistic: There are protocols which can be proved secure
under the perfect cryptography assumption, but which are in reality insecure
since an attacker can use properties of the cryptographic primitives in combi-
nation with the protocol rules to learn some secret informations (see [CDL06]
for a survey). It is necessary to relax this assumption by increasing the deduc-
tive power of the intruder. One possibility is to add the capability to take into
account some algebraic properties to model an intruder in a more realistic way,
which may find new attacks.

Related Work: Solutions to the intruder deduction problem modulo an
equational theory are known for the cases of modular exponentiation [CKRT03b,
MS03], of exclusive-or, of Abelian groups [CLS03, CKRT03a], of a homomor-
phism symbol alone [CLT03], and of combinations of homomorphism and one
of the operators of exclusive-or or Abelian groups [LLT05a, Del06]. Another re-
sult [CKRT04] proves that the so-called active intruder with just a commutative
encryption and the classical Dolev-Yao model is decidable. We have already
studied in [LLT05b] the intruder deduction problem for a non-commutative
encryption which distributes over the exclusive-or symbol, denoted ⊕. A nat-
ural question is to consider now the case of commutative encryption, i.e.
{{u}k1}k2 = {{u}k2}k1, for instance the encryption RSA. Notice that in this case
the equational theories of the ⊕ operation and of the commutative encryption
operation which distributes over the exclusive-or symbol, i.e. {x⊕y}k = {x}k⊕{y}k,
are not disjointed because they share the encryption symbol function, hence the
combination algorithm proposed in [CR05] can not be applied.

Our contribution: We investigate the intruder deduction problem with the
equational theory of a commutative encryption, i.e. {{u}k1}k2 = {{u}k2}k1 which
distributes over the exclusive-or i.e. {x ⊕ y}k = {x}k ⊕ {y}k, where exclusive-or
has the properties of Associativity, Commutativity, Unity and Nilpotency. The
interaction between the commutative distributive law of the encryption and
exclusive-or offers more possibilities to decrypt an encrypted message than in
the non-commutative case. The commutativity of encryption requires to de-
fine new notions and to find new proof transformations, since one encrypted
message can be partially decrypted by several different keys. In the non-
commutative case for solving this problem it is enough to construct some nor-
malization of proofs where applications of the exclusive-or rules are applied as
early as possible. In the case of the commutative encryption, we have to apply
as early as possible the decryption and after as early as possible the exclusive-or.
This raises some difficulties that we solve by characterizing new proof notions,
constructing transformations to pass from one to another, designing a right
set of subterms and proving a normalization of proof to get the result. We
obtain a decision procedure in DOUBLE-EXP-TIME for the intruder deduction
problem with the equational theory of the exclusive-or and commutative dis-
tributive encryption over this operator. We prove also in the particular case of
the binary proofs that the intruder deduction problem is EXPSPACE-hard for
this equational theory.
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Plan: We recall in Section 2 usual notions required in the rest of the paper.
In Section 3 we introduce the extended Dolev-Yao model of intruder capacities.
In Section 4 we present the generalization of McAllester’s locality algorithm. In
the rest we introduce all required notions to show the locality result in Section 9.
Finally in Section 10 we present the binary case and conclude in Section 11.

2 Preliminaries

We refer the reader to [DJ90, BN98] for an overview of rewriting.
Let Σ be a signature. T(Σ,X) denotes the set of terms over the signature Σ and
the set of variables X, that is the smallest set such that: (i) X ⊆ T(Σ,X), (ii) if
t1, . . . , tn ∈ T(Σ,X), and f ∈ Σ has arity n ≥ 0, then f (t1, . . . , tn) ∈ T(Σ,X). We
abbreviate T(Σ, ∅) as T(Σ); elements of T(Σ) are called Σ-ground terms. The set
of variables occurring in a term t is denoted byV(t).

The set of occurrences of a term t is defined recursively as O( f (t1, . . . , tn)) =
{ε} ∪

⋃
i=1...n i · O(ti). For instance, O( f (a, g(b, x))) = {ε, 1, 2, 21, 22}. The size |t| of a

term t is defined as its number of occurrences, that is |t| = cardinality(O(t)). We
extend the notion of size to a set of terms T by |T| = Σt∈T |t|. If o ∈ O(t) then the
subterm of t at position o is defined recursively by:

• t |ε= t

• f (t1, . . . , tn) | j·o= t j |o

A term r is a subterm of a term t if r is a subterm of t at some position of t.
A Σ-equation is a pair (l, r) ∈ T(Σ,X), commonly written as l = r. The relation

=E generated by a set of Σ-equations E is the smallest congruence on T(Σ) that
contains all ground instances of all equations in E.

A Σ-rewriting system R is a finite set of so-called rewriting rules l → r where
l ∈ T(Σ,X) and r ∈ T(Σ,V(l)). A term t is in normal form if there is no term s
with t → s. If t →∗ s and s is a normal form then we say that s is a normal form
of t, and write s = t ↓.

Let T be a set of terms, the mapping S : T → T is idempotent if for every
X ⊆ T: S(S(X)) = S(X). The mapping S is monotone if for all X,Y ⊆ T: if X ⊆ Y
then S(X) ⊆ S(Y). S is transitive if for all X,Y,Z ⊆ T, X ⊆ S(Y) and Y ⊆ S(Z)
implies X ⊆ S(Z). The following Proposition is straightforward.

Proposition 1 Let S be a mapping from sets of terms to sets of terms. If S is idempotent
and monotone then S is transitive.

3 A Dolev-Yao Model for Rewriting Modulo AC

We consider the classic model of deduction rules introduced by Dolev and
Yao [DY83] in order to model the deductive capabilities of a passive intruder. We
present an extension of this model with the equational theory XCDE (eXclusive-
or with a Commutative Distributive Encryption over ⊕).
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The knowledge of the intruder is represented by terms built over a finite
signature Σ = {〈·, ·〉, {·}·,⊕}]Σ0, where Σ0 is a set of constant symbols. The term
〈u, v〉 represents the pairing of the two terms u and v. The term {u}K represents
the encryption of the term u by a finite multiset of keys K and we consider
that {u}∅ = u. For the sake of simplicity, we consider symmetric commutative
encryption, all results can be extended to the asymmetric case.

The equational theory XCDE is represented by the following convergent
rewriting system R: 0 ⊕ x → x; x ⊕ x → 0; {x ⊕ y}z → {x}z ⊕ {y}z;{0}z → 0
(the last rule is required to get the confluence of R). R is terminating and
confluent modulo associativity and commutativity of ⊕, and such that for all
terms t, s ∈ T(Σ) we have that t =E s if and only if t ↓ =AC s ↓. The deduction
system of Figure 1 corresponds to the deductive capabilities of an attacker
considering the equational theory XCDE.

(A)
u ∈ T

T ` u ↓

(P)
T ` u T ` v

T ` 〈u, v〉 ↓

(C)
T ` u T ` K

T ` {u}K ↓

(D)
T ` r T ` K

T ` u ↓
if r =E {u}K

(UL)
T ` r

T ` u ↓
if 〈u, v〉 = r

(UR)
T ` r

T ` v ↓
if 〈u, v〉 = r

(GX)
T ` u1 . . . T ` un

T ` u1 ⊕ . . . ⊕ un ↓

Figure 1: A Dolev-Yao proof system working on normal forms by a rewrite
system R modulo AC for a commutative encryption, where K = {kα1

1 , . . . , k
αn
n }is

a multiset of keys, where αi represents the multiplicity of the keys ki in K.

This proof system is composed of the following rules: (A) the intruder may
use any term which is in his initial knowledge, (P) the intruder can build a pair
of two messages, (UL),(UR) he can extract each member of a pair, (C) he can
encrypt a message u with a multiset K of keys, (D) if he knows a multiset K
of keys then he can decrypt a message encrypted by K. Let K = {kα1

1 , . . . , k
αn
n }

be a multiset of keys, the sequent T ` K is short for: α1 times the sequent
T ` k1, . . . , αn times the sequent T ` kn. Sometimes, we shall annotate the rules
(C) and (D) by the multiset of keys that they use, yielding rules (CK) and (DK).
Because of the algebraic properties of the ⊕ operator, we add a family of rules
(GX) which allows the intruder to build a new term from an arbitrary number
of already known terms by using the ⊕ operator.

Definition 1 A proof P of T ` w is a finite tree such that:

• every leaf of P is labeled by v ∈ T.

• every node of P with n children (n ≥ 1) labeled with T ` v1, . . . ,T ` vn, is labeled

with T ` v such that
T ` v1 . . . T ` vn

T ` v
(R) is an instance of the rule of Figure 1.
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• the root of P is labeled with T ` w.

A sub-proof P′ of a proof P is a sub-tree of P. The size of a proof P is the number of
nodes in P, denoted by |P|.

In fact, this proof system is equivalent in deductive power to a variant of the
system in which terms are not automatically normalized, but in which arbitrary
equational proofs are allowed at any moment of the deduction. The equivalence
of the two proof systems has been shown in [CLT03] without AC axioms; and in
[LLT05a] this has been extended to the case of a rewrite system modulo AC. In
the following, all terms are normalized and we omit the normalization symbol
↓.

4 Locality Result and Complexity

Our starting point is the locality technique introduced by McAllester [McA93].
He considers deduction systems which are represented by finite sets of Horn
clauses. He shows that there exists a polynomial-time algorithm to decide the
deducibility of a term w from a finite set of terms T if the deduction system
has the so-called locality property. A deduction system has the locality property if
any proof can be transformed into a local proof, that is a proof where all nodes
are syntactic subterms of T ∪ {w}. The idea of the proof is to check existence of
a local proof by a saturation algorithm which computes all syntactic subterms
of T ∪ {w} that are deducible from T. In [LLT05b] we generalize McAllester’s
approach, here we just recall the definition of a local proof and the locality
Theorem. In the rest of the paper we denote T ∪ {w} by T,w.

Definition 2 Let S be a function which maps a set of terms to a set of terms. A proof
P of T ` w is S-local if all nodes are labeled by some T ` v with v ∈ S(T,w). A proof
system is S-local if whenever there is a proof of T ` w then there is also a S-local proof
of T ` w.

Theorem 1 Let S be a function mapping a set of terms to a set of terms, and P a proof
system. Let T be a set of terms, let w be a term and let n be |T,w|. If:

1. one-step deducibility of S ` u in P is decidable in time g(|S,u|) for any term u
and set of terms S,

2. the set S(T,w) can be constructed in time f (n),

3. P is S-local,

then provability of T ` w in the proof system P is decidable in time f (n) + f (n) ∗ f (n) ∗
g( f (n)) (non-deterministic if one of (2), (1) is non-deterministic).

We say that u is one-step deducible from a set of hypotheses H if there

exists an instance
T ` r1 . . . T ` rn

T ` r
(R) of some deduction rule such that r = u
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and ri ∈ H. The one-step deducibility is decidable in polynomial time for the
equational theory XCDE. Observe first that all rules of deduction of Figure 1 are
binary except the rule (GX) (rule (CK) (resp. (DK)) are shorts for finite number
of consecutive applications of rule (Cki ) (resp. (Dki )). For all these binary rules
proving the one-step deducibility takes a polynomial time. For the rule (GX)
the problem can reduce to solve system of equations in Z/2Z as in [LLT05b].
We illustrate the idea of this reduction, with the following example.

Example 1 Let T = {a1 ⊕ a2 ⊕ a3, a1 ⊕ a4, a2 ⊕ a4} and w = a1 ⊕ a2, where every ai
contains no ⊕. We introduce one numerical variable x0, x1, x2 for each element of T:

x0 for a1 ⊕ a2 ⊕ a3
x1 for a1 ⊕ a4
x2 for a2 ⊕ a4

For every element of the sum we create an equation, we get the equation system:

a1 : x0 ⊕ x1 = 1
a2 : x0 ⊕ x2 = 1
a3 : x0 = 0
a4 : x1 ⊕ x2 = 0

The system has a solution over Z/2Z if and only if w is deducible in one-step from T
by (GX). In this example the system has a solution: x0 = 0, x1 = 1, x2 = 1.

In the rest of the paper, to prove the locality of the deduction system, we
define a new notion of subterms (Definition 6) and some transformations of
proof which enable us to prove that any proof can be transformed into a normal
proof. Hence we prove that a normal proof is in fact a local proof in Theorem 2,
yielding the decidability of the intruder deduction problem, using Theorem 1.

5 Terms and Subterms

Definition 3 Let u be a term in normal form, u is headed with ⊕ if u is of the form
u1 ⊕ . . . ⊕ un with n > 1. Otherwise u is not headed with ⊕. A term u in normal
form is called headed with {.}K if u is of the form u = {t}K. Otherwise u is not headed
with {.}K. We define the function atoms(u):

• If u = u1 ⊕ . . . ⊕ un, where each of the ui is not headed with ⊕, then atoms(u) =
{u1, . . . ,un}. The ui’s are called the atoms of u.

• If u is not headed with ⊕ then atoms(u) = {u}.

Example 2 t1 = u ⊕ 〈v,w〉 is headed with ⊕, but t2 = 〈u, v ⊕ w〉 is not, hence
atoms(t1) = {u, 〈v,w〉} and atoms(t2) = {t2}.

The definition of atoms is generalized to sets of terms T in normal form
by setting atoms(T) :=

⋃
t∈T atoms(t). According to the definition, the function

atoms is monotone and idempotent. We denote by P[K] the set of all the
partitions of the set K.
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Definition 4 The set of syntactic subterms of a term t is the smallest set S(t) such
that:

1. t ∈ S(t).

2. if 〈u, v〉 ∈ S(t) then u, v ∈ S(t).

3. if {u}K ∈ S(t) and K = {kα1
1 , . . . , k

αp
p } then u ∈ S(t) and ki ∈ S(t) for all i, 1 ≤ i ≤ p.

4. if u = u1 ⊕ . . . ⊕ un ∈ S(t) then atoms(u) ⊆ S(t).

Example 3 If u = {a}k1,k2,k3 i.e. the term a is encrypted by the keys k1, k2 and k3 then
S(u) = {u, a, k1, k2, k3, {a}k1 , {a}k2 , {a}k3 , {a}k1,k2 , {a}k2,k3 , {a}k1,k3 }, for instance the term
{a}k1 comes from the point (iii) of the previous definition with K = {k2, k3}.

The definition of S is extended to a set T of terms in normal form by setting
S(T) :=

⋃
t∈T S(t). Since the encryption is commutative, the number of subterms

of S(T) is exponential in the size of the set of keys of T (consider all the possible
combinations of keys for an encrypted term). In the definition of S(t) we do
not take care of the distributivity of encryption. Because we work only on
normal forms the notion of a syntactic subterm ignores the fact that the term
{a}K ⊕ {b}K ⊕ {c}K is equal to {a⊕ b⊕ c}K, and that a⊕ b⊕ c should be considered to
be a subterm of {a}K ⊕ {b}K ⊕ {c}K and also all sums encrypted with the set P[K].

Definition 5 For any term t, ST(t) is the smallest set such that:

• S(t) ⊆ ST(t).

• If n > 1, K = {kα1
1 , . . . , k

αp
p } and {u1}K ⊕ . . . ⊕ {un}K ∈ ST(t) then u1 ⊕ . . . ⊕ un ∈

ST(t).

By definition S(t) ⊆ ST(t). The definition is extended to a set T of terms
in normal form by setting ST(T) :=

⋃
t∈T ST(t). As in Definition 4, Definition 5

considers also all the possible combinations of keys for an encrypted sum of
terms.

Proposition 2 For any set of terms M ⊆ TΣ, we have:

• atoms(M) ⊆ S(M).

• atoms(ST(M)) ⊆ ST(M).

• S(S(M)) = S(M) and ST(ST(M)) = ST(M).

Proof: Obvious from the definitions of S, atoms and ST. �

Definition 6 Define S⊕ as all combinations of terms of ST(T) by ⊕:

S⊕(T) :=
{
(
⊕
s∈M

s) ↓ |M ⊆ ST(T)
}
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Note that the size of S⊕ is double-exponential in the size of T and ST(T) ⊆
S⊕(T): one exponential for the computation of S(T) ⊆ ST(T) and the second
exponential for all the partial sums.

Proposition 3 Let A and B be two sets of terms in normal form, the mappings S, ST
and S⊕ are monotone and have the property:

• S(A ∪ B) = S(A) ∪ S(B).

• ST(A ∪ B) = ST(A) ∪ ST(B).

• S⊕(A) ∪ S⊕(B) ⊆ S⊕(A ∪ B).

Proof: It is an immediate consequence of the definitions of S(T), ST(T) and
S⊕(T). �
Remark: Let A = {a} and B = {b}, S⊕(A) = {0, a} and S⊕(B) = {0, b} then S⊕(A) ∪
S⊕(B) = {0, a, b} ⊆ S⊕(A ∪ B) = {0, a ⊕ b, a, b} but S⊕(A) ∪ S⊕(B) , S⊕(A ∪ B).

Lemma 1 Let T be a set of terms then ST(S⊕(T)) = S⊕(T).

Proof: By definition 5, S⊕(T) ⊆ ST(S⊕(T)). We prove the converse inclusion by
induction on the number of applications of the rule for ⊕ in the construction of
ST(S⊕(T)) (step (ii) in Definition 5). Let u ∈ ST(S⊕(T)), and let n be the number
of applications of the rule for ⊕. By induction hypothesis, we assume that each
term u′ ∈ ST(S⊕(T)) obtained with less than n applications of the rule for ⊕ is in
S⊕(T).

Base case n = 0: u ∈ ST(v) for some v ∈ S⊕(T), where v = v1 ⊕ . . . ⊕ vp
and all vi ∈ ST(T). If u = v then u ∈ S⊕(T). Otherwise u , v. In this case
u ∈ S(vi) ⊆ ST(vi) for some i (since vi ∈ ST(T) and S(ST(T)) = ST(T)). Since
v ∈ S⊕(T) there exists a ti ∈ T such that vi ∈ ST(ti). Therefore vi ∈ ST(ti) ⊆ ST(T)
with ti ∈ T, hence u ∈ ST(ST(T)) = ST(T) ⊆ S⊕(T) by idempotence of ST.

Induction step: let u = u1 ⊕ . . . ⊕ un be obtained from {u1}K ⊕ . . . ⊕ {un}K ∈

ST(S⊕(T)). By induction hypothesis {u1}K ⊕ . . . ⊕ {un}K ∈ S⊕(T). Hence there
exists a partition I1 ∪ . . . ∪ Iq = {1, . . . ,n} such that for every j, 1 ≤ j ≤ q,
w j = ⊕i∈I j {ui}K ∈ ST(t j). Hence, ⊕i∈I j ui ∈ ST(t j) by definition of ST. As a
consequence, u ∈ S⊕(T). �

Proposition 4 Let M be a set of terms then S⊕(S⊕(M)) = S⊕(M). The mappings S,
ST and S⊕ are transitive.

Proof: The first point is a consequence of Lemma 1 and Proposition 2. The
second is a consequence of the first point and Propositions 1, 2 and 3. �

All these results will be used implicitly in the rest of the paper.
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6 Different Kinds of Proofs

After a description of the different notions of subterms, we now introduce the
different proof’s characterizations which is a crucial ingredient in the demon-
stration of the locality result.

Definition 7 Let P be a proof of T ` w. P is flat if there is no (GX) (respectively (C)
and (D)) rule immediately above another (GX) (respectively (C) and (D)) rule. P is
simple if (1) each node T ` v occurs at most once on each branch, (2) each node T ` v
occurs at most once as hypothesis of a rule (GX), (3) there is no consecutive application
of (CK) and (DK′ ) (in either order) if K ∩ K′ , ∅.

Any proof can be transformed into a simple proof since we can always cut
some branch or piece of branch of the proof. In any proof we can always merge
two consecutive applications of a rule (CK) (respectively (DK) and (GX)) and
get a flat proof. Hence a flat proof can always be transformed into a flat and
simple proof.

Proposition 5 Let K and K′ be two sets of keys such that K ∩ K′ = ∅. Applying the
rule (DK) to a term u and then the rule (CK′ ) yields the same result as applying the rule
(CK′ ) to u and then the rule (DK).

Proof: The fact that K ∩ K′ = ∅ is the key of this result. �
Intuitively, in a D-eager proof the (D) rule is applied as early as possible and

in a ⊕-eager proof the (GX) rule is applied as early as possible.

Definition 8 Let P be a proof of T ` w. P is a D-eager proof if: (1) there is no
hypothesis of a rule (GX) which is headed with {.}K and a rule (DK′ ) just after a (GX)
such that K ∩ K′ , ∅, (2) there is no (C) just above rule (D). P is a ⊕-eager proof if
all the rules (CKi ) immediately above a (GX) in P have Ki ∩ K j = ∅ for all i, j such that
i , j.

We refine the notion of S-local proof by S(T)-local, where T is the set of terms
on which S is applied. A normal proof consists of initial subproofs which are
S⊕(T)-local, followed by a proof tree consisting of the rules (GX), (C), (P) only.

Definition 9 Let P be a proof of T ` u. P is a normal proof if :

• either u ∈ S⊕(T) and P is an S⊕(T)-local proof,

• or P = C[P1, . . . ,Pn] where every proof Pi is a normal proof of some T ` vi with
vi ∈ S⊕(T) and the context C is built using the inference rules (P), (C), (GX)
only.
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7 Transformations of Proofs

We modify by successive transformations a proof into a simple flat proof, then
into a simple flat D-eager proof, next into a simple flat D-eager ⊕-eager proof
and finally into a normal proof. With all these transformations we first apply
the rule of decryption, then we make the sum with the (GX) rule to simplify or
construct terms to get a normal proof.

Lemma 2 Let P be a simple and flat proof of T ` w. Then there exists a proof P′ of
T ` w such that P′ is a simple, flat and D-eager proof.

Proof: Let P be a simple and flat proof of T ` w. We transform this proof into
a simple, flat and D-eager proof of T ` w by induction on the number of nodes
of P. We consider the last rule of the proof, if it is:

• (A): the result holds.

• (GX), (P), (UR), (UL), (C): we apply the induction hypothesis on all direct
sub-proofs.

• (DK2 ): we always apply the induction hypothesis on the key part of the
rule (DK2 ), for the encrypted part we consider the rule above (DK2 ) is :

– (A), (P), (UR), (UL) we apply the induction hypothesis on all direct
sub-proofs.

– (C): we can switch the two rules using Proposition 5 and simplicity
(to get a D-eager proof). Hence we apply the induction hypothesis
on the sub-proofs.

– (GX) if all encrypted hypotheses of the (GX) are encrypted by sets of
keys Ki such that Ki∩K2 = ∅ then we apply the induction hypothesis
on the sub-proofs. Otherwise we consider that the hypotheses of the
rule (GX) can be split into smaller sums which all give an encrypted
term and we apply the transformation described in Figure 2. In cer-
tain cases some additional transformations are required to preserve
simplicity: we cut the same hypotheses of the rule (GX) or branch of
the proof for the new nodes introduced. Moreover if a rule (GX) has
just one hypothesis, this rule can be deleted. Since K2 ∩ K1 , ∅ and
n ≥ 2, the size of the initial proof is Σi=n

i=1 |πBi | + |πK2 | + 2 is greater or
equal than Σi=n1

i=1 |πBi |+ |πK2∩K1 |+ 2 the size of this sub-proof, hence we
apply the induction hypothesis on the sub-proof ended by the rule
(DK2∩K1 ).

�

Proposition 6 The transformations of proofs given in Figures 3 and 4 decrease the
number of nodes of the initial proof.
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(GX)

(GX)
T ` x1 . . . T ` xn

T ` x1 ⊕ . . . ⊕ xn T ` y1 . . . T ` ym

T ` x1 ⊕ . . . ⊕ xn ⊕ y1 ⊕ . . . ⊕ ym
⇓

(GX)
T ` x1 . . . T ` xn T ` y1 . . . T ` ym

T ` x1 ⊕ . . . ⊕ xn ⊕ y1 ⊕ . . . ⊕ ym

Figure 3: Transformation of (GX)-(GX) into (GX)

Proof: We denote by πx the subproof of P with root T ` x. These transforma-
tions transform a proof with some hypotheses and a conclusion into a proof of
the same hypotheses and the same conclusion. Figure 3: It is obvious.
Figure 4: The number of nodes of the initial proof is:

αI = Σi=m
i=1 |πzi | + |πx1 | + |πx2 | + |πK1 | + |πK2 | + 3

The number of nodes of the transformed proof is:
αT = Σi=m

i=1 |πzi | + |πx1 | + |πx2 | + |πK1\K2 | + |πK2\K1 | + |πK1∩K2 | + 5
Observe that |πK1 | = |πK1∩K2 | + |πK1\K2 | and |πK2 | = |πK1∩K2 | + |πK2\K1 |.

αI − αT = |πK1 | + |πK2 | − |πK1\K2 | − |πK2\K1 | − |πK1∩K2 | − 2
= |πK1∩K2 | + |πK1\K2 | + |πK2 | − |πK1\K2 | − |πK2\K1 | − |πK1∩K2 | − 2
= |πK1∩K2 | + |πK2\K1 | − |πK2\K1 | − 2
= |πK1∩K2 | − 2

Since K1 ∩K2 , ∅, hence |πK1∩K2 | ≥ 2 and the number of nodes is decreasing.
�

Lemma 3 If there is a simple, flat and D-eager proof of T ` w then there is also a
simple, flat, D-eager and ⊕-eager of T ` w.

Proof: Let P be a simple, flat and D-eager proof of T ` w, we apply many
times the proof transformation rules given in Figures 3 and 4. The application
of these transformations terminates because Proposition 6 shows that they
decrease the number of nodes of a proof and the transformation of a proof into
a simple and flat proof decreases obviously the number of nodes. Moreover
these transformations do not make appear any rule (D) just after a rule (GX)
and any rule (D) just after a rule (C), hence the proof is again D-eager. �

8 Properties of Proofs

Thanks to previous transformations we consider a simple, flat D-eager ⊕-eager
proof P of T ` w. Lemma 5 shows, using Lemma 4, that all nodes stemmed
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from a rule (UR)(UL) are in S(T) for simple proof. Lemma 6 proves that all
nodes stemmed from a rule (D) have the encrypted hypothesis in S⊕(T) for a
simple, flat, D-eager and ⊕-eager proof. In Lemma 7 we prove that such a proof
can be transformed in a normal proof using Lemma 5 and Lemma 6.

Lemma 4 Let P be a simple proof of the form:

P =


P1 . . .Pn

T ` w

If T ` u does not occur in any of P1, . . . ,Pn and 〈u, v〉 ∈ S(w) then there is at least one
Pi and there exists w′ such that 〈u, v〉 ∈ S(w′) and either the root of Pi is T ` w′ or
w′ ∈ T.

Proof: We consider all possible rules for the root of P:

• The last rule is (A): obvious since all elements of T are normalized.

• The last rule is (UL) or (UR): 〈u, v〉 ∈ S(w) by hypothesis, we denote w′ =
〈u1,u2〉 and by construction w ∈ S(〈u1,u2〉). We deduce by transitivity of
the subterm relation that 〈u, v〉 ∈ S(w′) and conclude with the induction
hypothesis.

• The last rule is (D): 〈u, v〉 ∈ S(w) by hypothesis, we denote w′ = {u1}u2 and
by construction w ∈ S({u1}u2 ). We deduce by transitivity of the subterm
relation that 〈u, v〉 ∈ S(w′) and conclude with the induction hypothesis.

• The last rule is (GX): 〈u, v〉 ∈ S(w) by hypothesis and w = (u1 ⊕ . . . ⊕ un) ↓.
Hence by definition of the subterm relation 〈u, v〉 ∈ ∪iS(ui), more precisely
there exists i such that 〈u, v〉 ∈ S(ui), because 〈u, v〉 is not headed with ⊕
and conclude with the induction hypothesis.

• The last rule is (P): since T ` u can not occur in P we have that w =
〈w1,w2〉 , 〈u, v〉. But 〈u, v〉 ∈ S(w) by hypothesis so 〈u, v〉 ∈ S(〈w1,w2〉). It
is a subterm of w1 or of w2 and we conclude with the induction hypothesis.

• The last rule is (C): We have that w = {w1}w2 , 〈u, v〉. But 〈u, v〉 ∈ S(w)
by hypothesis so 〈u, v〉 ∈ S({w1}w2 ). It is a subterm of w1 or of w2 and we
conclude with the induction hypothesis.

�

Lemma 5 Let P be a simple proof of T ` u or T ` v. If P is one of

(UL)

...

T ` 〈u, v〉

T ` u
(UR)

...

T ` 〈u, v〉

T ` v

then 〈u, v〉 ∈ S(T).
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Proof: Let us assume that the last rule is (UL), the case (UR) is similar.

P =


P1 . . .Pn

T ` 〈u, v〉

T ` u

P is simple so T ` u does not occur in any of P1, . . . ,Pn. Hence, we can apply

Lemma 4 to
P1 . . .Pn

T ` 〈u, v〉
. Either 〈u, v〉 ∈ T, or there is some Pi with root T ` w such

that 〈u, v〉 ∈ S(w) and T ` u does not occur in Pi. Lemma 4 can be applied again
and the iteration of this reasoning finally leads to 〈u, v〉 ∈ T. �

Lemma 6 Let P be a simple, flat, D-eager and ⊕-eager proof of T ` u. If P is

(DK)

(R)

...

T ` {u}K ↓ = r

...

T ` K ↓

T ` u

then {u}K ∈ S⊕(T).

Proof: The proof is by structural induction on P.
Base case: obvious.
Induction step: we perform a case analysis on the last rule (R) used in the

subproof of P with root {u}v ↓

• (R) is (A), (UL), (UR): the result is true by definition (rule (A)) or Lemma 5
(rule (UL), (UR)).

• (R) is some rule (P): this cannot happen because {u}K ↓ is not a pair.

• (R) is some rule (CK′ ): P is D-eager by consequence it is impossible.

• (R) is some rule (DK′ ) impossible since P is flat.

• (R) is (GX). The last deductions in the proof P are described in Figure 5
and we discuss the different cases according to the rules (Ri) and the
structure of {u}K ↓.

We show that every atom of {u}K ↓ is in fact an element of ST(T). Let
a ∈ atoms({u}K ↓). Note that a is necessarily of the form {a′}K, and that
there is an i such that a ∈ atoms(B′i ). We consider different possible cases
for the rule (Ri):

– (Ri) is (A), (UL) or (UR). By definition or Lemma 5, B′i ∈ S⊕(T).

15



(DK)

(GX)

(R1)
T ` B1

T ` B′1
... (Rn)

T ` Bn

T ` B′n
T ` {u}K ↓

...

T ` K ↓

T ` u ↓

Figure 5: Illustration of the case (DK) in Lemma 6.

– (Ri) is (DK′ ) s.t. (DK′ )
T ` {w1}K′ T ` K′

T ` w1 = B′i
. By induction hypothesis

{w1}K′ ∈ S⊕(T), therefore w1 = B′i ∈ S⊕(T).

– (Ri) is (P): B′i = 〈w1,w2〉, B′i cannot occur in {u}K ↓ by consequence B′i
is canceled by another hypotheses B′j of (GX) such that B′i ∈ ST(B′j).
B′j can not be the result of a rule (P) by simplicity, neither a rule (C)
since it is a pair, neither (GX) since the proof is flat. In the other
cases B′j stems from a rule (A), (UL), (UR) or (D) by consequence
B′j ∈ S⊕(T). We deduce that B′i ∈ S⊕(T).

– (Ri) is (C), since P is D-eager we get that B′i is headed with {.}K′ such
that K∩K′ = ∅. By consequence B′i is canceled by another hypotheses
B′j of (GX) such that B′j ∈ ST(B′i ). B′j can not be the result of a rule
(P) since it is an encrypted term, neither another rule (C) since P is
⊕-eager, neither (GX) since the proof is flat. In the other cases the
copy B′j stems from a rule (A), (UL), (UR) or (D) by consequence
B′j ∈ S⊕(T). We deduce that B′i ∈ S⊕(T).

Therefore in all cases {u}K ↓ =
⊕

i=1,...,n B′i ↓ =
⊕
{ti}K where {ti}K ∈ S⊕(T)∩

(∪i=1,...,natoms(Bi)) because all atoms of B′i are in S⊕(T) or canceled.

�

Lemma 7 Let P be a flat, simple, ⊕-eager and D-eager proof of T ` u. There is a
normal proof of T ` u.

Proof: Consider first the case where u ∈ S⊕(T). We proceed by structural
induction on the proof P and case distinction of the last rule (R) of P:

• (R) is (A): P is obviously a normal proof.

• (R) is some rule (UL) or (UR) s.t.
T ` 〈u1,u2〉

T ` u
. The induction hypothesis

gives that there exists a normal proof of 〈u1,u2〉. P is simple, we apply
Lemma 5 and get 〈u1,u2〉 ∈ S(T) ⊆ S⊕(T) then the normal proof of 〈u1,u2〉

is S⊕(T)-local so P is normal since u ∈ S⊕(T).
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• (R) is some rule (D) s.t.
T ` {u}K T ` K

T ` u
. The induction hypothesis gives

that there exists a normal proof of {u}K. P is flat, simple, D-eager and ⊕-
eager with Lemma 6 we get {u}K ∈ S(T) ⊆ S⊕(T) and then the normal proof
of {u}K is S⊕(T)-local so we deduce that P is normal because u ∈ S⊕(T).

• (R) is some rule (P), (C) are similar. We only give the proof for u = {u1}u2 .

(R) is some (C) s.t.
T ` u1 T ` u2

T ` {u1}u2

Since {u1}u2 = u ∈ S⊕(T) we deduce that

u1 ∈ S⊕(T) and u2 ∈ S⊕(T). Hence applying the induction hypothesis there
are normal proofs of u1 and u2 that are S⊕-local, hence P is normal.

• (R) is some rule (GX) s.t. (GX)

(R1)
T ` B1

T ` B′1
...(Rn)

T ` Bn

T ` B′n
T ` u

. We will show

that for every (Ri) we have that B′i ∈ S⊕(T). We discuss the different cases
for the rules (Ri)’s:

– (Ri) is not (GX) because P is flat.

– (Ri) is (A), (UL), (UR) or (D) with the definition or Lemma 5 or
Lemma 6 then B′i ∈ S⊕(T). Applying the induction hypothesis there
is a normal proof of B′i which is S⊕(T)-local.

– (Ri) is (P), there are two possibilities: B′i is in ST(u) or not.

∗ B′i ∈ ST(u) ⊆ S⊕(T) we can apply the induction hypothesis and
get a normal proof of B′i which is S⊕(T)-local.
∗ B′i < ST(u) hence B′i is canceled by some other elements B′j. B′j

can not come from a rule (P) because P is simple, from a rule
(C) because a pair is not headed with {.}.. So B′j come from
a rule (A), (UL), (UR) or (D) with the definition or Lemma 5
or Lemma 6 then B′j ∈ S⊕(T). More precisely

⊕
B′j ∈ S⊕(T),

since B′i ∈ S⊕(
⊕

B′j), we deduce that B′i ∈ S⊕(T). We apply
the induction hypothesis and get a normal proof of B′i which is
S⊕(T)-local.

– (Ri) is (CK), this case is similar to the previous case. There are two
possibilities: B′i is in ST(u) or not:

∗ B′i ∈ ST(u) ⊆ S⊕(T), we apply the induction hypothesis and get a
normal proof of B′i which is S⊕(T)-local.
∗ B′i < ST(u) hence B′i is canceled by some other elements B′j. B′j

can not stem from a rule (P) since a pair is not headed with
{.}., from a rule (CK′ ) with K′ , K since B′i not headed with {.}K
and not from another rule (CK′ ) where K′ ∩ K , ∅ since P is
⊕-eager. So B′j come from a rule (A), (UL), (UR) or (D) with
the definition or Lemma 5 or Lemma 6 then B′j ∈ S⊕(T). More
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precisely
⊕

B′j ∈ S⊕(T), since B′i ∈ S⊕(
⊕

B′j) we deduce that
B′i ∈ S⊕(T). we can apply the induction hypothesis and get a
normal proof of B′i which is S⊕(T)-local.

Since all the subproofs of T ` B′i are normal we can conclude that P is
normal.

In the second case, we assume that u < S⊕(T) and the proof is of the form
C[P1, . . . ,Pn] where P1, . . . ,Pn are maximal S⊕-local subproofs. We prove the
result by structural induction on P:

• If C is empty, then u ∈ S⊕(T)

• If the last rule is (UL), (UR) or (D) we use the definition and Lemma 5 and
Lemma 6 to get u ∈ S⊕(T).

• In the others cases we apply the induction hypothesis.

�

9 Our Main Result

In this section, we prove Theorem 2 which says that a normal proof is equivalent
to a S⊕(T,w)-proof. Thanks to Theorem 1 we conclude that there is a DOUBLE-
EXP-TIME procedure to decide the intruder deduction problem in equational
theory XCDE(complexity due to the computation of the set S⊕(T,w)).

Theorem 2 Let P be a flat, simple, D-eager and ⊕-eager proof of T ` w then
P is normal⇔ P is S⊕(T,w)-local.

Proof: ⇐ Let us assume that P is S⊕(T,w)-local and prove that P is normal:

• If w ∈ S⊕(T) then P is S⊕(T)-local i.e. P is normal.

• If w < S⊕(T) then we proceed by structural induction on P. The base case
(A) is trivial, consider the last rule:

– (UR), (UL), (D) impossible since Lemma 5 and Lemma 6 show that
w ∈ S⊕(T) which contradicts the hypothesis.

– (P), (C), (GX) by induction hypothesis, the hypotheses wi of the rule
stem from normal proofs. Because the last rule is (P), (C), (GX) then
P is normal.

⇒ Let us assume that P is normal and prove that P is S⊕(T,w)-local:

• If w ∈ S⊕(T): P is S⊕(T)-local, hence P is S⊕(T,w)-local.

• If w < S⊕(T) we proceed by structural induction on P. The base case is
trivial, consider the last rule:
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– (UR), (UL), (D): impossible by definition of normal proof.

– (P), (C) are similar, we just give the proof for (C). P is s.t.
T ` w1 T ` w2

T ` {w1}w2

.

By definition for i = 1, 2 wi ∈ S⊕(T,wi), wi ∈ ST({w1}w2 ) = ST(w) ⊆
S⊕(w), and induction hypothesis which guarantees that all nodes of
the sub-proof are in S⊕(T,wi), we conclude that P is S⊕(T,w)-local.

– (GX) P is s.t. (GX)

(R1)
T ` B1

T ` B′1
. . . (Rn)

T ` Bn

T ` B′n
T ` w

. We will prove

that all B′i are in S⊕(T,w), consider the different cases for the (Ri):

∗ (A): by definition B′i ∈ S⊕(T),
∗ (UR), (UL), (D): by Lemma 5 and Lemma 6 we get B′i ∈ S⊕(T).
∗ (GX): impossible because P is flat.
∗ (P): if B′i ∈ S⊕(T) the claim holds, otherwise B′i < S⊕(T). Either B′i

is not canceled in a sum, then B′i ∈ ST(w) ⊆ S⊕(w), or otherwise
B′i is canceled by another element of the sum B′j. Since B′i is a pair
B′j can not be deduced from a rule (C) neither a rule (P) since P
is simple. Hence it stems from one of the rules (A), (UL), (UR)
or (D) and B′i ∈ ST(B′j). According to Lemma 5 and Lemma 6
B′j ∈ S⊕(T), hence we get the result by transitivity of S⊕.

∗ (CK): if B′i ∈ S⊕(T) the claim holds, otherwise B′i < S⊕(T).
Note that B′i can be partially canceled in a sum. There are
two possibilities for the atoms of B′i : to be present in w, in
which case atoms(B′i ) ∈ atoms(ST(w)) ⊆ atoms(S⊕(w)), or to
be canceled by other elements B′j of the sum, in which case
atoms(B′i ) ∈ atoms(S⊕(B′j)) ⊆ atoms(S⊕(T)). In the latter case,
since B′i is encrypted by the set of keys K, B′j can not be the result
of a rule (CK′ ) with K′ , K, nor the result of the rule (C′K) with
K′ ∩ K , ∅ since P is ⊕-eager, nor (P), hence it stems from one
of the rules (A), (UL), (UR) or (D). Thanks to Lemma 5 and
Lemma 6 B′j ∈ S⊕(T), we conclude with the transitivity of S⊕. In
summary, for all i we get that atoms(B′i ) ∈ atoms(S⊕(T,w)), that
is B′i ∈ S⊕(T,w)). Hence P is S⊕(T,w)-local.

�

10 The Binary Case

We call the binary case the situation where the set of assumptions T and the goal
u of the proof P of T ` u do not contain terms with more than two consecutive
applications of the symbol ⊕.
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In the case of a commuting encryption operation, we show an EXPSPACE
lower bound by reduction of the uniform word problem in commutative semigroups
(abbreviated CSG) which is EXPSPACE-hard [MM82]. An instance of CSG is:

α1 = β1, . . . , αn = βn |= α = β

where α, β, αi and βi are words over some alphabet. It is essential for the
complexity of the problem that the alphabet is infinite (of course, any instance
C of CSG uses only a finite portion Σ(C ) of that alphabet). Such an instance
of CSG has a solution if and only if α = β in every commutative semigroup
satisfying the axioms αi = βi. Denoting by x =c y the equality of two words x
and y modulo commutativity, this is equivalent to the following assertion:

Either α =c β, or there exists a sequence of pairs (γ1, δ1), . . . , (γl, δl)
such that each pair (γ j, δ j) is either some αi = βi or some βi = αi
and a sequence of words c1, . . . , cl with c j ∈ Σ(C )∗ such that

α =c γ1c1 , δ1c1 =c γ2c2, . . . , δl−1cl−1 =c γlcl , δlcl =c β

We consider asymmetric encryption to prove the hardness result in the
binary case, i.e a term {u}k can be decrypted if and only if we know the inverse
of the key k, denoted Inv(k). We just need to add the Inv symbol in the signature
and modify the decryption rule:

(DK)
T ` {u}K T ` Inv(K)

T ` u ↓

where K is the non-empty multi-set {kα1
1 , . . . , k

αn
n }, Inv(K) is a notation for the

multi-set {Inv(k1)α1 , . . . , Inv(kn)αn }, and as previously T ` Inv(K) denotes many
times the sequent of each inverse keys. Notice if you do not know an inverse of
a key, there is no way to generate it. In this case we have also the locality result.

Theorem 3 In case of the equational theory XCDE the binary intruder deduction
problem is EXPSPACE-hard.

Proof: We show that this is even true for binary T, u not containing any
decryption key as a subterm (i.e. there is no symbol Inv) and any term headed
with the pair function.

Given an instance C = (α1 = β1, . . . , αn = βn |= α = β) of CSG, let

T = {{i}αi ⊕ {i}βi | 1 ≤ i ≤ n} ∪ Σ(C )
u = {i}α ⊕ {i}β

where i is some constant, and all the symbols of Σ(C ) are considered as con-
stants.

By locality Theorem 2 we know that all nodes of the proofs of T ` u are in
the set of subterms of T ∪ {u}. Hence these proofs are not using the (D) rule
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(CK)

(GX)
T ` x1 . . . T ` xn

T ` x1 ⊕ . . . ⊕ xn T ` K

T ` {x1}K ⊕ . . . ⊕ {xn}K
⇓

(GX)

(CK)
T ` x1 T ` K

T ` {x1}K
. . . (CK)

T ` xn T ` K

T ` {xn}K

T ` {x1}K ⊕ . . . ⊕ {xn}K

Figure 6: Permutation of the rules (GX)-(C) into (C)-(GX).

(since no decryption key is a subterm of T or u) and not the rules (UR), (UL)
and (P) because there is no term headed with the pair function in T ∪ {u}. By
consequence theses proofs contains only the rules (A), (C) and (GX).

Applying the transformations of the Figure 3 (merge of two (GX) rules) and
Figure 6 (switch rules (GX) and (C)), existence of such a proof is equivalent to
existence of a proof of the following form:

(GX)

(C)

(C)

(A)
{i}γ1 ⊕ {i}δ1 ∈ T

T ` {i}γ1 ⊕ {i}δ1

...

T ` {i}γ1c1 ⊕ {i}δ1c1

. . . (C)

(C)

(A)
{i}γl ⊕ {i}δl ∈ T

T ` {i}γl ⊕ {i}δl

...

T ` {i}γlcl ⊕ {i}δlcl

T ` {i}α ⊕ {i}β

where we may assume without loss of generality that no non-empty subset of
the premises of the (GX) rule sums up to 0. There exists such a proof if either
{i}α = {i}β, or if there exists a sequence of terms {i}γ1 ⊕ {i}δ1 , . . . , {i}γl ⊕ {i}δl

such that each of them is either some {i}αi ⊕ {i}βi or some {i}βi ⊕ {i}αi , and a
sequence c1, . . . , cl such that:

{i}α = {i}γ1c1 , {i}δ1c1 = {i}γ2c2 , . . . , {i}δl−1cl−1 = {i}γlcl , {i}δlcl = {i}β

in the term algebra, which is equivalent to the existence of a solution to C . The
claim follows from the EXPSPACE-hardness of CSG [MM82]. �

11 Conclusion

We propose a DOUBLE-EXP-TIME decision procedure for solving the intruder
deduction problem in presence of the equational theory XCDE (eXclusive-or
with a Commutative and Distributive Encryption). The commutativity of the
encryption requires to consider all combinations of keys in the subterms, to
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be more attentive and to develop a new normalization of proof. We also
prove in the binary case that this problem is EXPSPACE-hard. The next stage
will be to find the exact complexity of this problem. The intruder deduction
problem is the first step in the verification of cryptographic protocols as for
instance in [RT01] without any equational theory, or later in [CLS03, CKRT03a]
to consider the equational theory of exclusive-or. The second step is verifying
the case of an active intruder. The active case without equational theory, but
with a commutative encryption, was shown to be decidable by [CKRT04]. We
prove that the problem is decidable for an active intruder with a homomorphic
operation which is not the encryption [DLLT06]. In the case of the equational
theory of the exclusive-or and non-commutative distributive encryption over
this operator, it seems impossible to solve the equations systems in the usual
way. But after having studied the first step by demonstrating the intruder
deduction problem in the XCDE case, we could apply some mathematical
results for solving these equations systems.
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