
HAL Id: hal-01759935
https://hal.science/hal-01759935

Submitted on 5 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automated Security Proof for Symmetric Encryption
Modes

Martin Gagné, Pascal Lafourcade, Yassine Lakhnech, Reihaneh Safavi-Naini

To cite this version:
Martin Gagné, Pascal Lafourcade, Yassine Lakhnech, Reihaneh Safavi-Naini. Automated Security
Proof for Symmetric Encryption Modes. Advances in Computer Science - ASIAN 2009. Information
Security and Privacy, 13th Asian Computing Science Conference„ Dec 2009, Séoul, South Korea.
�hal-01759935�

https://hal.science/hal-01759935
https://hal.archives-ouvertes.fr

Automated Security Proof for Symmetric
Encryption Modes. ?

Martin Gagné2, Pascal Lafourcade1, Yassine Lakhnech1, and Reihaneh
Safavi-Naini2

1 Université Grenoble 1, CNRS,Verimag, FRANCE
2 Department of Computer Science, University of Calgary, Canada

Abstract. We presents a compositional Hoare logic for proving seman-
tic security of modes of operation for symmetric key block ciphers. We
propose a simple programming language to specify encryption modes
and an assertion language that allows to state invariants and axioms and
rules to establish such invariants. The assertion language consists of few
atomic predicates. We were able to use our method to verify semantic
security of several encryption modes including Cipher Block Chaining
(CBC), Cipher Feedback mode (CFB), Output Feedback (OFB), and
Counter mode (CTR).

1 Introduction

A block cipher algorithm (e.g. AES, Blowfish, DES, Serpent and Twofish) is a
symmetric key algorithm that takes a fixed size input message block and pro-
duces a fixed size output block. A mode of operation is a method of using a
block cipher on an arbitrary length message. Important modes of operation are
Electronic Code Book (ECB), Cipher Block Chaining (CBC), Cipher FeedBack
mode (CFB), Output FeedBack (OFB), and Counter mode (CTR). Modes of op-
erations have different applications and provide different levels of security and
efficiency. An important question when a mode of operation is used for encryp-
tion is the level of security that the mode provides, assuming the underlying
block cipher is secure. The answer to this question is not straightforward. For
example if one uses the naive ECB mode with a “secure” block cipher, then the
encryption scheme obtained is not even IND-CPA secure. Others, like CBC or
CTR, will provide confidentiality only if the initial vector (IV) is chosen ade-
quately.

Recent years have seen an explosion of new modes of operation for block
cipher (IACBC, IAPM [19], XCB [23], TMAC [18, 20], HCTR [5], HCH [7],
EMU [15], EMU* [12], PEP [6], OMAC [16, 17], TET [13], CMC [14], GCM [24],
EAX [4], XEX [25], TAE, TCH, TBC [22, 28] to name only a few). These new
modes of operation often offer improved security guarantees, or additional secu-
rity features. They also tend to be more complex than the traditional modes of
operations, and arguments for proving their security can similarly become much
? This work was supported by ANR SeSur SCALP, SFINCS, AVOTE and iCORE.

more complicated – sometimes so complicated that flaws in the security proofs
could go unnoticed for years.

Proofs generated by automated verification tools can provide us with an
independent argument for the security of modes of operation, thereby increasing
our confidence in the security of cryptographic protocols. While the rules used
by the prover must also be proven by humans, and are therefore also susceptible
to error, they tend to be much simpler than the protocols they will be used to
check, which ensures that mistakes are far less likely to go unnoticed. In this
paper, we take a first step towards building an automated prover for modes of
operation, and show how to automatically generate proofs for many traditional
block cipher modes of operation.

Contributions: We propose a compositional Hoare logic for proving seman-
tic security of modes of operation for symmetric key block ciphers. We notice
that many modes use a small set of operations such as xor, concatenation, and
selection of random values. We introduce a simple programming language to
specify encryption modes and an assertion language that allows to state invari-
ants and axioms and rules to establish such invariants. The assertion language
requires only four predicates: one that allows us to express that the value of a
variable is indistinguishable from a random value when given the values of a set
of variables, one that states that an expression has not been yet submitted to
the block cipher, and two bookkeeping predicates that allow us to keep track of
‘fresh’ random values and counters. Transforming the Hoare logic into an (in-
complete) automated verification procedure is quite standard. Indeed, we can
interpret the logic as a set of rules that tell us how to propagate the invariants
backwards. Using our method, an automated prover could verify semantic secu-
rity of several encryption modes including CBC, CFB, CTR and OFB. Of course
our system does not prove ECB mode, because ECB is not semantically secure.

Related Work: Security of symmetric encryption modes have been studied
for a long time by the cryptographers. In [1] the authors presented different con-
crete security notions for symmetric encryption in a concrete security framework.
For instance, they give a security analysis of CBC mode. In [2] a security analysis
of the encryption mode CBC-MAC [21]. In [26] they propose a new encryption
mode called OCB for efficient authenticated encryption and provide a security
analysis of this new mode. Many other works present proofs of encryption modes.

Other works try to encode security of symmetric encryption modes as a
non-interference property for programs with deterministic encryption. For ex-
ample, [9] presents a computationally sound type system with exact security
bounds for such programs. This type system has been applied to verify some
symmetric encryption modes. The logic presented in this paper can be used to
give a more structured soundness proof for the proposed type system. Moreover,
we believe that our logic is more expressive and can be more easily adapted to
more encryption modes.

A first important feature of our method is that it is not based on a global
reasoning and global program transformation as it is the case for the game-based
approach [3, 27].

2

In [8], the authors proposed an automatic method for proving semantic se-
curity for asymmetric generic encryption schemes. Our work continues that line
of work. We extend the input language and axioms of the Hoare logic of [8] in
order to capture symmetric encryption modes.

Outline: In Section 2 we introduce the material for describing the encryp-
tion modes. In Section 3, we present our Hoare Logic for analyzing the semantic
security of encryption modes described with the grammar given in the previous
section. Finally before concluding in the last section, we apply our method to
some examples in Section 4.

2 Definitions

2.1 Notation and Conventions

For simplicity, over this paper, we assume that all variables range over large
domains, whose cardinality is exponential in the security parameter η. We also
assume that all programs have length polynomial in η.

A block cipher is a function E : {0, 1}k × {0, 1}η → {0, 1}η such that for
each K ∈ {0, 1}k, E(K, ·) is a permutation. It takes as input a k-bit key and an
η-bit message block, and returns an η-bit string. We often denote by E(x) the
application of the block cipher to the message block x. We omit the key used
every time to simplify the notation, but it is understood that a key was selected
at random at the beginning of the experiment and remains the same throughout.

For a mode of operation M , we denote by EM the encryption function de-
scribed by M using block cipher E .

For a probability distribution D, we denote by x
$←− D the operation of

sampling a value x according to distribution D. If S is a finite set, we denote by
x

$←− S the operation of sampling x uniformly at random among the values in S.
Given two distribution ensembles X = {Xη}η∈N and X ′ = {X ′η}η∈N, an

algorithm A and η ∈ N, we define the advantage of A in distinguishing Xη and
X ′η as the following quantity:

Adv(A, η,X,X ′) = Pr[x $←− Xη : A(x) = 1]− Pr[x $←− X ′η : A(x) = 1].

Two distribution ensemblesX andX ′ are called indistinguishable, denoted by
X ∼ X ′, if Adv(A, η,X,X ′) is negligible as a function of η for every probabilistic
polynomial-time algorithm A.

2.2 Grammar

We introduce our language for defining a generic encryption mode. The com-
mands are given by the grammar of Figure 1, where:

– x
$←− U denotes uniform sampling of a value and assigning it to x.

3

– x := E(y) denotes application of the block cipher E to the value of y and
assigning the result to x.

– Similarly for x := E−1(y), where E−1 denotes the inverse function of E .
– x := y ⊕ z denotes application of the exclusive-or operator to the values of
y and z and assigning the result to x.

– x := y||z represents the concatenation of the values of y and z.
– x := y[n,m] assigns to x the bits at positions between n and m in the

bit-string value of y. I.e., for a bit-string bs = b1 . . . bk, where the bi’s are
bits, bs[n,m] denotes the bits-string bn . . . bm1. Then, x := y[n,m] assigns
bs[n,m] to x, where bs is the value of y. Here, n and m are polynomials in
the security parameter η.

– x := y+ 1 increments by one the value of y and assigns the result to x. The
operation is carried modulo 2η.

– c1; c2 is the sequential composition of c1 and c2.

c ::= x
$←− U | x := E(y) | x := E−1(y) | x := y ⊕ z | x := y‖z | x := y[n,m] |

| x := y + 1 | c1; c2

Fig. 1. Language grammar

2.3 Generic Encryption Mode

We can now formally define a mode of encryption.

Definition 1 (Generic Encryption Mode). A generic encryption mode M
is represented by EM (m1| . . . |mi, c0| . . . |ci) : var xi; ci, where xi is the set of
variables used in ci, all commands of ci are built using the grammar described
in Figure 1, each mj is a message blocks, and each cj is a cipher block, both of
size n according to the input length of the block cipher E.

We add the additional block c0 to the ciphertext because encryption modes
are usually generate ciphertexts longer than the message. In all examples in
this paper, c0 will be the initialization vector (IV). The definition can easily be
extended for encryption modes that also add one or more blocks at the end.

In Figure 2, we present the famous encryption mode ECBC for a message of
three blocks.

2.4 Semantics

In addition to the variables in Var,2 we consider a variable TE that records
the values on which E was computed and cannot be accessed by the adversary.
1 Notice that bs[n,m] = ε, when m < n and bs[n,m] = bs[n, k], when m > k
2 We denote by Var the complete set of variables in the program, whereas var denotes
the set of variables in the program that are not input or output variables.

4

ECBC(m1|m2|m3, IV |c1|c2|c3) :
var z1, z2, z3;
IV

$←− U ;
z1 := IV ⊕m1;
c1 := E(z1);
z2 := c1 ⊕m2;
c2 := E(z2);
z3 := c2 ⊕m3;
c3 := E(z3);

Fig. 2. Description of ECBC

Thus, we consider states that assign bit-strings to the variables in Var and lists
of pairs of bit-strings to TE . Given a state S, S(TE).dom and S(TE).res denote
the lists obtained by projecting each pair in S(TE) to its first and second element
respectively.

The state also contains two sets of variables, F and C, which are used for
bookkeeping purposes. The set F contains the variables with values that were
sampled at random or obtained as a result of the computation of the block cipher,
and have not yet been operated on. Those values are called fresh random values.
The set C contains the variables whose value are the most recent increment of a
counter that started at a fresh random value.

A program takes as input a configuration (S, E) and yields a distribution
on configurations. A configuration is composed of a state S, a block cipher E .
Let ΓE denote the set of configurations and Dist(ΓE) the set of distributions
on configurations. The semantics is given in Table 1. In the table, δ(x) denotes
the Dirac measure, i.e. Pr[x] = 1 and TE 7→ S(TE) · (x, y) denotes the addition
of element (x, y) to TE . Notice that the semantic function of commands can
be lifted in the usual way to a function from Dist(ΓE) to Dist(ΓE). That is,
let φ : ΓE → Dist(ΓE) be a function. Then, φ defines a unique function φ∗ :
Dist(ΓE) → Dist(ΓE) obtained by point-wise application of φ. By abuse of
notation we also denote the lifted semantics by [[c]].

A notational convention. It is easy to see that commands never alter E .
Therefore, we can, without ambiguity, write S′ $←− [[c]](S, E) instead of (S′, E) $←−
[[c]](S, E).

Here, we are only interested in distributions that can be constructed in poly-
nomial time. We denote their set by Dist(Γ,F), where F is a family of block
ciphers, and is defined as the set of distributions of the form:

[E $←− F(1η);S $←− [[p]](I, E) : (S, E)]

where p is a program with a polynomial number of commands, and I is the
“initial” state, in which all variables are undefined and all lists and sets are
empty.

5

[[x
$←− U]](S, E) = [u

$←− U : (S{x 7→ u,F 7→ F ∪ {x},C 7→ C \ {x}}, E)]
[[x := E(y)]](S, E) =

δ(S{x 7→ v, F 7→ F ∪ {x} \ {y},C 7→ C \ {x}}, E) if (S(y), v) ∈ S(TE)
δ(S{x 7→ v, F 7→ F ∪ {x} \ {y},C 7→ C \ {x}, TE 7→ S(TE) · (S(y), v)}, E)

if (S(y), v) 6∈ S(TE) and v = E(S(y))
[[x := E−1(y)]](S, E) = δ(S{x 7→ E−1(S(y)), F 7→ F \ {x, y},C 7→ C \ {x}}, E)
[[x := y ⊕ z]](S, E) = δ(S{x 7→ S(y)⊕ S(z), F 7→ F \ {x, y, z},C 7→ C \ {x}}, E)
[[x := y||z]](S, E) = δ(S{x 7→ S(y)||S(z), F 7→ F \ {x, y, z},C 7→ C \ {x}}, E)
[[x := y[n,m]]](S, E) = δ(S{x 7→ S(y)[n,m], F 7→ F \ {x, y},C 7→ C \ {x}}, E)
[[x := y + 1]](S, E) ={

δ(S{x 7→ S(y) + 1, C 7→ C ∪ {x} \ {y}, F 7→ F \ {x, y}}, E) if y ∈ S(F) or y ∈ S(C)
δ(S{x 7→ S(y) + 1, F 7→ F \ {x, y},C 7→ C \ {x}}, E) otherwise

[[c1; c2]] = [[c2]] ◦ [[c1]]

Table 1. The semantics of the programming language

2.5 Security Model

Ideal Cipher Model
We prove the modes of encryption secure in the ideal cipher model. That

is, we assume that the block cipher is a pseudo-random function.3 This is a
standard assumption for proving the security of any block-cipher-based scheme.

The advantage of an algorithm A against a family of pseudo-random function
is defined as follows.

Definition 2. Let P : {0, 1}k × {0, 1}n → {0, 1}n be a family of functions and
let A be an algorithm that takes an oracle and returns a bit. The prf-advantage
of A is defined as follows.

AdvprfA,P = Pr[K $←− {0, 1}k;AP (K,·) = 1]− Pr[R $←− Φn;AR(·) = 1]

where Φn is the set of all functions from {0, 1}n to {0, 1}n.

The security of a symmetric mode of operation is usually proven by first
showing that the mode of operation would be secure if E was a random func-
tion in Φn. As a result, an adversary A against the encryption scheme can be
transformed into an adversary B against the block cipher (as a pseudo-random
function) with a similar running time, such that B’s prf-advantage is similar to
A’s advantage in breaking the encryption scheme.

Encryption Security
Semantic security for a mode of encryption is defined as follows.

3 While block ciphers are really families of permutations, it is well known that pseudo-
random permutations are indistinguishable from pseudo-random functions if the
block size is large enough.

6

Definition 3. Let EM (m1| . . . |mi, c0| . . . |ci) : var xi; ci be a generic encryption
mode. A = (A1, A2) be an adversary and X ∈ Dist(Γ, E). For η ∈ N, let

Advind−CPAA,M (η,X)

= 2 ∗ Pr[(S, E) $←− X;

(x0, x1, p, s)
$←− AO1

1 (η); b $←− {0, 1};
S′

$←− [[cp]](S{m1| . . . |mp 7→ xb}, E) :
AO2

2 (x0, x1, s, S
′(c0| . . . |cp)) = b]− 1

where O1 = O2 are oracles that take a pair (m, j) as input, where m is a string
and j is the block length of m, and answers using the jth algorithm in EM . A1

outputs x0, x1 such that |x0| = |x1| and are composed of p blocks. The mode of
operationM is semantically (IND-CPA) secure if Advind−CPAA,M (η,X) is negligible
for any constructible distribution ensemble X and polynomial-time adversary A.

It is important to note that in this definition, an adversary against the scheme
is only given oracle access to the encryption mode EM , and not to the block cipher
E itself.

Our method verifies the security of an encryption scheme by proving that
the ciphertext is indistinguishable from random bits. It is a classical result that
this implies semantic security.

3 Proving Semantic Security

In this section, we present our Hoare logic for proving semantic (IND-CPA)
security for generic encryption mode defined with our language. We prove that
our logic is sound although not complete. Our logic can be used to annotate
each command of our programming language with a set of invariants that hold
at each point of the program for any execution.

3.1 Assertion Language

We consider new predicates in order to consider properties of symmetric encryp-
tion modes. We use a Hoare Logic based on the following invariants:

ϕ ::= true | ϕ ∧ ϕ | ψ
ψ ::= Indis(νx;V) | F (x) | E(E , e) | Rcounter(e),

where V ⊆ Var and e is an expression constructible out of the variables used in
the program and the grammar presented in Section 2. Intuitively:

Indis(νx;V): means that any adversary has negligible probability to distinguish
whether he is given results of computations performed using the value of x
or a random value, when he is given the values of the variables in V .

E(E , e): means that the probability that the value E(e) has already been com-
puted is negligible.

7

F (e): means e is a fresh random value.
RCounter(e): means that e is the most recent value of a counter that started

at a fresh random value.

More formally, for each invariant ψ, we define that a distribution X satisfies
ψ, denoted X |= ψ as follows:

– X |= true.
– X |= ϕ ∧ ϕ′ iff X |= ϕ and X |= ϕ′.
– X |= Indis(νx;V) iff [(S, E) $←− X : (S(x, V), E)] ∼ [(S, E) $←− X;u $←− U ;S′ =
S{x 7→ u} : (S′(x, V), E)]

– X |= E(E , e) iff Pr[(S, E) $←− X : S(e) ∈ S(TE).dom] is negligible.
– X |= F (e) iff Pr[(S,E) $←− X : e ∈ S(F)] = 1.
– X |= RCounter(e) iff Pr[(S,E) $←− X : e ∈ S(C)] = 1.

3.2 Hoare Logic Rules

We present a set of rules of the form {ϕ}c{ϕ′}, meaning that execution of com-
mand c in any distribution that satisfies ϕ leads to a distribution that satisfies
ϕ′. Using Hoare logic terminology, this means that the triple {ϕ}c{ϕ′} is valid.
We group rules together according to their corresponding commands. We do
not provide rules for the commands x := E−1(y) or x := y[n,m] since those
commands are only used during decryption.

Notation: For a set V , we write V, x as a shorthand for V ∪ {x}, V − x as a
shorthand for V \ {x}, and Indis(νx) as a shorthand for Indis(νx; Var).

Random Assignment:

– (R1) {true} x $←− U {F (x) ∧ Indis(νx) ∧ E(E , x)}
– (R2) {Indis(νy;V)} x $←− U {Indis(νy;V, x)}

Increment:
– (I1) {F (y)} x := y + 1 {RCounter(x) ∧ E(E , x)}
– (I2) {RCounter(y)} x := y + 1 {RCounter(x) ∧ E(E, x)}
– (I3) {Indis(νz;V)} x := y + 1 {Indis(νz;V − x)} if z 6= x, y and y 6∈ V

Xor operator:
– (X1) {Indis(νy;V, y, z)}x := y ⊕ z{Indis(νx;V, x, z)} where x, y, z 6∈ V ,
– (X2) {Indis(νy;V, x)}x := y ⊕ z{Indis(νy;V)} where x 6∈ V ,
– (X3) {Indis(νt;V, y, z)} x := y ⊕ z {Indis(νt;V, x, y, z)} if t 6= x, y, z and
x, y, z 6∈ V

– (X4) {F (y)} x := y ⊕ z {E(E , x)} if y 6= z

Concatenation:
– (C1) {Indis(νy;V, y, z)} ∧ {Indis(νz;V, y, z)} x := y‖z {Indis(νx;V, x)} if
y, z 6∈ V

8

– (C2) {Indis(νt;V, y, z)} x := y‖z {Indis(νt;V, x, y, z)} if t 6= x, y, z

Block cipher:
– (B1) {E(E , y)} x := E(y) {F (x) ∧ Indis(νx) ∧ E(E , x)}
– (B2) {E(E , y) ∧ Indis(νz;V)} x := E(y) {Indis(νz;V)} provided z 6= x
– (B3) {E(E , y) ∧Rcounter(z)} x := E(z) {Rcounter(z)} provided z 6= x
– (B4) {E(E , y) ∧ E(E , z)} x := E(y) {E(E , z)} provided z 6= x, y
– (B5) {E(E , y) ∧ F (z)} x := E(y) {F (z)} provided z 6= x, y

Finally, we add a few rules whose purpose is to preserve invariants that are
unaffected by the command.

Generic preservation rules:
Assume that z 6= x,w, v and c is either x $←− U , x := w‖v, x := w ⊕ v, or
x := w + 1:

– (G1) {Indis(νz;V)} c {Indis(νz;V)} provided w, v ∈ V
– (G2) {E(E , z)} c {E(E , z)}
– (G3) {RCounter(z)} c {RCounter(z)}
– (G4) {F (z)} c {F (z)}

3.3 Proof Sketches

Due to space restrictions, we cannot present formal proofs of all our rules here.
We present quick sketches instead to give the reader some intuition as to why
each rule holds. The complete proofs are available in our full manuscript [11].

Rules for random assignment.
In rule (R1), F (x) simply follows from the definition of F (·), and Indis(νx)

should be obvious since x has just been sampled at random, independently of all
other values. Also, since the block cipher has been computed only on a polyno-
mial number of values, out of an exponential domain, the probability that x has
been queried to the block cipher is clearly negligible. Rule (R2) is easily proven
using the fact that, at this point, x is independent from all other values in the
program.

Rules for increment.
For rules (I1) and (I2) the behavior of RCounter(·) easily follows from its

definition. Note that since we have either F (y) or RCounter(y), y (and x) were
obtained by repeatedly applying +1 to a random value r, i.e. x = r + k for
some number k. Since E was computed only on a polynomial number of values,
the probability of being less than k away from one of those values is negligible,
therefore the probability that x has been queried to the block cipher is negligible.
In (I3), if Indis(νz;V) holds, then clearly Indis(νz;V − x) holds as well, and the
values in V − x are unchanged by the command.

9

Rules for Xor.
Rules (X1) and (X2) are proven by considering y as a one-time pad applied

to z. As a result, one of x or y will be indistinguishable from random provided
that the other is not known. For (X3), one simply notes that x is easy to construct
from y and z, so if t is indistinguishable from random given y and z, then it is
also indistinguishable from random given x, y and z. For rule (X4), since y is
fresh, it is still independent from all other values, from z in particular. It then
follows that x has the same distribution as y and is independent from all values
except y and therefore, the probability that it has been queried to E is negligible
for the same reason that y is.

Rules for concatenation.
Rules (C1) and (C2) follow simply from the observation that the concatena-

tion of two independent random strings is a random string.

Rules for block cipher.
To prove (B1), in the Ideal Cipher Model, E is sampled at random among all

possible functions {0, 1}η → {0, 1}η. Since y has never been queried to the block
cipher, x := E(y) is indistinguishable from an independent random value, and so
possess the same invariants as if x $←− U had been executed. Rules (B2) to (B5)
simply preserve invariants that are unaffected by the computation of the block
cipher on a value that has never been queried before.

Generic preservation rules.
The conditions for applying those rules, particularly z 6= x,w, v were designed

specifically so that the command would have no effect on the invariant. The
invariant is therefore preserved.

As a result of all this, we have the following:

Proposition 1. In the Ideal Cipher Model, the Hoare triples given in the pre-
vious rules are valid.

As a result, our method can be used to prove the semantic security of an
encryption mode by proving that, from the adversary’s point of view, the ci-
phertexts are indistinguishable from random bits.

Proposition 2. Let EM (m1| . . . |mi, c0| . . . |ci) : var xi; ci be a generic encryp-
tion mode describe with our language, and let IO = {m1, . . . ,mi, c0, . . . , ci}. If
{true}ci

∧i
k=0{Indis(νck; IO)} is valid for every i, then EM is IND-CPA secure

in the Ideal Cipher Model.

We conclude with the following, which states that our method of proving
security of encryption modes is sound in the standard model.

Proposition 3. Let EM be an encryption mode proven secure in the Ideal Ci-
pher Model using the method of Proposition 2. If there exists a standard model
algorithm A such that Advind−CPAA,M (η,X) is non-negligible, then there exists an
algorithm B such that AdvprfB,E is non-negligible.

10

4 Examples

In this section we apply our method to the traditional encryption modes (CBC),
(CFB), (OFB) and (CTR) in respectively Figure 3, 4, 5 and 6. For simplic-
ity, we consider messages consisting of only 3 blocks. The reader can easily be
convinced that the same invariant propagation holds for any finite number of
blocks. In order to prove IND-CPA security of these encryption schemes we have
to prove that c0 = IV, c1, c2, c3 are indistinguishable from random bitstrings
when given m1,m2,m3, c0, c1, c2 and c3. Of course our method fails in analyzing
ECB encryption mode and the “counter” version of CBC, which are two insecure
operation modes.

CBC & CFB : In Figure 3 and 4, we describe the application of our set of rules
on CBC and CFB examples. The analysis of these two encryption modes are
similar.

OFB : The order of the commands in our description of OFB may seem strange,
but it is not without reason. The variable zi+1 must be computed before ci
because no rule can preserve the invariant E(E , zi) through the computation of
ci.

CTR : This scheme is the only one of the four encryption modes we have studied
that uses the increment command. The analysis is presented in Figure 6. We can
see how the RCounter invariant is used for proving the IND-CPA security of
this mode.

5 Conclusion

We proposed an automatic method for proving the semantic security of symmet-
ric encryption modes. We introduced a small programming language in order to
describe these modes. We construct a Hoare logic to make assertions about vari-
ables and propagate the assertions with the execution of the commands in the
language. If the program which represents an encryption mode satisfies some
invariants at the end of our automatic analysis then we conclude that the en-
cryption mode is IND-CPA secure.

Future work: An obvious extension to our work would be to add a loop con-
struct to our grammar. This would remove the necessity of having a different
program for each message length within a mode of operation. We are also consid-
ering an extension of our work to prove CCA security of encryption modes using
approaches such as the one proposed in [10] or the method proposed in [8]. An-
other more complex and challenging direction is to propose an extended version
of our Hoare Logic in order to be able to analyze “modern” encryption modes
which use more complex mathematical operation or primitives, or to try to use
our method to prove security properties of other block-cipher based construc-
tion, such as unforgeability for block-cipher based MACs, or collision-resistance
for block-cipher based hash functions.

11

ECBC(m1|m2|m3, IV |c1|c2|c3)
var IV, z1, z2, z3;
IV

$←− U ; {Indis(νIV ; Var) ∧ F (IV) ∧ E(E , IV)} (R1)
z1 := IV ⊕m1; {Indis(νIV ; Var− z1) ∧ E(E , z1)} (X2)(X4)
c1 := E(z1); {Indis(νIV ; Var− z1) (B2)

∧ Indis(νc1; Var) ∧ F (c1)} (B1)
z2 := c1 ⊕m2; {Indis(νIV ; Var− z1) (G1)

∧ Indis(νc1; Var− z2) ∧ E(E , z2)} (X2)(X4)
c2 := E(z2); {Indis(νIV ; Var− z1) ∧ Indis(νc1; Var− z2) (B2)

∧ Indis(νc2; Var) ∧ F (c2)} (B1)
z3 := c2 ⊕m3; {Indis(νIV ; Var− z1) ∧ Indis(νc1; Var− z2) (G1)

∧ Indis(νc2; Var− z3) ∧ E(E , z3)} (X2)(X4)
c3 := E(z3); {Indis(νIV ; Var− z1) ∧ Indis(νc1; Var− z2) (B2)

∧ Indis(νc2; Var− z3) ∧ Indis(νc3; Var)} (B1)

Fig. 3. Analysis of CBC encryption mode

ECFB(m1|m2|m3, IV |c1|c2|c3)
var IV, z1, z2, z3;
IV

$←− U ; {Indis(νIV) ∧ F (IV) ∧ E(E , IV)} (R1)
z1 := E(IV); {Indis(νIV) ∧ Indis(νz1) ∧ F (z1)} (B1)(B2)
c1 := z1 ⊕m1; {Indis(νIV) ∧ Indis(νc1; Var− z1) ∧ E(E , c1)} (G1)(X1)(X4)
z2 := E(c1); {Indis(νIV) ∧ Indis(νc1; Var− z1) ∧ F (z2)} (B1)(B2)
c2 := z2 ⊕m2; {Indis(νIV) ∧ Indis(νc1; Var− z1) (G1)

∧ Indis(νc2; Var− z2) ∧ E(E , c2)} (X1) (X4)
z3 := E(c2); {Indis(νIV) ∧ Indis(νc1; Var− z1) (B2)

∧ Indis(νc2; Var− z2) ∧ F (z3)} (B1)
c3 := z3 ⊕m3; {Indis(νIV) ∧ Indis(νc1; Var− z1) (G1)

∧ Indis(νc2; Var− z2) (X1)
∧ Indis(νc3; Var− z3)}

Fig. 4. Analysis of CFB encryption mode

EOFB(m1|m2|m3, IV |c1|c2|c3)
var IV, z1, z2, z3;
IV

$←− U ; {Indis(νIV ; Var) ∧ F (IV) ∧ E(E , IV)} (R1)
z1 := E(IV); {Indis(νIV ; Var) ∧ {F (z1) ∧ E(E , z1) ∧ Indis(νz1; Var)} (B1)(B2)
z2 := E(z1); {Indis(νIV ; Var) ∧ Indis(νz1; Var) ∧ E(E , z2) (B1)(B2)

∧ F (z2) ∧ Indis(νz2; Var)}
c1 := m1 ⊕ z1; {Indis(νIV ; Var) ∧ Indis(νc1; Var− z1) ∧ E(E , z2) (G1)(G2)(X1)

∧ F (z2) ∧ Indis(νz2; Var)}} (G4)
z3 := E(z2); {Indis(νIV ; Var) ∧ Indis(νc1; Var− z1) ∧ E(E , z3) (B1)(B2)

∧ Indis(νz2; Var) ∧ F (z3) ∧ Indis(νz3; Var)} (B2)
c2 := m2 ⊕ z2; {Indis(νIV ; Var) ∧ Indis(νc1; Var− z1)} (G1)

∧ Indis(νc2; Var− z2) ∧ Indis(νz3; Var) (X1)
c3 := m3 ⊕ z3; {Indis(νIV ; Var) ∧ Indis(νc1; Var− z1)} (G1)

∧ Indis(νc2; Var− z2) ∧ Indis(νc3; Var− z3) (X1)

Fig. 5. Analysis of OFB encryption mode

12

ECTR(m1|m2|m3, IV |c1|c2|c3)
var IV, z1, z2, z3;
IV

$←− U ; {Indis(νIV ; Var) ∧ F (IV) ∧ E(E , IV)} (R1)
ctr1 := IV + 1; {Indis(νIV ; Var− ctr1) (I3)

∧ Rcounter(ctr1) ∧ E(E , ctr1)} (I1)
z1 := E(ctr1); {Indis(νIV ; Var− ctr1) ∧Rcounter(ctr1) (B2)(B3)

∧ F (z1) ∧ E(E , z1) ∧ Indis(νz1; Var)} (B1)
c1 := m1 ⊕ z1; {Indis(νIV ; Var− ctr1) ∧Rcounter(ctr1) (G1)(G3)

∧ Indis(νc1; Var− z1)} (X1)
ctr2 := ctr1 + 1; {Indis(νIV ; Var− ctr1− ctr2) (I3)

∧ Indis(νc1; Var− z1) (G1)
∧ Rcounter(ctr2) ∧ E(E , ctr2)} (I2)

z2 := E(ctr2); {Indis(νIV ; Var− ctr1− ctr2) (B2)
∧ Indis(νc1; Var− z1) ∧Rcounter(ctr2) (B1)
∧ F (z2) ∧ E(E , z2) ∧ Indis(νz2; Var)} (B3)

c2 := m2 ⊕ z2; {Indis(νIV ; Var− ctr1− ctr2) (G1)
∧ Indis(νc1; Var− z1) ∧Rcounter(ctr2) (G3)
∧ Indis(νc2; Var− z2)} (X1)

ctr3 := ctr2 + 1; {Indis(νIV ; Var− ctr1− ctr2− ctr3) (I3)
∧ Indis(νc1; Var− z1) ∧ E(E , ctr3) (I2)
∧ Indis(νc2; Var− z2) ∧Rcounter(ctr3)} (G1)

z3 := E(ctr3); {Indis(νIV ; Var− ctr1− ctr2− ctr3) (B2)
∧ Indis(νc1; Var− z1) (B1)
∧ Indis(νc2; Var− z2) ∧Rcounter(ctr3) (B3)
∧ F (z3) ∧ E(E , z3) ∧ Indis(νz3; Var)}

c3 := m3 ⊕ z3; {Indis(νIV ; Var− ctr1− ctr2− ctr3) (G1)
∧ Indis(νc1; Var− z1) (X1)
∧ Indis(νc2; Var− z2)
∧ Indis(νc3; Var− z3)}

Fig. 6. Analysis of CTR encryption mode

13

References

1. Mihir Bellare, Anand Desai, Eron Jokipii, and Phillip Rogaway. A concrete security
treatment of symmetric encryption. Foundations of Computer Science, Annual
IEEE Symposium on, 0:394, 1997.

2. Mihir Bellare, Joe Kilian, and Phillip Rogaway. The security of the cipher block
chaining message authentication code. J. Comput. Syst. Sci., 61(3):362–399, 2000.

3. Mihir Bellare and Phillip Rogaway. Code-based game-playing proofs and the se-
curity of triple encryption. Cryptology ePrint Archive, Report 2004/331, 2004.
http://eprint.iacr.org/.

4. Mihir Bellare, Phillip Rogaway, and David Wagner. The EAX mode of operation.
In FSE, pages 389–407, 2004.

5. Debrup Chakraborty and Mridul Nandi. An improved security bound for HCTR.
pages 289–302, 2008.

6. Debrup Chakraborty and Palash Sarkar. A new mode of encryption providing a
tweakable strong pseudo-random permutation. In Matthew J. B. Robshaw, editor,
FSE, volume 4047 of Lecture Notes in Computer Science, pages 293–309. Springer,
2006.

7. Debrup Chakraborty and Palash Sarkar. HCH: A new tweakable enciphering
scheme using the hash-counter-hash approach. IEEE Transactions on Informa-
tion Theory, 54(4):1683–1699, 2008.

8. Judicael Courant, Marion Daubignard, Cristian Ene, Pascal Lafourcade, and Yas-
sine Lahknech. Towards automated proofs for asymmetric encryption schemes in
the random oracle model. In Proceedings of the 15th ACM Conference on Computer
and Communications Security, (CCS’08), Alexandria, USA, October 2008.

9. Judicaël Courant, Cristian Ene, and Yassine Lakhnech. Computationally sound
typing for non-interference: The case of deterministic encryption. In Vikraman
Arvind and Sanjiva Prasad, editors, FSTTCS, volume 4855 of Lecture Notes in
Computer Science, pages 364–375. Springer, 2007.

10. Anand Desai. New paradigms for constructing symmetric encryption schemes se-
cure against chosen-ciphertext attack. In CRYPTO ’00: Proceedings of the 20th
Annual International Cryptology Conference on Advances in Cryptology, pages
394–412, London, UK, 2000. Springer-Verlag.

11. Martin Gagné, Pascal Lafourcade, Yassine Lakhnech, and Reihaneh Safavi-Naini.
Automated security proof for symmetric encryption modes. Manuscript,2009.
Available at http://pages.cpsc.ucalgary.ca/~mgagne/TR_Asian.pdf,.

12. Shai Halevi. EME*: Extending EME to handle arbitrary-length messages with
associated data. In Anne Canteaut and Kapalee Viswanathan, editors, Progress in
Cryptology - INDOCRYPT 2004, 5th International Conference on Cryptology in
India, Chennai, India, December 20-22, 2004, Proceedings, volume 3348 of Lecture
Notes in Computer Science, pages 315–327. Springer, 2004.

13. Shai Halevi. Invertible universal hashing and the tet encryption mode. In Alfred
Menezes, editor, CRYPTO, volume 4622 of Lecture Notes in Computer Science,
pages 412–429. Springer, 2007.

14. Shai Halevi and Phillip Rogaway. A tweakable enciphering mode. In Dan Boneh,
editor, CRYPTO, volume 2729 of Lecture Notes in Computer Science, pages 482–
499. Springer, 2003.

15. Shai Halevi and Phillip Rogaway. A parallelizable enciphering mode. In Tatsuaki
Okamoto, editor, CT-RSA, volume 2964 of Lecture Notes in Computer Science,
pages 292–304. Springer, 2004.

14

16. Tetsu Iwata and Kaoru Kurosawa. OMAC: One-key CBC MAC. In Thomas
Johansson, editor, FSE, volume 2887 of Lecture Notes in Computer Science, pages
129–153. Springer, 2003.

17. Tetsu Iwata and Kaoru Kurosawa. On the security of a new variant of OMAC. In
Jong In Lim and Dong Hoon Lee, editors, ICISC, volume 2971 of Lecture Notes in
Computer Science, pages 67–78. Springer, 2003.

18. Tetsu Iwata and Kaoru Kurosawa. Stronger security bounds for OMAC, TMAC,
and XCBC. In Thomas Johansson and Subhamoy Maitra, editors, INDOCRYPT,
volume 2904 of Lecture Notes in Computer Science, pages 402–415. Springer, 2003.

19. Charanjit S. Jutla. Encryption modes with almost free message integrity. In
EUROCRYPT ’01: Proceedings of the International Conference on the Theory
and Application of Cryptographic Techniques, pages 529–544, London, UK, 2001.
Springer-Verlag.

20. Kaoru Kurosawa and Tetsu Iwata. TMAC: Two-key CBC MAC. In Marc Joye,
editor, CT-RSA, volume 2612 of Lecture Notes in Computer Science, pages 33–49.
Springer, 2003.

21. Éliane Jaulmes, Antoine Joux, and Frédéric Valette. On the security of random-
ized CBC-MAC beyond the birthday paradox limit - a new construction. In Fast
Software Encryption Ç02, Lecture Notes in Computer Science, pages 237–251.
Springer-Verlag, 2001.

22. Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable block ciphers. In
CRYPTO ’02: Proceedings of the 22nd Annual International Cryptology Conference
on Advances in Cryptology, pages 31–46, London, UK, 2002. Springer-Verlag.

23. David A. McGrew and Scott R. Fluhrer. The security of the extended codebook
(XCB) mode of operation, 2007.

24. David A. McGrew and John Viega. The security and performance of the ga-
lois/counter mode (GCM) of operation. In INDOCRYPT, pages 343–355, 2004.

25. Phillip Rogaway. Efficient instantiations of tweakable blockciphers and refinements
to modes OCB and PMAC. In Pil Joong Lee, editor, ASIACRYPT, volume 3329
of Lecture Notes in Computer Science, pages 16–31. Springer, 2004.

26. Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz. OCB: a block-cipher
mode of operation for efficient authenticated encryption. In CCS ’01: Proceedings
of the 8th ACM conference on Computer and Communications Security, pages
196–205, New York, NY, USA, 2001. ACM.

27. Victor Shoup. Sequences of games: a tool for taming complexity in security proofs,
2004. http://eprint.iacr.org/2004/332.

28. Peng Wang, Dengguo Feng, and Wenling Wu. On the security of tweakable modes
of operation: TBC and TAE. In Jianying Zhou, Javier Lopez, Robert H. Deng,
and Feng Bao, editors, ISC, volume 3650 of Lecture Notes in Computer Science,
pages 274–287. Springer, 2005.

15

