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Abstract. Message authentication codes (MACs) are an essential primi-
tive in cryptography. They are used to ensure the integrity and authen-
ticity of a message, and can also be used as a building block for larger
schemes, such as chosen-ciphertext secure encryption, or identity-based
encryption. We present a method for automatically proving the security
for block-cipher-based and hash-based MACs in the ideal cipher model.
Our method proceeds in two steps, following the traditional method
for constructing MACs. First, the ‘front end’ of the MAC produces a
short digest of the long message, then the ‘back end’ provides a mixing
step to make the output of the MAC unpredictable for an attacker. We
develop a Hoare logic for proving that the front end of the MAC is an
almost-universal hash function. The programming language used to spec-
ify these functions is quite expressive. As a result, our logic can be used
to prove functions based on block ciphers and hash functions. Second, we
provide a list of options for the back end of the MAC, each consisting of
only two or three instructions, each of which can be composed with an
almost-universal hash function to obtain a secure MAC.
Using our method, we implemented a tool that can prove the security
of many CBC-based MACs (DMAC, ECBC, FCBC and XCBC to name
only a few), PMAC and HMAC.

1 Introduction

Message authentication codes (MACs) are among the most common primitives
in symmetric key cryptography. They ensure the integrity and provenance of
a message, and they can be used, in conjunction with chosen-plaintext secure
encryption, to obtain chosen-ciphertext secure encryption. Given the importance
of this primitive, it is important that their proofs of security be the object of
close scrutiny. The study of the security of MACs is, of course, not a new field.
Bellare et al. [5] were the first to prove the security of CBC-MAC for fixed-length
inputs. Following this work, a myriad of new MACs secure for variable-length
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inputs were proposed ([4, 7–9, 17]). None of these protocols’ proofs have been
verified by any means other than human scrutiny.

Automated proofs can provide additional assurance of the correctness of these
security proofs by providing an independent proof of complex schemes. This
paper presents a method for automatically proving the security of MACs based
on block ciphers and hash functions.

Contributions: To prove the security of MACs, we first break the MAC
algorithms into two parts: a ‘front-end’, whose work is to compress long input
messages into small digests, and a ‘back-end’, usually a mixing step, which
obfuscates the output of the front-end. We present a Hoare logic to prove that
the front-ends of MACs are almost-universal hash functions. We then make a
list of operations which, when composed with an almost-universal hash function,
yield a secure MAC.

Our result differs significantly from our previous work that used Hoare logic to
generate proofs of cryptographic protocols (such as [12, 15]) because those results
proved the security of encryption schemes. Proving the security of MACs proved
to be singularly more challenging the because the security property required is
different and much harder to capture using predicates. In particular, we have
to consider the simultaneous execution of the program, define a new semantics
to capture these executions, and introduce new predicates that keep track of
equality and inequality of values between the two executions. We also present a
treatment of for-loops, which allows us to prove the security of protocols that
can take arbitrary strings as an input. We describe two heuristics that can be
used to discover stable loop invariants and apply them to one example. These
heuristics successfully find stable invariants for all the MACs presented in this
paper. This is an important improvement over previous results that only deal
with schemes that had fixed-length inputs.

Finally, we implemented our method into a prototype [14] that can be used to
prove the security of several well-known MACs, such as HMAC [4], DMAC [17],
ECBC, FCBC and XCBC [8] and PMAC [9]. Our prototype goes through
the programs of MACs from beginning to end, instead of the more common
backward approach, because going backwards is potentially exponential, and this
proved extremely inefficient in a previous prototype. We also present an invariant
filter that enables us to discard unnecessary predicates, which speeds up our
implementation and facilitates the discovery of loop invariants.

Related Work: The idea of using Hoare logic to automatically produce proofs
of security for cryptographic protocols is not new. Courant et al. [12] presented a
Hoare logic to prove the security of asymmetric encryption schemes in the random
oracle model. This work was continued by Gagné et al. [15], who showed a Hoare
logic for verifying proofs of security of block cipher modes of encryption. Also
worth mentioning is the paper by Corin and Den Hartog [11], which presented a
Hoare-style proof system for game-based cryptographic proofs.

Fournet et al. [13] developed a framework for modular code-based crypto-
graphic verification. However, their approach considers interfaces for MACs. In
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a way, our work is complementary to theirs, as our result, coupled with theirs,
could enable a more complete verification of systems.

In [1], the authors introduce a general logic for proving the security of
cryptographic primitives. This framework can easily be extended using external
results, such as [12], to add to its power. Our result could also be added to this
framework to further extend it.

Other tools, such as Cryptoverif [10] and EasyCrypt [3, 2], can be used to verify
the security of cryptographic schemes, but they do not offer the functionalities
necessary to prove the security of MACs. Cryptoverif does not support loop
constructs, which are an important part of our result. As for Easycrypt, it relies
on a game-based approach and requires human assistance to enter the sequence
of games. In contrast, our method only requires the description of the program
as input, and automatically outputs a proof.

Outline: In Section 2, we introduce cryptographic background. The following
section introduces our grammar, semantics and assertion language. In Section 4,
we present our Hoare logic and method for proving the security of almost-universal
hash functions, and we discuss our implementation of this logic and treatment of
loops in Section 5. We then obtain a secure MAC by combining these with one of
the back-end options described in Section 6. Finally, we conclude in Section 7.

2 Cryptographic Background

In this section, we introduce a few notational conventions, and we recall a few
cryptographic concepts that will be used in this paper.
Notation and Conventions

Throughout this paper, we assume that all variables range over domains whose
cardinality is exponential in the security parameter η and that all programs have
length polynomial in η.

We say that a function f : N→ R is negligible if, for any polynomial p, there
exists a positive integer n0 such that for all n ≥ n0, f(n) ≤ 1

p(n) .

For a probability distribution D, we denote by x
$←− D the operation of

sampling a value x according to distribution D. If S is a finite set, we denote by

x
$←− S the operation of sampling x uniformly at random among the values in S.

MAC Security
A message authentication code ensures the authenticity a message m by

computing a small tag τ , which is sent together with the message to the intended
receiver. Upon receiving the message and the tag, the receiver recomputes the
tag τ ′ using the message and his own copy of the key, and he accepts the message
as authentic if τ = τ ′. More formally:

Definition 1 (MAC). A message authentication code is a triple of polynomial-
time algorithms (K, MAC, V ), where K(1η) takes a security parameter 1η and
outputs a secret key sk, MAC(sk,m) takes a secret key and a message m, and
outputs a tag, and V (sk,m, tag) takes a secret key, a message and a tag, and
outputs a bit: 1 for a correct tag, 0 otherwise.
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We say that a MAC is secure, or unforgeable if it is impossible to compute a
new valid message-tag pair for anybody who does not know the secret key, even
when given access to oracles that can compute and verify the MACs. This way,
when one receives a valid message-tag pair, he can be certain that the message
was sent by someone who possesses a copy of his secret key.

Definition 2 (Unforgeability). A MAC (K,MAC, V ) is unforgeable under
a chosen-message attack (UNF-CMA) if for every polynomial-time algorithm
A that has oracle access to the MAC and verification algorithm, whose output
message m∗ is different from any message it sent to the MAC oracle, the following
probability is negligible

Pr[sk
$← K(1η); (m∗, tag∗)

$← AMAC(sk,·),V (sk,·,·) : V (sk,m∗, tag∗) = 1]

A standard method for constructing MACs is to apply a pseudo-random
function, or some other form of ‘mixing’ step, to the output of an almost-
universal hash function [18, 19]. Our verification technique assumes that the
MAC is constructed in this way.

Definition 3 (Almost-Universal Hash). A family of functions H = {hi}
indexed with key i ∈ {0, 1}η is a family of almost-universal hash functions if for
any two strings a and b, Prhi∈H[hi(a) = hi(b)] is negligible, where the probability
is taken over the choice of hi in H.

It is much easier to work with this definition than with the unforgeability
definition because of the absence of an adaptive adversary, and the collision
probability is taken over all possible choices of key.

Block Cipher Security
Many MAC constructions are based on block cipher, so we quickly recall the

definition of block ciphers and their security definition.
A block cipher is a family of permutations E : {0, 1}K(η)× {0, 1}η → {0, 1}η

indexed with a key k ∈ {0, 1}K(η) where K(η) is a polynomial. A block cipher
is secure if, for a randomly sampled key, the block cipher is indistinguishable
from a permutation sampled at random from the set of all permutations of
{0, 1}η. However, since random permutations of {0, 1}η and random functions
from {0, 1}η to {0, 1}η are statistically close, and that random functions are often
more convenient for proof purposes, it is common to assume that secure block
ciphers are pseudo-random functions.

Definition 4 (Pseudo-Random Functions). Let P : {0, 1}K(η)× {0, 1}η →
{0, 1}η be a family of functions and let A be an algorithm that takes an oracle
and returns a bit. The prf-advantage of A is defined as follows.

AdvprfA,P =
∣∣∣Pr[k

$←− {0, 1}K(η);AP (k,·) = 1]− Pr[R
$←− Φη;AR(·) = 1]

∣∣∣
where Φη is the set of all functions from {0, 1}η to {0, 1}η.
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Since all the schemes in this paper require only one key for the block cipher, to
simplify the notation, we write only E(m) instead of E(k,m), but it is understood
that a key was selected at the initialization of the scheme, and remains the same
throughout.

Random Oracle Model
For MACs that make use of a hash function, we assume that the hash function

behaves like a random oracle. That is, we assume that the hash function is picked
at random among all possible functions from the given domain and range, and
that every algorithm participating in the scheme, including all adversaries, has
oracle access to this random function. This is a fairly common assumption to
analyze hash functions in cryptographic protocols [6].

Indistinguishable Distributions
Given two distribution ensembles X = {Xη}η∈N and X ′ = {X ′η}η∈N, an

algorithm A and η ∈ N, we define the advantage of A in distinguishing Xη from
X ′η as the following quantity:

Adv(A, η,X,X ′) =
∣∣∣Pr[x $← Xη : A(x) = 1]− Pr[x

$← X ′η : A(x) = 1]
∣∣∣ .

We say that X and X ′ are indistinguishable, denoted by X ∼ X ′, if Adv(A, η,
X,X ′) is negligible as a function of η for every probabilistic polynomial-time
algorithm A.

3 Model

In this section, we introduce the grammar for the programs describing almost-
universal hash function. We present the semantics of each commands, and intro-
duce the assertion language that will be used in for our Hoare logic.

3.1 Grammar

We consider the language defined by the following BNF grammar,

cmd ::= x := E(y) | x := H(y) | x := y | x := y ⊕ z | x := y‖z | x := ρi(y)
| for l = p to q do: [cmdl] | cmd1; cmd2

where p and q are positive integers. Each command has the following effect:

– x := E(y) denotes application of the block cipher E to the value of y and
assigning the result to x.

– x := H(y) denotes the application of the hash function H to the value of y
and assigning the result to x.

– x := y ⊕ z denotes the assignment to x of the xor or the values of y and z.
– x := y||z denotes the assignment to x of the concatenation of the values of y

and z.
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– x := ρi(y) denotes the i-fold application of the function ρ to the value of y
(that is, ρ(. . . (ρ(y) . . .)), where ρ is repeated i times) and assigning the result
to x.

– for l = p to q do: [cmdl] denotes the successive execution of cmdp, cmdp+1, . . . ,
cmdq when p ≤ q. If p > q, the command has no effect.

– c1; c2 is the sequential composition of c1 and c2.

The function ρ is used to compute the tweak in tweakable block ciphers ([16]).
The function used to compute this tweak can vary from one protocol to the next,
so we only specify that it must be a public function. When a scheme uses a
function ρ, the properties of the function ρ required for the proof will be added
to the initial conditions of the verification procedure.

Definition 5 (Generic Hash Function). A generic hash function Hash on n
message blocks m1, . . . ,mn and with output cn, is represented by a tuple (FE ,FH,
Hash(m1‖ . . . ‖mn, cn) : var x; cmd), where FE is a family of pseudorandom
permutations (usually a block cipher), FH is a family of cryptographic hash func-
tions, and Hash(m1‖ . . . ‖mn, cn) : var x; cmd is the code of the hash function,
where x is the set of all the variables in the program that are neither input
variable, output variables, or the secret key, and the commands of cmd are built
using the grammar described above.

We assume that, prior to executing the MAC, the message has been padded us-
ing some unambiguous padding scheme, so that all the message blocks m1, . . . ,mn

are of equal and appropriate length for the scheme, usually the input length
of the block cipher. We also assume that each variable in the program cmd is
assigned at most once, as it is clear that any program can be transformed into an
equivalent program with this property, and that the input variables m1, . . . ,mn

never appear on the left side of any command since these variables already hold
a value before the execution of the program. For simplicity of exposition, we
henceforth assume that all the programs in this paper satisfy these assumptions.

Using this formalism, we describe in Figure 1 the hash functions HashCBC ,
HashCBC′ , HashPMAC and HashHMAC , which are treated in this paper. The
hash function HashCBC will be used as a running example throughout this
paper.

3.2 Semantics

In our analysis, we consider the execution of a program on two inputs simul-
taneously. These simultaneous executions will enable us to keep track of the
probability of equality and inequality of strings between the two executions,
thereby allowing us to prove that the function is almost-universal.

Each command is a function that takes a configuration and outputs a distri-
bution on configurations. A configuration is a tuple (S, S′, E ,H,LE ,LH) where S
and S′ are states, E is a block cipher, H is a hash function (that will be modeled
as a random oracle), and LE and LH are lists of pairs.
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HashCBC(m1‖ . . . ‖mn, cn) : HashPMAC(m1‖ . . . ‖mn, cn) :
var i, z2, . . . , zn, c1, . . . , cn−1; var i, w1, x1, y1, z1, . . . , wn, xn, yn, zn,
c1 := E(m1); var c1, . . . , cn−1

for i = 2 to n do: c1 := m1;
[zi := ci−1 ⊕mi; w1 := ρ(k);
ci := E(zi)] x1 := w1 ⊕m1;

z1 = E(w1);
HashCBC′(m1‖ . . . ‖mn, cn) : for i = 2 to n do:
var i, z2, . . . , zn, c1, . . . , cn−1; [ci := zi−1 ⊕mi;
c1 := m1; wi := ρi(k);
for i = 2 to n do: xi := wi ⊕mi;

[zi := E(ci−1); yi := E(xi);
ci := zi ⊕mi] zi := zi−1 ⊕ yi]

HashHMAC(m1‖ . . . ‖mn, cn):
var i, z1, . . . , zn, c1, . . . , cn−1;
z1 := k‖m1;
c1 = H(z1);
for i = 2 to n do:

[zi := ci−1‖mi;
ci := H(zi)]

Fig. 1. Description of HashCBC , HashCBC′ , HashPMAC and HashHMAC

A state is a function S : Var→ {0, 1}∗∪⊥, where Var is the full set of variables
in the program, that assigns bitstrings to variables (the symbol ⊥ is used to
indicate that no value has been assigned to the variable yet). A configuration
contains two states, one for each execution of the program.

The list LE records the values for which the functions E was computed. The
list is common for both executions of the program. Every time a command
of the type x := E(y) is executed in the program, we add (S(y), E(S(y)) and
(S′(y), E(S′(y)) to LE if they are not already present. We denote by LE .dom and
LE .res the lists obtained by projecting each pair in LE to its first and second
element respectively. We define LH, LH.dom and LH.res for the hash function
H similarly.

Let Γ denote the set of configurations and Dist(Γ ) the set of distributions on
configurations. The semantics is given in Table 1, where δ(x) denotes the Dirac
measure, i.e. Pr[x] = 1, S{x 7→ v} denotes the state which assigns the value v
to the variable x, and behaves like S for all other variables, LE · (x, y) denotes
the addition of element (x, y) to LE and ◦ denotes function composition. The
semantic function cmd : Γ → Dist(Γ ) of commands can be lifted in the usual
way to a function cmd∗ : Dist(Γ )→ Dist(Γ ) by point-wise application of φ. By
abuse of notation we also denote the lifted semantics by [[cmd]].

Here, we are only interested in the distributions that capture the initial
situation of Definition ??, which we denote Dist0(Γ,FE ,FH) where FE is a
family of block ciphers, FH is a family of hash functions, and those distributions
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[[x := E(y)]](S, S′, E ,H,LE ,LH) =

δ(S{x 7→ v}, S′{x 7→ v′}, E ,H,LE ,LH) if (S(y), v), (S′(y), v′) ∈ LE
δ(S{x 7→ v}, S′{x 7→ v′}, E ,H,LE · (S(y), v),LH)

if (S(y), v) 6∈ LE , (S′(y), v′) ∈ LE and v = E(S(y))
δ(S{x 7→ v}, S′{x 7→ v′}, E ,H,LE · (S′(y), v′),LH)

if (S(y), v) ∈ LE , (S′(y), v′) 6∈ LE and v′ = E(S′(y))
δ(S{x 7→ v}, S′{x 7→ v′}, E ,H, (LE · (S(y), v)) · (S′(y), v′),LH)

if (S(y), v), (S′(y), v′) 6∈ LE and v = E(S(y)), v′ = E(S′(y))
[[x := H(y)]](S, S′, E ,H,LE ,LH) =

δ(S{x 7→ v}, S′{x 7→ v′}, E ,H,LE ,LH) if (S(y), v), (S′(y), v′) ∈ LH
δ(S{x 7→ v}, S′{x 7→ v′}, E ,H,LE ,LH · (S(y), v))

if (S(y), v) 6∈ LH, (S′(y), v′) ∈ LH and v = H(S(y))
δ(S{x 7→ v}, S′{x 7→ v′}, E ,H,LE ,LH · (S′(y), v′))

if (S(y), v) ∈ LH, (S′(y), v′) 6∈ LH and v′ = H(S′(y))
δ(S{x 7→ v}, S′{x 7→ v′}, E ,H,LE , (LH · (S(y), v)) · (S′(y), v′))

if (S(y), v), (S′(y), v′) 6∈ LH and v = H(S(y)), v′ = H(S′(y))
[[x := y ⊕ z]](S, S′, E ,H,LE ,LH) = δ(S{x 7→ S(y)⊕ S(z), S′{x 7→ S′(y)⊕ S′(z)},

E ,H,LE ,LH)
[[x := y||z]](S, S′, E ,H,LE ,LH) = δ(S{x 7→ S(y)||S(z), S′{x 7→ S′(y)||S′(z)}, E ,H,

LE ,LH)
[[x := ρi(t)]](S, S′, E ,H,LE ,LH) = δ(S{x 7→ ρi(S(y))}, S′{x 7→ ρi(S′(y))}, E ,H,

LE ,LH)

[[for l = p to q do: [cmdl]]] =

{
[[cmdq]] ◦ [[cmdq−1]] ◦ . . . ◦ [[cmdp]] if p ≤ q
the identity function otherwise

[[c1; c2]] = [[c2]] ◦ [[c1]]

Table 1. The semantics of the programming language

obtained by executing a program on one of the initial distributions, denoted
Dist(Γ,FE ,FH). The set of initial distributions Dist0(Γ,FE ,FH) contains all
the following distributions:

D(M,M ′)
0 = [E $← FE(1η);H $← FH(1η);u

$← {0, 1}η; (S, S′,LE ,LH)
$← AH(1η) :

(S{k 7→ u,m1‖ . . . ‖mn 7→M}, S′{k 7→ u,m1‖ . . . ‖mn 7→M ′}, E ,H,LE ,LH)]

where M and M ′ are any two n block messages (where n is left as a parameter) and
k is a variable holding a secret string needed in some MACs (among our examples,
HashPMAC and HashHMAC need it). The set Dist(Γ,FE ,FH) contains all the
distributions of the form [[cmd]]X0, where X0 ∈ Dist0(Γ,FE ,FH) and cmd is a
program.

A notational convention. It is easy to see that commands never modify E or H.

Therefore, we can, without ambiguity, write (Ŝ, Ŝ′,L′E ,L′H)
$← [[c]](S, S′,LE ,LH)

instead of (Ŝ, Ŝ′, E ,H, L′E ,L′H)
$←− [[c]](S, S′, E ,H,LE ,LH).
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3.3 Assertion Language

Like [15], our assertion languages deals with block ciphers, so it stands to reason
that some of our invariants will be similar to theirs. However, the definition of
all the predicates has to be adapted to our new semantics with two simultaneous
executions. We also need additional predicates to describe equality or inequality
of strings between the two executions, that will allow us to capture the definition
of almost-universal hash functions. We first give an intuitive description of our
predicates, then we define them all formally.

Since we are using block cipher and hash functions modeled as random
function, it is very useful to keep track of values on which the block cipher
and the hash function has never been computed before, because computing the
block cipher on such a value would yield a value that is indistinguishable from a
random value. To this end, the predicates E(E ;x;V ) and H(H;x;V ) mean that
the probability that the value of the variable x (in either execution) is either in
LE .dom (resp. LH.dom) or in V is negligible. We also add the predicate Empty
to mean that the probability that LE is non-empty is negligible – this predicate
holds at the beginning of the program.

When computing the block cipher or a random oracle on a new value, the
result will be indistinguishable from a random value. This property is captured by
the predicate Indis(x;V ;V ′), which means that no adversary has non-negligible
probability to distinguish whether he is given results of computations performed
using the value of x or a random value, when he is given the values of the variables
in V and the values of the variables in V ′ from the second execution. In addition
to variables in Var, the set V can contain special symbols `E or `H. When the
symbol `E is present, it means that, in addition to the other variables in V , the
distinguisher is also given the values in LE .dom, similarly for `H.

Finally, we introduce two new predicates, Equal(x, y) and Unequal(x, y), which
are used to keep track of equality and inequality of the value of variables between
the two executions. The predicate Equal(x, y) means that the probability that
the value of x in the first execution and the value of y in the second execution
are unequal is negligible. Similarly, the predicate Unequal(x, y) means that the
probability that the value of x in the first execution and the value of y in the
second execution are equal is negligible.

Our Hoare logic is based on statements from the following language.

ϕ ::= ϕ ∧ ϕ | ϕ ∨ ϕ | ψ
ψ ::= Indis(x;W ;V ′) | Equal(x, y) | Unequal(x, y) | Empty | E(E ;x;V )

| H(H;x;V )

where x, y ∈ Var and V, V ′ ⊆ Var, and W ⊆ Var ∪ {`E , `H}.
We introduce a few notational shortcuts that will help in formally defining our

predicates. For any set V ⊆ Var, we denote by S(V ) the multiset resulting from
the application of S on each variable in V . We also use S(V, `E) as a shorthand
for S(V ) ∪ LE .dom, and similarly for S(V, `H) and S(V, `E , `H). For a set V and
a variable, we write V, x as a shorthand for V ∪ {x} and V − x as a shorthand
for V \ {x}.
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We define that a distribution X satisfies ϕ, denoted X |= ϕ as follows:

– X |= ϕ ∧ ϕ′ iff X |= ϕ and X |= ϕ′

– X |= ϕ ∨ ϕ′ iff X |= ϕ or X |= ϕ′

– X |= Empty iff Pr[(S, S′,LE ,LH)
$← X : LE 6= ∅] is negligible

– X |= Equal(x, y) iff Pr[(S, S′,LE ,LH)
$← X : S(x) 6= S′(y)] is negligible

– X |= Unequal(x, y) iff Pr[(S, S′,LE ,LH)
$← X : S(x) = S′(y)] is negligible

– X |= E(E ;x;V ) iff Pr[(S, S′,LE ,LH)
$← X : {S(x), S′(x)}∩ (LE .dom∪S(V −

x) ∪ S′(V − x)) 6= ∅] is negligible3

– X |= H(H;x;V ) iff Pr[(S, S′,LE ,LH)
$← X : {S(x), S′(x)}∩(LH.dom∪S(V −

x) ∪ S′(V − x)) 6= ∅] is negligible
– X |= Indis(x;V ;V ′) iff the two following formulas hold:

[(S, S′,LE ,LH)
$← X : (S(x), S(V − x) ∪ S′(V ′))] ∼

[(S, S′,LE ,LH)
$← X;u

$← U : (u, S(V − x) ∪ S′(V ′))]

[(S, S′,LE ,LH)
$← X : (S′(x), S′(V − x) ∪ S(V ′))] ∼

[(S, S′,LE ,LH)
$← X;u

$← U : (u, S′(V − x) ∪ S(V ′))]

The following lemma shows useful relations between our invariants.

Lemma 1. The following relations are true for any sets V1, V2, V3, V4 and vari-
ables x, y with x 6= y

1. Indis(x;V1;V2)⇒ Indis(x;V3;V4) if V3 ⊆ V1 and V4 ⊆ V2
2. H(H;x;V1)⇒ H(H;x;V2) if V2 ⊆ V1
3. E(E ;x;V1)⇒ E(E ;x;V2) if V2 ⊆ V1
4. Indis(x;V1, `H; ∅)⇒ H(H;x;V1)
5. Indis(x;V1, `E ; ∅)⇒ E(E ;x;V1)
6. Indis(x; ∅; {y})⇒ Unequal(x, y) ∧ Unequal(y, x)

Proof. These are all fairly straightforward.
1. If an algorithm could distinguish (S(x), S(V3) ∪ S′(V4)) from (u, S(V3) ∪
S′(V4)), a similar algorithm would be able to distinguish (S(x), S(V1) ∪ S′(V2))
from (u, S(V1) ∪ S′(V2)) by simply disregarding the values in S(V1) \ S(V3) and
S′(V2) \ S′(V4).
2. and 3. are trivial: x 6∈ T ⇒ x 6∈ T ′ for T ′ ⊂ T .
4. to 6. follow from the simple observation that if X |= Indis(x, V ), then the
probability that the value of x is equal to the value of any variable in V (or any
values in LE .dom, LH.dom or in the simultaneous execution, if LE or LH is in
V ) is negligible, otherwise an adversary could distinguish the value of x from a
random value by comparing it to all the values in S(V ).

3 Since the variable x is removed from the set V when taking the probability, we always
have X |= E(E ;x;V ) iff X |= E(E ;x;V, x). This is to remove the trivial case that
{S(x), S′(x)} ∩ (LE .dom ∪ S({x}) ∪ S′({x})) 6= ∅ never holds, and to simplify the
notation. The same is also used for predicates H(H;x;V ) and Indis(x;V ;V ′).
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Note that results 4, 5 and 6 are particularly helpful because the predicate Indis
is much easier to propagate than the other predicates.

We also show that, as a consequence of our definition of Dist(Γ,FE ,FH), we
can always infer the following predicate on the message blocks.

Lemma 2. Let X ∈ Dist(Γ,FE ,FH). Then for any integer i, 1 ≤ i ≤ n,
X |= Equal(mi,mi) ∨ Unequal(mi,mi).

Proof. Since X ∈ Dist(Γ,FE ,FH), then, by definition, X = [[cmd]]D(M,M ′)
0 for

some program cmd and n-block messages M,M ′. We note that, by design, for

every configuration (S, S′, E ,H,LE ,LH) that has non-zero probability in D(M,M ′)
0 ,

S(mi) is equal to the ith block of M and S′(mi) is equal to the ith block of M ′.
Therefore, it is clear that either the ith blocks ofM andM ′ are equal, in which case

D(M,M ′)
0 |= Equal(mi,mi), or they are not equal, and D(M,M ′)

0 |= Unequal(mi,mi).
The result then follows from our assumption that the message variables are never
assigned new values.

4 Proving Almost-Universal Hash

The main contribution of this paper is a Hoare logic for proving that a program
is an almost-universal hash function. To do this, we require that the program be
written in a way so that, on input m1‖ . . . ‖mn, the program must assign values
to variables c1, . . . , cn in such a way that the variable c1 contains the output of
the function on input m1, the variable c2 contains the output of the function on
input m1‖m2 and so on. Under this assumption, we can model the security of an
almost-universal hash function using our predicates as follows.

Proposition 1. Let the generic hash (FE ,FH, Hash(m1‖ . . . ‖mn, cn) : var x;
cmd) describe the program to compute a hash function Hash on an n block
message. Then, Hash is an almost-universal hash function if, for every positive
integer n, the following holds at the end of the program:

UNIV (n) =

(
n−1∧
i=1

Unequal(cn, ci) ∧
n∧
i=1

Equal(mi,mi)

)
∨

n∧
i=1

Unequal(cn, ci)

Proof. (sketch) Say M1 is a k-block message, and M2 is an l-block message with
1 ≤ l ≤ k. We want to show that, either M1 = M2, or the probability that M1

and M2 hash to the same value is negligible. Thanks to our constraint on the
construction of the program, with M1 placed as the message in S and M2 placed
in S′, we will have that cl contains the hash of M1 in the first execution and
ck contains the hash of M2 in the second execution. If the invariant UNIV (k)
holds, then we have that either Unequal(ck, cl), which shows that the probability
that the hashes are equal is negligible, or k = l and all the message blocks are
equal which imply that M1 = M2, as required. ut

.
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Hoare Logic Rules

We present a set of rules of the form {ϕ}cmd{ϕ′}, meaning that execution
of command cmd in any distribution that satisfies ϕ leads to a distribution that
satisfies ϕ′. Using Hoare logic terminology, this means that the triple {ϕ}cmd{ϕ′}
is valid.

Since the predicates Equal(mi,mi) are useful only if the whole prefix of the
two messages up to the ith block are equal, so that keeping track of the equality
or inequality of the message blocks after the first point at which the messages
are different is unnecessary. For this reason, when we design our rules, we never
produce the predicates Unequal(mi,mi) even when they would be correct.

We group rules together according to their corresponding commands. The
rules of our Hoare logic are detailed in Table 2. In all the rules, unless indicated
otherwise, we assume that t 6∈ {x, y, z} and x 6∈ {y, z}. In addition, for all
rules involving the predicate Indis, we assume that `E and `H can be among the
elements in the set V . The proofs of soundness of our rules are given in Appendix
A.

We first introduce a few general rules for consequence, sequential composition,
conjunction and disjunction. Let φ1, φ2, φ3, φ4 be any four invariants in our logic,
and let cmd, cmd1, cmd2 be any three commands. These rules are standard, and
their proof are not included in the appendix.
(Csq) if φ1 ⇒ φ2, φ3 ⇒ φ4 and {φ2}cmd{φ3}, then {φ1}cmd{φ4}
(Seq) if {φ1}cmd1{φ2} and {φ2}cmd2{φ3}, then {φ1}cmd1; cmd2{φ3}
(Conj) if {φ1}cmd{φ2} and {φ3}cmd{φ4}, then {φ1 ∧ φ3}cmd{φ2 ∧ φ4}
(Disj) if {φ1}cmd{φ2} and {φ3}cmd{φ4}, then {φ1 ∨ φ3}cmd{φ2 ∨ φ4}

Initialization:
We find that the following predicates holds at the beginning of the program’s
execution.
(Init) {Indis(k;Var, `E , `H;Var− k) ∧ Equal(k, k) ∧ Empty}
The string k is part of the secret key sk of the MAC. It is sampled at random before
executing the program and is the same in both executions, so it is indistinguishable
from a random value given any other value.

Generic preservation rules:
Rules (G1) to (G6) show how predicates are preserved by most of the commands
when the predicates concern a variable other than that being operated on. For all
these rules, we assume that t and t′ can be y or z and cmd is either x := ρi(y),
x := y, x := y‖z, x := y ⊕ z, x := E(y), or x := H(y). We note that, for rules
(G3) to (G6), the straightforward preservation rule does not apply when the
command is either of the form x := E(y) or x := H(y), because some predicates
may no longer hold if the block cipher or the random oracle is computed more
than once on any given point. Therefore, the preservation of these predicates for
the block cipher and hash commands will have to be handled separately in rules
(B4) to (B6) and (H3) to (H5). For rule (G5), in general, we say that the value
of a variable x is constructible from the values of variables in V if there exists a
deterministic polynomial-time algorithm that can compute the value of x from

12



(G1) {Equal(t, t′)} cmd {Equal(t, t′)}
(G2) {Unequal(t, t′)} cmd {Unequal(t, t′)}
(G3) {E(E ; t;V )} cmd {E(E ; t;V )} provided x 6∈ V and cmd is not x := E(y)
(G4) {H(H; t;V )} cmd {H(H; t;V )} provided x 6∈ V and cmd is not x := H(y)
(G5) {Indis(t;V ;V ′)} cmd {Indis(t;V ;V ′)} provided cmd is not x := E(y) or x := H(y),

and x 6∈ V unless x is constructible from V − t and x 6∈ V ′ unless x is constructible
from V ′ − t

(G6) {Empty} cmd {Empty} provided cmd is not x := E(y)
(P1) {Equal(y, y)} x := ρi(y) {Equal(x, x)} for any positive integer i
(A1) {true} x := mi {(Equal(mi,mi) ∧ Equal(x, x)) ∨ Unequal(x, x)}
(A2) {Equal(y, y)} x := y {Equal(x, x)}
(A3) {Unequal(y, y)} x := y {Unequal(x, x)}
(A4) {Indis(y;V ;V ′)} x := y {Indis(x;V ;V ′)} provided x 6∈ V ′ unless y ∈ V ′ and y 6∈ V
(A5) {E(E ; y;V )} x := y {E(E ;x;V ) ∧ E(E ; y;V )} provided y 6∈ V
(A6) {H(H; y;V )} x := y {H(H;x;V ) ∧ H(H; y;V )} provided y 6∈ V
(A7) {E(E ; t;V, y)} x := y {E(E ; t;V, x, y)}
(A8) {H(H; t;V, y)} x := y {H(H; t;V, x, y)}
(C1) {Equal(y, y)} x := y‖mi {(Equal(mi,mi) ∧ Equal(x, x)) ∨ Unequal(x, x)}
(C2) {Equal(y, y) ∧ Equal(z, z)} x := y‖z {Equal(x, x)}
(C3) {Unequal(y, y)} x := y‖z {Unequal(x, x)}
(C4) {Indis(y;V, y, z;V ′) ∧ Indis(z;V, y, z;V ′)} x := y‖z {Indis(x;V, x;V ′)} provided

y 6= z, x, y, z 6∈ V and , x 6∈ V ′ unless y, z ∈ V ′
(C5) {Indis(y;V, `E ;V )} x := y‖z {E(E ;x;V )}
(C6) {Indis(y;V, `H;V )} x := y‖z {H(H;x;V )}
(X1) {Equal(y, y)} x := y ⊕mi {(Equal(mi,mi) ∧ Equal(x, x)) ∨ Unequal(x, x)}
(X2) {Indis(y;V, y, z;V ′)} x := y ⊕ z {Indis(x;V, x, z;V ′)} provided y 6= z, y 6∈ V

and x 6∈ V ′ unless y, z ∈ V ′
(X3) {Equal(y, y) ∧ Equal(z, z)} x := y ⊕ z {Equal(x, x)}
(X4) {Equal(y, y) ∧ Unequal(z, z)} x := y ⊕ z {Unequal(x, x)}
(B1) {Empty} x := E(mi) {(Unequal(x, x) ∧ Indis(x;Var, `E , `H;Var))∨

(Equal(mi,mi) ∧ Equal(x, x) ∧ Indis(x;Var, `E , `H;Var− x))}
(B2) {E(E ; y; ∅) ∧ Unequal(y, y)} x := E(y) {Indis(x;Var, `E , `H;Var)}
(B3) {E(E ; y; ∅) ∧ Equal(y, y)} x := E(y) {Indis(x;Var, `E , `H;Var− x) ∧ Equal(x, x)}
(B4) {E(E ; y; ∅) ∧ Indis(t;V ;V ′)} x := E(y) {Indis(t;V, x;V ′, x)} provided `E 6∈ V ,

even if t = y
(B5) {E(E ; y; ∅) ∧ Indis(t;V, `E , y;V ′, y)} x := E(y) {Indis(t;V, `E , x, y;V ′, x, y)}
(B6) {E(E ; y; ∅) ∧ E(E ; t;V, y)} x := E(y) {E(E ; t;V, y)}
(H1) {H(H; y; ∅) ∧ Unequal(y, y)} x := H(y) {Indis(x;Var, `E , `H;Var)}
(H2) {H(H; y; ∅) ∧ Equal(y, y)} x := H(y) {Indis(x;Var, `H;Var− x) ∧ Equal(x, x)}
(H3) {H(H; y; ∅) ∧ Indis(t;V ;V ′)} x := H(y) {Indis(t;V, x;V ′, x)} provided `H 6∈ V ,

even if t = y
(H4) {H(H; y; ∅) ∧ Indis(t;V, `H, y;V ′, y)} x := H(y) {Indis(t;V, `H, x, y;V ′, x, y)}
(H5) {H(H; t;V, y)} x := H(y) {H(H; t;V, y)}
(F1) {ψ(p− 1)} for l = p to q do: [cmdl] {ψ(q)} provided {ψ(l − 1)} cmdl {ψ(l)}

for p ≤ l ≤ q
Table 2. Rules of our Hoare Logic
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the values in V . In this case, it means that the variables in the right-hand side of
cmd are all in V .

Function ρ:
Since the details of the function ρ are not known in advance, we can infer only
one rule, that ρ preserves equality, because it is a deterministic function.

Assignment:
Rules (A1) to (A8), for the assignment, are all straightforward, and follow simply
from the simple fact that after the command, the value of x is equal to the value
of y.

Concatenation:
Rules (C1) to (C6) propagate the predicates for the concatenation command.
The most important rule for the concatenation is (C4), which states that the
concatenation of two random strings results in a random string. Note that it is
important for this rule that y 6= z, otherwise the string x consists of a string
twice repeated, which can be distinguished easily from a random value. The
condition x 6∈ V ′ unless y, z ∈ V ′ is similar to rule (G5), and follows from the
constructibility of x from y and z. Rules (C5) and (C6) state that if a string is
indistinguishable from a random value given all the values in the list of queries
to the block cipher (or the hash function), then clearly it cannot be a prefix of
one of the strings LE . For rules (C1), (C3), (C5) and (C6), the roles of y and z,
or y and mi in the case of (C1), can be exchanged.

Xor operator:
Rules (X1) to (X4) describe the effect of the Xor operation. Rules (X2) is
reminiscent of a one-time-pad encryption: if a value z is xor-ed with a random-
looking value y, than the result is similarly random-looking provided the value
of y is not given. Again, the condition x 6∈ V ′ unless y, z ∈ V ′ is similar to rule
(G5), and follows from the constructibility of x from y and z. The other rules are
propagation of the Equal and Unequal predicates. Due to the commutativity of
the xor, the role of y and z, or y and mi in the case of (X1), can be exchanged
in all the rules above.

Block cipher:
Since block ciphers are modeled as random functions, that is, functions picked at
random among all functions from {0, 1}η to {0, 1}η, the output of the function for
a point on which the block cipher has never been computed is indistinguishable
from a random value. This is expressed in rules (B1) to (B3), and also used in
the proof of many other rules. Note that, when executing x := E(y) on a new
value, if the values of y from the two executions are equal, then of course the
values of x will be equal afterwards. However, if the values of y are not the same
in the two executions, then the values of x will be indistinguishable from two
independent random values afterwards.

Since the querying of a block cipher twice at any point is undesirable, we
always require the predicate E as a precondition. We also have rules similar to
(B2) to (B6), with the predicate E(E ; y; ∅) replaced by the predicate Empty, since
both imply that the value of y is not in LE .

14



Hash Function:
We note that the distinguishing adversary, described in Section 2, does not
have access to the random oracle. This is an unusual decision, but sufficient
for our purpose since our goal is only to prove inequality of strings, not their
indistinguishability from random strings. As a result, the rules for the hash
function are essentially the same as those for the block cipher.

For loop:
The rule for the For loop simply states that if an indexed invariant ψ(i) is
preserved through one iteration of the loop, then it is preserved through the
entire loop. We discuss methods for finding such an invariant in Section 5.

Combining our logic with Proposition 1, we obtain the following theorem.

Theorem 1. Let the generic hash (FE ,FH, Hash(m1‖ . . . ‖mn, cn) : var x; cmd)
describe the program to compute a hash function Hash on an n block message.
Then, Hash is an almost-universal hash function if, for every positive integer n,
{init} cmd {UNIV (n)}.

The theorem is the consequence of Proposition 1 and of the soundness of our
Hoare logic. We then say that a sequence of invariants [φ0, . . . , φn] is a proof
that a program [cmd1, . . . , cmdn] computes an almost-universal hash function if
φ0 = true, φn ⇒ UNIV (n) and for all i, 1 ≤ n, {φi−1} cmdi {φi} holds.

Example 1. Figure 2 shows the application of our logic on a program describing
HashCBC for a two block message, with the loop unrolled – we show how .
We can see that the invariant at the end implies UNIV (2). For simplicity of
exposition, we only present the invariants that are necessary to the analysis.

5 Implementation

To use our method, we start at the beginning of the program, at each command
apply every possible rule and, once done, test if the invariant UNIV (n) holds
at the end of the program. One downside of this forward approach is that
the application of every possible rule can be very time consuming because the
invariants tend to grow after each command, which leads to more and more rules
being applied each step. For this reason, we need a way to filter out unneeded
predicates, so that execution time remains reasonable.

We chose to go forward through the program, instead of the more common
approach of going backward from the end, after implementing both methods.
Going backward through the program can require exploring multiple “branches”
when many rules can lead to the necessary invariant. The presence of the logical-or
connector in our logic often resulted in an exponential number of branches at
each step. As a result, our prototype for the forward method was several orders
of magnitude faster than the backward method.
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(Init) {Empty}
c1 := E(m1); (B1) {(Unequal(c1, c1) ∧ Indis(c1;Var, `E , `H;Var))∨

(Equal(m1,m1) ∧ Equal(c1, c1) ∧
Indis(c1;Var, `E , `H;Var− c1))}

z2 := c1 ⊕m2; (G5)(X2) {(Indis(c1;Var− z2, `E , `H;Var) ∧
Indis(z2;Var− c1, `E , `H;Var))∨

(G1)(X1) (Equal(m1,m1) ∧ Indis(c1;Var− z2, `E , `H;Var− c1 − z2) ∧
Unequal(z2, z2) ∧ Indis(z2;Var− c1, `E , `H;Var− c1 − z2))∨

(Equal(m1,m1) ∧ Equal(m2,m2) ∧ Equal(z2, z2) ∧
Indis(c1;Var− z2, `E , `H;Var− c1 − z2) ∧
Indis(z2;Var− c1, `E , `H;Var− c1 − z2))}

c2 := E(z2) (B2)(B4) {(Indis(c1;Var− z2, `H;Var) ∧
Indis(c2;Var, `E , `H;Var))∨

(G1) (Equal(m1,m1) ∧ Indis(c1;Var− z2, `H;Var− c1 − z2) ∧
Indis(c2;Var, `E , `H;Var))∨

(B3) (Equal(m1,m1) ∧ Equal(m2,m2) ∧
Indis(c1;Var− z2, `H;Var− c1 − z2) ∧
Indis(c2;Var, `E , `H;Var− c2))}

Fig. 2. Use of our Hoare Logic on HashCBC for two block message

5.1 Invariant Filter

We say that φ is an predicate on x if φ is either Equal(x, y), Unequal(x, y),
E(E ;x;V ) H(H;x;V ) or Indis(x;V1, V2) (for some y ∈ Var and V1, V2 ⊆ Var). We
say that a predicate φ on variable x is obsolete for program p if x does not appear
anywhere in p and if ¬(φ⇒ Unequal(cn, ci)) and ¬(φ⇒ Equal(mi,mi)) for any
i, 1 ≤ i ≤ n.4 The following theorem shows that once an predicate is obsolete, it
can be discarded.

Theorem 2. If there exists a proof [φ0, . . . , φn] that a program p = [cmd1, . . . ,
cmdn] computes an almost-universal hash function, then there also exists a
proof [φ′0, . . . , φ

′
n] that p computes an almost-universal hash function where

for each i, φi ⇒ φ′i and each φ′i does not contain any obsolete predicates for
[cmdi+1, . . . , cmdn].

The theorem is a consequence of the fact that, in our logic, the rules for creating
a predicate on x following the execution of command x := e only have as
preconditions predicates on the variables in e. As a result, we can always filter
out obsolete predicates after processing each command.

Also, we note that the only commands that can make a predicate Equal(mi,mi)
appear are those of the form x := e in which mi appears in e. As a result, if we
find that, for some integer l, the predicate Equal(ml,ml) is not present in one
of the conjunctions of the current invariant (after transforming the invariant in
disjunctive normal form form) and that the variable ml is no longer present in

4 Here, p will usually be the rest of the program after the program point at which the
predicate φ holds.
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the rest of the program, then there is no longer any chance that it will satisfy
the conjunction with

∧n
j=1 Equal(mj ,mj) from UNIV (n). Therefore, we can

also safely filter out all other predicates of the form Equal(mi,mi) from that
conjunction.

We also add a heuristic filter to speed up the execution of our method. We
make the hypothesis that the predicate Indis(cn;V ; {c1, . . . , cn−1}) will be present
at the end of the program, which is the case for all our examples, so that we
can filter out Indis(ci;V ;V ′) if i < n and ci is no longer present in the remainder
of the program. In addition to speeding up the program, filtering out these
predicates greatly simplifies the construction of loop invariants discussed in the
next section. If we fail to produce a proof while using the heuristic filter, we
simply attempt again to find a proof without it.

5.2 Finding Loop Invariants

The programs describing the almost-universal hash function usually contains
for loops. It is therefore necessary to have an automatic procedure to detect
the invariant ψ(i) that allows us to apply rule (F1). We now show a heuristic
that can be used to construct such an invariant, and illustrate how it works by
applying them to HashCBC , described in Section 3.1. One could easily verify
that it also works on HashCBC′ , HashHMAC and HashPMAC .

Once we hit a command ”for l = p to q do: [cmdl]”, we express the precondition
in the form ϕ(p− 1). The classical method for finding a stable invariant consists
in processing the instructions cl contained in the loop to find the invariant ψ(l)
such that {ϕ(l − 1)} cl {ψ(l)}. If ψ(l)⇒ ϕ(l), then we have found an invariant
such that {ϕ(l − 1)} cl {ϕ(l)} and we can apply rule (F1). Otherwise, we repeat
this process with ϕ′(l) = ϕ(l) ∧ ψ(l) until we find a stable invariant.

Unfortunately, for certain loops, one could repeat the process infinitely and
never obtain a stable invariant. If, after a certain number n of iterations of the
process above, we did not find a stable invariant, we decide that the classical
method has failed. The choice of the number of times the process is repeated is
completely arbitrary, we choose to try only two iterations in our prototype since
it is sufficient for all our examples.

We need a new heuristic to construct the stable invariant for the cases in
which the first one failed. The heuristic we describe here is inspired from widening
methods in abstract interpretation. We start over with invariant ϕ(l − 1), and
process the code of the loop once to find invariant ψ1(l) such that {ϕ(l − 1)}
cl {ψ1(l)}. Then, we repeat this starting with invariant ϕ(l − 1) ∧ ψ1(l − 1) to
find invariant ψ2(l) such that {ϕ(l− 1) ∧ ψ1(l− 1)} cl {ψ2(l)}. By analyzing the
invariants ϕ(l), ϕ(l)∧ψ1(l) and ϕ(l)∧ψ1(l)∧ψ2(l), we identify an invariant γ(l)
such that γ(l) appears in ϕ(l), γ(l − 1) appears in ψ1(l) and γ(l − 2) appears in
ψ2(l).5 We then use a new starting invariant ϕ′(l) which is just like ϕ(l), except

5 We want γ(l−1) and γ(l−2) in ψ1(l) and ψ2(l) respectively, instead of in ϕ(l)∧ψ1(l)
and ϕ(l) ∧ ψ1(l) ∧ ψ2(l) to emphasize that the progression from γ(l) to γ(l + 1) is
caused by one iteration of the loop.
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that occurrences of γ(l) in ϕ(l) are replaced by
∧j=l
j=p−1 γ(j) in ϕ(l)′. Note that,

by construction, ϕ(p− 1) always implies ϕ′(p− 1), so we know that ϕ′(p− 1) is
satisfied at the beginning of the loop.

Example 2. We now apply this method to HashCBC . After processing command
c1 := E(m1), we obtain the invariant ϕ(1) = (Equal(m1,m1) ∧ Equal(c1, c1) ∧
Indis(c1;Var, `E ;Var− c1))∨ Indis(c1). Parameterizing this in terms of l, we obtain

ϕ(l) = (Equal(ml,ml) ∧ Equal(cl, cl) ∧ Indis(cl;Var, `E ;Var− cl)) ∨ Indis(cl)

We recall that the two instructions in the loop of HashCBC are the following:

zi := ci−1 ⊕mi; ci := E(zi)

After processing the code of the loop on ϕ(l − 1), we obtain the following.

ψ1(l) = (Equal(ml−1,ml−1) ∧ Equal(ml,ml) ∧ Equal(cl, cl)∧
Indis(cl;Var, `E ;Var− cl)) ∨ Indis(cl)

We get this by applying rules (G1), (X1) and (X2) for the first command and
rules (G1), (B2) and (B3) for the second command. We repeat the same process
with ϕ(l − 1) ∧ ψ1(l − 1) to obtain

ψ2(l) = (Equal(ml−2,ml−2) ∧ Equal(ml−1,ml−1) ∧ Equal(ml,ml)

∧ Equal(cl, cl) ∧ Indis(cl;Var, `E ;Var− cl)) ∨ Indis(cl).

This requires applying the same rules as before, but rule (G1) more often applied
for each command. We find γ(l) = Equal(ml,ml) and use

ϕ′(l) =

((
l∧
i=1

Equal(mi,mi)

)
∧ Equal(cl, cl) ∧ Indis(cl;Var, `E ;Var− cl)

)
∨ Indis(cl)

as our next attempt at finding a stable invariant. We find that ϕ′(l) is a stable
invariant for the loop. So we apply the rule (F1) to obtain that ϕ′(n) holds at the
end of the program, and we easily find that ϕ′(n)⇒ UNIV (n) for all positive
integer n, thereby proving that HashCBC computes an almost-universal hash
function.

We programmed an OCaml prototype of our method for proving that the
front end of MACs are almost-universal hash functions. The program requires
about 1000 lines of code, and can successfully produce proofs of security for
all the examples discussed in this paper in less than one second on a personal
workstation. Our prototype is available on [14].
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6 Proving MAC Security

As mentioned in Section 2, we prove the security of MACs in two steps: first we
show that the ‘compressing’ part of the MAC is an almost-universal hash function
family, and then we show that the last section of the MAC, when applied to an
almost-universal hash function, results in a secure MAC. The following shows
how a secure MAC can be constructed from an almost-universal hash function.
The proof can be found in [4, 8, 9], so we do not repeat them here.

Proposition 2. Let FE be a family of block ciphers, H = {hi}i∈{0,1}η and
H′ = {hi}i∈{0,1}η be families of almost-universal hash function and G be a

random oracle. If h
$← H, hE

$← H′, E $← FE , G is sampled at random from all

functions with the appropriate domain and range and k, k1, k2
$← {0, 1}η, then

the following hold:

– MAC1(m) = E(hi(m)) is a secure MAC with key sk = (i, kE).
6

– MAC2(m) = G(k‖hi(m)) is a secure MAC with key sk = (i, k).

– MAC3(m) =

E1(hi(m
′)) where m′ = pad(m) if m’s length is not a

multiple of η
E2(hi(m)) if m’s length is a multiple of η

is a secure MAC with key sk = (i, kE1 , kE2).

– MAC4(m) =

E(hE(m
′)⊕ k1) where m′ = pad(m) if m’s length is not a

multiple of η
E(hE(m)⊕ k2) if m’s length is a multiple of η

is a secure MAC with key sk = (kE , k1, k2)

Using HashCBC with MAC1 and MAC3 yield the message authentication
code DMAC and ECBC respectively, using HashCBC′ with MAC3 and MAC4

yield FCBC and XCBC, combining HashPMAC and MAC4 yield a four key
construction of PMAC and using HashHMAC with MAC2 yield HMAC.

7 Conclusion

We presented a Hoare logic that can be used to automatically prove the security
of constructions for almost-universal hash functions based on block ciphers and
compression functions modeled as random oracles. We can then obtain a secure
MAC by combining with a few operations, such as those presented in Section 6.
Our method can be used to prove the security of DMAC, ECBC, FCBC, XCBC,
a two-key variant of HMAC and a four-key variant of PMAC. A downside of
our approach is that since we do not have a global view of the algorithm, we
cannot prove the one key variants of HMAC or PMAC, nor can we prove CMAC
or OMAC, which are one-key variants of XCBC. It is however relatively simple
to derive the security of these one-key schemes by hand once the security of the
multiple key variants has been proven.

6 Here, kE denotes the secret key associated with block cipher E .
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It should be possible to extend our logic to prove exact reduction bounds for
the security of the ε-universal hash function. This could be done by keeping track
of exact security for each predicate to obtain a bound on the final invariant. We
are also working on integrating our tool for verifying the security of MACs with
the tool for verifying the security of encryption modes of operation of [15], to get
a general tool for producing security proofs of symmetric modes of operation.
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15. Martin Gagné, Pascal Lafourcade, Yassine Lakhnech, and Reihaneh Safavi-Naini.
Automated proofs for encryption modes. In 13th Annual Asian Computing Science
Conference Focusing on Information Security and Privacy: Theory and Practice
(ASIAN’09), volume 5913 of LNCS, pages 39–53, 2009.

16. Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable block ciphers.
In Moti Yung, editor, Advances in Cryptology – CRYPTO 2002, volume 2442 of
Lecture Notes in Computer Science, pages 31–46. Springer, 2002.

17. E. Petrank and C. Rackoff. Cbc mac for real-time data sources. JOURNAL OF
CRYPTOLOGY, 13:315–338, 1997.

18. M. Wegman and J. L. Carter. Universal classes of hash functions. Journal of
Computer and System Sciences, 18(2):143–154, 1919.

19. M. Wegman and J. L. Carter. New hash functions and their use in authentication
and set equality. Journal of Computer and System Sciences, 22(3):265–279, 1981.

21



A Proofs

Before presenting the proofs for all the claims in our paper, we present a few
results that will be used repeatedly in our proofs.

The following formalizes the intuition that if a value can be computed in
polynomial time from other values available, then adding this value does not give
the adversary any useful information.

Lemma 3. For any X,X ′ ∈ Dist(Γ,FE ,FH), any set of variables V , any
expression e constructible from V , and any variable x, if X ∼V X ′ then [[x :=
e]](X) ∼V,x [[x := e]](X ′).

Proof. We assume X ∼V X ′. Suppose that [[x := e]](X) 6∼V,x [[x := e]](X ′). This
means there exists a polynomial-time adversary A that, on input S(V, x) drawn
either from [[x := e]](X) or [[x := e]](X ′), guesses the right initial distribution with
non-negligible probability. We let B be the adversary against X ∼V X ′ which
simply computes x from values in S(V ) – which can be done in polynomial time
since e is constructible from values in V – and runs A(V, x). It is clear that the
advantage of B is exactly that of A, which would imply that it is not negligible,
although we assumed X ∼V X ′.

Corollary 1. For any X ∈ Dist(Γ,FE ,FH), any sets of variables V , any ex-
pression e constructible from V , and any variable x, z such that z 6∈ {x} ∪ Var(e)
if X |= Indis(z;V ;V ′) then [[x := e]](X) |= Indis(z;V, x;V ′). We emphasize that
here we use the notation Var(e) (in its usual sense), that is to say, the variable z
does not appear at all in e.
Similarly, if X |= Indis(z;V ′;V ), then [[x := e]](X) |= Indis(z;V ′;V, x).

Proof. Since X |= Indis(z;V ;V ′), we have the two following:

[(S, S′,LE ,LH)
$← [[x := e]]X : (S(z), S(V − z) ∪ S′(V ′))]

∼ [(S, S′,LE ,LH)
$← [[x := e]]X;u

$← U : (u, S(V − z) ∪ S′(V ′))]

[(S, S′,LE ,LH)
$← [[x := e]]X : (S′(z), S′(V − z) ∪ S(V ′))]

∼ [(S, S′,LE ,LH)
$← [[x := e]]X;u

$← U : (u, S′(V − z) ∪ S(V ′))]

Since z 6∈ {x} ∪Var(e) using the same technique as in Lemma 3, we easily obtain

[(S, S′,LE ,LH)
$← X : (S(z), S(V − z, x) ∪ S′(V ′))]

∼ [(S, S′,LE ,LH)
$← X;u

$← U : (u, S(V − z, x) ∪ S′(V ′))]

[(S, S′,LE ,LH)
$← X : (S′(z), S′(V − z, x) ∪ S(V ′))]

∼ [(S, S′,LE ,LH)
$← X;u

$← U : (u, S′(V − z, x) ∪ S(V ′))]

which means [[x := e]]X |= Indis(z;V, x).
The proof that X |= Indis(z;V ′;V ) implies [[x := e]](X) |= Indis(z;V ′;V, x) is

done in exactly the same way.
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The following will be useful when dealing with the concatenation command.

Lemma 4. For any distribution X ∈ Dist(Γ,FE ,FH), any program cmd pro-

duced by our grammar any (S, S′, E ,H,LE ,LH)
$← [[cmd]]X and any variable

v ∈ Var, |S(v)| = |S′(v)|.

Proof. This is a trivial consequence of the fact that the message blocks always
have equal length in both executions. All values computed from there will therefore
also have equal length.

A.1 Initialization

Proposition 3 (Rule (init)). linebreak
INIT {Indis(k;Var,LE ,LH;Var− k) ∧ Empty}

Proof. We note that the initialization command can only appear at the beginning
of a program. Let X be an initial distribution, as described in the definition of
security of ε-universal hash function. We have that [[INIT]]X = X because the
initialization command has no impact on the distribution. So we have to prove
that X |= Empty and X |= Indis(k;Var,LE ,LH;Var− k). The former is obvious
since the adversary has no access to E in the attack. The latter is also clear
because k is sampled randomly and independently after the adversary terminates.

A.2 Generic Preservation

Proposition 4 (Rule (G1)). linebreak
{Equal(t)} cmd {Equal(t)} even if t = y or t = z

Proof. Trivial since t 6= x and only the value of x can be changed by the command.

Proposition 5 (Rule (G2)). linebreak
{Unequal(t)} cmd {Unequal(t)} even if t = y or t = z

Proof. Trivial since t 6= x and only the value of x can be changed by the command.

Proposition 6 (Rule (G3)). linebreak
{E(E ; t;V )} cmd {E(E ; t;V )} provided x 6∈ V and cmd is not x := E(y)

Proof. Clearly, Pr[(S, S′,LE ,LH)
$← X : S(t) ∈ LE .dom∪S(V )∨S′(t) ∈ LE .dom∪

S′(V )] = Pr[(S, S′,LE ,LH)
$← [[x := E(y)]]X : S(t) ∈ LE .dom ∪ S(V ) ∨ S′(t) ∈

LE .dom ∪ S′(V )] because, the values in the sets S(V ), S′(V ) and Elist.dom are
unchanged by the command.

Proposition 7 (Rule (G4)). linebreak
{H(H; t;V )} cmd {H(H; t;V )} provided x 6∈ V and cmd is not x := H(y)

Proof. Similar to the proof of Rule (G3).
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Proposition 8 (Rule (G5)). linebreak
{Indis(t;V ;V ′)} cmd {Indis(t;V ;V ′)} provided cmd is not x := E(y) or x := H(y),
and x 6∈ V unless x is constructible from V −t and x 6∈ V ′ unless x is constructible
from V ′ − t

Proof. It should be clear that, since LE and LH are unchanged by the command,
the following hold since the values of the variables in V − x are unchanged by
the command:

[(S, S′,LE ,LH)
$← X; (S(t), S(V − x) ∪ S′(V ′ − x))] =

[(S, S′,LE ,LH)
$← [[cmd]]X; (S(t), S(V − x) ∪ S′(V ′ − x))]

[(S, S′,LE ,LH)
$← X; (S′(t), S′(V − x) ∪ S′(V ′ − x))] =

[(S, S′,LE ,LH)
$← [[cmd]]X; (S′(t), S′(V − x) ∪ S′(V ′ − x))].

We can add back x to V (resp. V ′) when x is constructible from V −t (resp. V ′−t)
using Corollary 1. It follows that (X |= Indis(t;V ))⇒ ([[cmd]]X |= Indis(t;V )).

Proposition 9 (Rule (G6)). linebreak
{Empty} cmd {Empty} provided cmd is not x := E(y)

Proof. This is obvious since the command does not modify LE .

A.3 Function ρ

Proposition 10 (Rule (P1)). linebreak
{Equal(y)} x := ρ(y) {Equal(x)}

Proof. This is a trivial consequence of the fact that ρ is a (deterministic) function.

A.4 Assignment

Proposition 11 (Rule (A1)). linebreak
{true} x := mi {Equal(mi,mi) ∧ Equal(x, x) ∨ Unequal(x, x)}

Proof. This follows immediately from Lemma 2 and the fact that after the
execution of the command, the value of x is the same as the value of mi.

Proposition 12 (Rules (A2) to (A9)). The following rules hold.

– (A2) {Equal(y, y)} x := y {Equal(x, x)}
– (A3) {Unequal(y, y)} x := y {Unequal(x, x)}
– (A4) {Indis(y;V ;V ′)} x := y {Indis(x;V ;V ′)} provided y 6∈ V ∪ V ′
– (A5) {E(E ; y;V )} x := y {E(E ;x;V )} provided y 6∈ V
– (A6) {H(H; y;V )} x := y {H(H;x;V )} provided y 6∈ V
– (A7) {E(E ; t;V, y)} x := y {E(E ; t;V, x, y)}
– (A8) {H(H; t;V, y)} x := y {H(H; t;V, x, y)}

Proof. The proofs of all those rules are trivial consequences of the fact that if
X is any distribution, then, in [[x := y]]X, the variables x and y will always be
assigned the same value.
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A.5 Concatenation

Proposition 13 (Rule (C1)). linebreak
{Equal(y, y)} x := y‖mi {(Equal(mi,mi) ∧ Equal(x, x)) ∨ Unequal(x, x)}

Proof. This is a clear consequence of Lemma 2.

Proposition 14 (Rule (C2)). linebreak
{Equal(y, y) ∧ Equal(z, z)} x := y‖z {Equal(x, x)}

Proof. Trivial.

Proposition 15 (Rule (C3)). linebreak
{Unequal(y, y)} x := y‖z {Unequal(x, x)}

Proof. Trivial consequence of the fact that for any distributionX and (S, S′, E ,H,LE ,LH)
$←

X, with overwhelming probability, S(y) 6= S′(y), and, from Lemma 4, |S(y)| =
|S′(y)| implies that S(y)‖S(z) 6= S′(y)‖S′(z).

Proposition 16 (Rule (C4)). linebreak
{Indis(y;V, y, z;V ′) ∧ Indis(z;V, y, z;V ′)} x := y‖z {Indis(x;V, x;V ′)} provided
x, y, z 6∈ V and x 6∈ V ′ unless y, z ∈ V ′ and y 6= z

Proof. We first consider the case where X be a distribution such that X |=
Indis(y;V, y, z) ∧ Indis(z;V, y, z) with x, y, z 6∈ V and x 6∈ V ′. We have that

[(S, S′,LE ,LH)
$← [[x := y‖z]]X : (S(x), S((V, x)− x) ∪ S′(V ′))]

= [(S, S′,LE ,LH)
$← [[x := y‖z]]X : (S(x), S(V ) ∪ S′(V ′))]

= [(S, S′,LE ,LH)
$← X : (S(y)‖S(z), S(V ) ∪ S′(V ′))]

∼ [(S, S′,LE ,LH)
$← X,u1

$← U : (u1‖S(z), S(V ) ∪ S′(V ′))]

∼ [(S, S′,LE ,LH)
$← X,u1

$← U , u2
$← U : (u1‖u2, S(V ) ∪ S′(V ′))]

∼ [(S, S′,LE ,LH)
$← X,u

$← UU : (u, S(V ) ∪ S′(V ′))]

∼ [(S, S′,LE ,LH)
$← [[x := y‖z]]X,u $← UU : (u, S((V, x)− x) ∪ S′(V ′))]

The first two equality are consequences of the fact that x 6∈ V ∪ V ′ and of the
semantics of x := y‖z. The second to last line is true because, for strings u, u1, u2

of appropriate sizes, [u1, u2
$← U : u1‖u2] = [u

$← U : u]. The last line follows
from the fact that x 6∈ V ∪ V ′. So we only have left to justify the two lines
in which S(y) and S(z) are replaced with uniform random values u1 and u2
respectively. Suppose there exists an adversary A that can break the following:

[(S, S′,LE ,LH)
$← X : (S(y)‖S(z), S(V ) ∪ S′(V ′))]

∼ [(S, S′,LE ,LH)
$← X,u1

$← U : (u1‖S(z), S(V ) ∪ S′(V ′))]
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Then we can construct an algorithm B that attacks the following:

[(S, S′,LE ,LH)
$← X : (S(y), S(V, z) ∪ S′(V ′))]

∼ [(S, S′,LE ,LH)
$← X,u

$← U : (u, S(V, z) ∪ S′(V ′))].

On input (b, B), B runs algorithm A on input (b‖a,B − a) where a is the value
of the variable z in A. When A terminates, algorithm B outputs the same
result as A. It should be clear that B is successful into distinguishing its two
distributions precisely when A does. So if A succeeds in distinguishing between
its two distributions with non-negligible probability, so can B, which violates our
assumption that X |= Indis(y;V, y, z). We can show similarly that the following
also holds:

[(S, S′,LE ,LH)
$← X,u1

$← U : (u1‖S(z), S(V ) ∪ S′(V ′))]

∼ [(S, S′,LE ,LH)
$← X,u1

$← U , u2
$← U : (u1‖u2, S(V ) ∪ S′(V ′))].

The same argument can be applied with the roles of S and S′ reversed, which
completes the proof that [[x := y‖z]]X |= Indis(x;V, x;V ′).

The case when y, z ∈ V ′ is similar, the result follows from the argument above
and Corollary 1.

Proposition 17 (Rules (C5) and (C6)). linebreak

(C5) {Indis(y;V,LE ; ∅)} x := y‖z {E(E ;x;V )}
(C6) {Indis(y;V,LH; ∅)} x := y‖z {H(H;x;V )}

Proof. linebreak

(C5) Let A be the algorithm which, on input (a,A), outputs 1 if and only if a is a
prefix of one of the strings in A. We examine A advantage in breaking the
following:

[(S, S′,LE ,LH)
$← X; (S(y), S(V,LE)] ∼ [(S, S′,LE ,LH)

$← X,u
$← U ; (u, S(V,LE))].

Since X |= Indis(y;V,LE ; ∅), A’s advantage in distinguishing the two distribu-
tions above must be negligible. Noting that the probability that A outputs 1
when given an input from the second distribution must be negligible (because
u is sampled from a domain of size exponential in the security parameter), then
we must that that the probability that A outputs 1 when given an output from

the first distribution is negligible as well. That is, for (S, S′,LE ,LH)
$← X,

the probability that S(y) is a prefix of any string in S(V,LE) is negligible.
Thus, the probability that S(y)‖S(z) = S(x) ∈ S(V,LE) is negligible. Simi-
larly, we can find that the probability that S′(y)‖S′(z) = S′(x) ∈ S′(V,LE)
is negligible as well, which shows that [[x := S(y)‖S(z)]]X |= E(E ;x;V ).

(C6) The proof is similar to the proof of Rule (C5), but with LH instead of LE .
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A.6 Xor

Proposition 18 (Rule (X1)). linebreak
{Equal(y, y)} x := y ⊕mi {(Equal(x, x) ∧ Equal(mi,mi)) ∨ Unequal(x, x)}

Proof. This easily follows from Lemma 2.

Proposition 19 (Rule (X2)). linebreak
{Indis(y;V, y, z;V ′)} x := y ⊕ z {Indis(x;V, x, z;V ′)} provided y 6= z, y 6∈ V and
x 6∈ V ′ unless y, z ∈ V ′

Proof. This proof is similar to the proof of Rule (C4). Let X be a distribution
such that X |= Indis(y;V, y, z) with y 6= z, y 6∈ V and x 6∈ V ′. We have that

[(S, S′,LE ,LH)
$← [[x := y ⊕ z]]X : (S(x), S((V, x, z)− x) ∪ S′(V ′))]

= [(S, S′,LE ,LH)
$← [[x := y ⊕ z]]X : (S(x), S(V, z) ∪ S′(V ′))]

= [(S, S′,LE ,LH)
$← X : (S(y)⊕ S(z), S(V, z) ∪ S′(V ′))]

∼ [(S, S′,LE ,LH)
$← X,u

$← U : (u⊕ S(z), S(V, z) ∪ S′(V ′))]

∼ [(S, S′,LE ,LH)
$← X,u

$← UU : (u, S(V, z) ∪ S′(V ′))]

∼ [(S, S′,LE ,LH)
$← [[x := y ⊕ z]]X,u $← UU : (u, S((V, x, z)− x) ∪ S′(V ′))]

All those lines are justified similarly to the proof of Rule (C4), except for the
two lines in which S(y) is replaced with a uniform random values u, and the
line in which u ⊕ S(z) is replaced with u. The latter is easily justified by the
fact that, for any random value independent from S(z), the two distributions

[u
$← U ;u⊕ S(z)] and [u

$← U ;u] are identical (under the condition that y 6= z).
As for the former, suppose there exists an adversary A that can break the

following:

[(S, S′,LE ,LH)
$← X : (S(y)⊕ S(z), S(V, z) ∪ S′(V ′))]

∼ [(S, S′,LE ,LH)
$← X,u

$← U : (u⊕ S(z), S(V, z) ∪ S′(V ′))]

Then we can construct an algorithm B that attacks the following:

[(S, S′,LE ,LH)
$← X : (S(y), S(V, z) ∪ S′(V ′))]

∼ [(S, S′,LE ,LH)
$← X,u

$← U : (u, S(V, z) ∪ S′(V ′))].

On input (b, B), B runs algorithm A on input (b ⊕ a,B) where a is the value
of the variable z in A. When A terminates, algorithm B outputs the same
result as A. It should be clear that B is successful into distinguishing its two
distributions precisely when A does. So if A succeeds in distinguishing between
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its two distributions with non-negligible probability, so can B, which violates our
assumption that X |= Indis(y;V, y, z;V ′).

The same argument can be applied with the roles of S and S′ reversed, which
completes the proof that [[x := y ⊕ z]]X |= Indis(x;V, x, z;V ′).

The case when y, z ∈ V ′ is similar, the result follows from the argument above
and Corollary 1.

Proposition 20 (Rule (X3)). linebreak
{Equal(y, y) ∧ Equal(z, z)} x := y ⊕ z {Equal(x, x)}

Proof. Trivial.

Proposition 21 (Rule (X4)). linebreak
{Equal(y, y) ∧ Unequal(z, z)} x := y ⊕ z {Unequal(x, x)}

Proof. Trivial.

A.7 Block Cipher

For many of the proofs of rules involving the evaluation of the block cipher,
we use the fact that, in the ideal cipher model, the block cipher is modeled as
a perfectly random function. As a result, if the block cipher has not yet been
evaluated at a given point, then the value of the block cipher at that point is
indistinguishable from an independent random value. This is due to the fact that
the distinguishing adversary does not have any access to E .

Proposition 22 (Rules (B1), (B2) and (B3)). linebreak

(B1) {Empty} x := E(mi) {(Equal(mi,mi) ∧ Equal(x, x) ∧ Indis(x;Var,LE ,LH;Var− x))
∨ (Unequal(x, x) ∧ Indis(x))}

(B2) {E(E ; y; ∅) ∧ Unequal(y, y)} x := E(y) {Indis(x)}
(B3) {E(E ; y; ∅)∧Equal(y, y)} x := E(y) {Indis(x;Var,LE ,LH;Var− x)∧Equal(x, x)}

Proof. linebreak

(B1) Since X |= Empty, we know that, with overwhelming probability, E(S(mi))
and E(S′(mi)) have never been computed before. Following Lemma 2, we
either have X |= Equal(mi,mi) or X |= Unequal(mi,mi). We consider each
case separately:
• if S(mi) 6= S′(mi), i.e. X |= Unequal(mi,mi), and since neither is in
LE .dom, then both E(S(mi)) and E(S′(mi)) look random and independent
from all other values (just as if they had both been sampled randomly
and independently), so [[x := E(y)]]X |= Indis(x) is immediate. It should
be clear that, in this case, Unequal(mi,mi) is preserved by x := E(mi).

• if S(mi) = S′(mi), that is X |= Equal(mi,mi), then clearly [[x :=
E(mi)]]X |= Equal(mi,mi) ∧ Equal(x, x) since E is a function. As be-
fore, S(mi), S

′(mi) 6∈ LE .dom, so E(S(mi) is indistinguishable from a
random and independent value even given all other values in the system,
values except for E(S′(mi)), to which it is equal. So [[x := E(y)]]X |=
Indis(x;Var,LE ,LH;Var− x) is also clear.
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(B2) Since Unequal(y, y) is given here, this is exactly the first case of the proof of
Rule (B1).

(B3) Since Equal(y, y) is given here, this is exactly the second case of the proof of
Rule (B1).

Proposition 23 (Rule (B4)). linebreak
{E(E ; y; ∅)∧Indis(t;V ;V ′)} x := E(y) {Indis(t;V, x;V ′, x)} provided LE 6∈ V , even
if t = y

Proof. Since X |= E(E ; y; ∅), for any (S, S′,LE ,LH)
$← [[x := E(y)]]X, any adver-

sary A that successfully distinguishes t from a random value given S(V, x) ∪
S′(V ′, x) could be simulated by an algorithm which, given only S(V ) ∪ S′(V ′),
samples a uniform random u and runs A(t, S(V ) ∪ S′(V ′) ∪ {u}) (this is for the
case in which S(y) = S′(y), we would need two random values if S(y) 6= S′(y)
but the argument is the same), which would contradict X |= Indis(t;V ;V ). The
same can be argued with the roles of S and S′ reversed.

Proposition 24 (Rules (B5)). linebreak

(B5) {E(E ; y; ∅) ∧ Indis(t;V,LE , y;V ′, y)} x := E(y) {Indis(t;V,LE , x, y;V ′, x, y)}

Proof. This is a simple consequence of the fact that, while the values of y (through
both S and S′) get added to LE .dom, this does not change anything to the sets
S(V,LE , y)∪S′(V ′, y) and S′(V,LE , y)∪S(V ′, y) since the values of y were already
included in both. The addition of x in Indis(t;V,LE , x, y;V ′, x, y) can be proven
in the same way as in the proof of Rule (B4).

Proposition 25 (Rule (B6)). linebreak
{E(E ; t;V, y)} x := E(y) {E(E ; t;V, y)}

Proof. Clearly, Pr[(S, S′,LE ,LH)
$← X : {S(x), S′(x)} ∈ LE .dom ∪ S(V, y) ∪

S′(V, y)] = Pr[(S, S′,LE ,LH)
$← [[x := E(y)]]X : S(x) ∈ LE .dom ∪ S(V, y) ∨

S′(x) ∈ LE .dom∪S′(V, y)] because, since S(y), S′(y) ∈ S(V, y)∪S′(V, y), adding
S(y), S′(y) to LE .dom will not change the set LE .dom ∪ S(V, y) ∪ S′(V, y).

A.8 Hash Function

All the proofs for hash function computation are essentially the same as the proofs
for block cipher evaluation. This is due to our choice of using an adversary that
does not have access to the random oracle when trying to distinguish distributions
(see Section 3).

Proposition 26 (Rules (H1) to (H5)).

(H1) {H(H; y; ∅) ∧ Unequal(y, y)} x := H(y) {Indis(x)}
(H2) {H(H; y; ∅)∧Equal(y, y)} x := H(y) {Indis(x;Var,LE ,LH,Var− x)∧Equal(x, x)}
(H3) {H(H; y; ∅)∧Indis(t;V ;V ′)} x := H(y) {Indis(t;V, x;V ′, x)} provided LH 6∈ V ,

even if t = y
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(H4) {H(H; y; ∅)∧ Indis(t;V,LH, y;V ′, y)} x := H(y) {Indis(t;V,LH, x, y;V ′, x, y)}
(H5) {H(H; t;V, y)} x := H(y) {H(H; t;V, y)}

Proof. All the proofs for hash function computation are essentially the same
as the proofs for block cipher evaluation. This is due to our choice of using
an adversary that does not have access to the random oracle when trying to
distinguish distributions (see Section 3).

A.9 For Loop

Proposition 27 (Rule (F1)). linebreak
{ψ(i−1)} for x = i to j do: cx {ψ(j)} provided {ψ(k−1)} ck {ψ(k)} for i ≤ k ≤ j

Proof. This is a simple induction on x.
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