
HAL Id: hal-01759925
https://hal.science/hal-01759925v1

Submitted on 5 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SR3: Secure Resilient Reputation-based Routing
Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade

To cite this version:
Karine Altisen, Stéphane Devismes, Raphaël Jamet, Pascal Lafourcade. SR3: Secure Resilient
Reputation-based Routing. 2013 IEEE International Conference on Distributed Computing in Sensor
Systems (DCOSS), May 2013, Cambridge, France. �10.1109/DCOSS.2013.33�. �hal-01759925�

https://hal.science/hal-01759925v1
https://hal.archives-ouvertes.fr

SR3: Secure Resilient Reputation-based Routing?

Karine Altisen, Stéphane Devismes, Raphaël Jamet, and Pascal Lafourcade
VERIMAG UMR 5104, Université de Grenoble

Email: Firstname.Lastname@imag.fr

Abstract—We propose SR3, a secure and resilient algorithm
for convergecast routing in WSNs. SR3 uses lightweight crypto-
graphic primitives to achieve data confidentiality and data packet
unforgeability. SR3 has a security proven by formal tool. We
made simulations to show the resiliency of SR3 against various
scenarios, where we mixed selective forwarding, blackhole, worm-
hole, and Sybil attacks. We compared our solution to several
routing algorithms of the literature. Our results show that the
resiliency accomplished by SR3 is drastically better than the
one achieved by those protocols, especially when the network is
sparse. Moreover, unlike previous solutions, SR3 self-adapts after
compromised nodes suddenly change their behavior.

Index Terms—Wireless sensor networks, routing, security,
resiliency

I. INTRODUCTION
Nowadays, there is a growing interest in Wireless Sensor

Networks (WSNs). WSNs are multi-hop mesh networks made
of numerous small battery-powered sensors that generate data
about the environment (e.g., temperature) and use them for
specific services (e.g., emit an alarm when the surrounding
temperature is too high). Moreover, they embed wireless com-
munication capabilities allowing them to exchange data. The
low capabilities of the sensors, their wireless communications,
and the fact that they are deployed in open areas make them
prone to attacks.

Routing is a crucial issue in WSNs. Here, we consider a
routing scheme called convergecast routing. In this problem,
a node is distinguished as the sink and all non-sink nodes,
called source nodes, must be able to transmit data to the sink
on request or according to an a priori unknown schedule. The
sink can be arbitrary far (in terms of hops) from other nodes.
Typically, in WSNs, source nodes are sensors and the sink is a
base station that is linked to another network, like a gateway.

A routing protocol in a WSN may have to face many kinds
of attacks. Here, we consider the critical scenario, where some
sensors are compromised and controlled by an attacker. In
particular, such an internal attacker has access to all secret
and received information of the compromised nodes.

The attacker can impact the routing protocol at two main
levels. First, he can attack the data packet to learn secret
information — i.e., violate the data confidentiality1 — or
make the sink deliver incorrect information — i.e., violate the
authenticity2 or integrity3 of the data messages. Secondly, the
? This paper has been supported by the ANR Project ARESA2.
1Confidentiality guarantees that data remain secret between the source and

destination.
2Authenticity guarantees that the destination is able to detect whether the

alleged source in a packet is the truth one.
3Integrity guarantees that the destination is able to detect whether the data

inside a packet have been modified.

attacker can affect the routing scheme itself: he may prevent
data from being delivered by the sink (leading to degrade
the quality of service, essentially the delivery rate), or create
congestion by increasing the load in all or part of the network
(leading to reduce the lifetime of the network).

Related Work. Numerous solutions have been introduced to
cope with attacks on data. The confidentiality, authenticity, and
integrity properties are mainly guaranteed using cryptographic
mechanisms. However, the choice of the cryptographic primi-
tives should be led by the inherent constraint of WSNs. WSNs
being limited in terms of resource and power, lightweight
cryptographic mechanisms [5] are mandatory. An example of
such a mechanism is elliptic curve cryptography [11], [13]. In
contrast, classical asymmetric cryptography, e.g., RSA, should
be excluded due to its computational cost.

Using such lightweight cryptographic primitives, routing
protocols implementing some security properties have been
proposed, e.g., µ-Tesla [15], [12] is a broadcast authentication
protocol that enables receivers of the broadcast data to verify
that these data really originate from the alleged sources. µ-
Tesla has a low communication and computation overhead,
scales a large number of receivers, and tolerates packet loss.

Although it is not strictly a routing protocol, SPINS [15] is
a set of tools for routing, which provides security guarantees
without using any costly operations: µ-Tesla is one part of
SPINS; the other part is SNEP, a packet format that guarantees
various security properties, like authentication and confiden-
tiality, using few additional bits per packet.

Some other protocols, called secure route discovery proto-
cols, have been introduced [14], [10] to help securing routing.
Actually, they compute a valid route (i.e., the computed path
exists in the network) between the source and destination, and
for some of them (e.g., [14]), they guarantee that nodes in the
chosen route achieved a certain security level.4

However, all aforementioned solutions do not use specific
strategies to combat attacks at the routing level, e.g., selected
forwarding, blackhole, etc. Specific approaches have been
proposed to maintain a good quality of service in presence
of insiders, that drop all or part of messages. For example, the
notion of resiliency has been introduced in [7] as the ability of
a network to “continue operating” in presence of compromised
nodes, i.e., the capacity of a network to endure and overcome
internal attacks. For example, a resilient routing protocol
should achieve a “graceful degradation” in the delivery rate

4E.g., the integrity of the discovered route, which means that the computed
route has been effectively traversed during the discovery process.

with increasing the number of compromised nodes. In [6],
[8], authors experimentally analyze the resiliency of several
classical routing techniques, e.g., random walk [1], gradient-
based routing [16], geographic routing [4]. The experimental
results show that these solutions are weak in terms of re-
siliency. Then, they propose several variants of the gradient-
based routing (i.e., a protocol in which messages are routed
following a breath-first spanning tree) to increase its resiliency.
Mainly, they introduce randomization and duplication in that
protocol. As a result, the proposed patches drastically increase
the delivery rate when the network is subject to selective
forwarding or blackhole attacks. However, in their simulations,
they always assume that the breath-first spanning tree is
available and not attacked by the insiders. Moreover, they
mainly consider dense networks in their simulations, e.g.,
networks with average degree around 30.
Contribution. This paper deals with the convergecast routing
in WSNs, where all source nodes have several messages to
route. We propose a Secure, Resilient, and Reputation-based
Routing algorithm, called SR3. This protocol is a reinforced
random walk that is partially determinized using a reputation
mechanism.

SR3 uses lightweight cryptographic primitives — symmet-
ric cryptography, nonces, and hash functions — to achieve
security properties: data confidentiality and data packet un-
forgeability, this latter property implies integrity and authen-
ticity of the data packets. We prove these properties in the
computational model using the formal tool CryptoVerif [3].

Then, we show the resiliency of SR3 against various
scenarios, where we mixed selective forwarding, blackhole,
wormhole, and Sybil attacks. The resiliency of our algorithm
is mainly captured using the delivery rate and the fairness.
Our simulation results show in particular that unlike previous
solutions, SR3 self-adapts when compromised nodes change
their behavior (e.g, an interesting case is when a compromised
node behaves well to attract the traffic and then suddenly de-
cide to drop all received messages). We compare our solution
to several routing algorithms of the literature. Our simulations
show that the resiliency accomplished by SR3 is drastically
better than the one achieved by those protocols, especially
when the network is sparse.

A shortcoming of our solution is the number of hops
to reach the destination, as it is usually greater than other
solutions of the literature. However, in our experiments, we
observed that this complexity remains sublinear in the number
of nodes.

Note also that our solution is reactive,5 has a low overhead
in terms of communications, and does not use any underlying
infrastructure, such as spanning tree. Hence, SR3 is well-suited
for WSNs.
Roadmap. The remainder of the paper is organized as follows.
In the next section, we present our routing algorithm, SR3.
Section III deals with the automatic proof of the security
properties of SR3. In Section IV, we present experimental

5I.e., in absence of data to route the protocol eventually stops.

results that show the resiliency of SR3. Section V is dedicated
to concluding remarks.

II. SR3
The formal code of our routing protocol, SR3, is given

in Algorithms 1 and 2. Below, we identify the assumptions
we made about networks. Then, we informally explain the
behavior of SR3.
A. Assumptions

We consider arbitrary connected networks with bidirectional
links, although we will focus on Unit Disk Graphs (UDG) in
simulations. Each node p has a unique ID (to simplify, we shall
identify any node with its identifier, whenever convenient) and
knows the set of its neighbors, Neigp — this latter assumption
will be relaxed, when considering Sybil attacks.

Networks are made of one sink, which is the data collector,
and numerous source nodes. The source nodes are sensors, and
consequently are limited in terms of memory, computational
power, and battery. Sensors are non-trustworthy since they are
vulnerable to physical attacks and an adversary can compro-
mise them. In contrast, the sink is assumed to be robust and
powerful in terms of memory, computation, and energy. So,
we assume that it cannot be compromised.

All nodes have access to a lightweight cryptography library
(hash function, symmetric encryption, and secure random
number generation). All source nodes share a symmetric key
with the sink. Moreover, we assume that all source nodes
have several data to route; however, the scheduling of the
data generation is a priori unknown. Finally, there is no time
synchronization between nodes.
B. Overview

Randomization is interesting to obtain resilient solutions
because it generates behaviors unpredictable by an attacker.
However, note that the “classical” uniform random walk,
where a node chooses the next hop uniformly at random
among its neighbors, is known to be inefficient even against
a small number of compromised nodes [7]. So, we designed
SR3 rather as a reinforced random walk, based on a reputation
mechanism. The idea is to locally increase the probability of
a neighbor to be chosen at the next hop, if it behaves well.
Such a reputation mechanism is based on acknowledgments.
We propose a scheme in which if a process receives a valid
acknowledgment, it has the guarantee that the sink actually de-
livered the corresponding data message. Hence, upon receiving
such an acknowledgment, a process can legitimately increase
its confidence on the neighbor to which it previously sent the
corresponding data message. Therefore, eventually all honest
nodes preferably choose their highly-reputed neighbors, and
so the data messages tend to follow paths that successfully
route data to the sink.
C. Reputation Mechanism

To implement our reputation mechanism, we identify each
data message (tagged MSG in the algorithm) with a nonce, i.e.,
an unpredictable random number that should remain secret
between the source and sink until the delivery of the data
message.

2

Algorithm 1 SR3 for any source node v
Input: kvs: the key of node v, shared with the sink s

Variables:
LQueue: List of at most sQ pairs, initially empty
LAckRouting : List of at most sA pairs, initially empty
LRouting : List of at most sR elements, initially empty

On generation of Data
1: Nv ← NEW NONCE()
2: H ← HASH(Nv)
3: C ← ENCRYPT(〈Data,Nv〉,kvs)
4: next← RAND(Neigv ,Lv

SR3(LRouting))
5: LQueue ← LQueue � 〈Nv, next〉
6: Send 〈MSG, C,H, v〉 to next

On reception of 〈MSG, C,H, o〉 from f

7: next← RAND(Neigv ,Lv
SR3(LRouting))

8: if v = o then
9: 〈Data,No〉 ← DECRYPT(C,kvs)

10: if HASH(No) = H then
11: LQueue ← LQueue � 〈No, next〉
12: Send 〈MSG, C,H, o〉 to next
13: end if
14: else
15: if 〈H, 〉 /∈ LAckRouting then
16: LAckRouting ← LAckRouting • 〈H, f〉
17: end if
18: Send 〈MSG, C,H, o〉 to next
19: end if

On reception of 〈ACK, No, o〉 from f

20: if v = o ∧ 〈No, 〉 ∈ LQueue then
21: first hop← GET(LQueue, No)
22: LRouting ← LRouting • first hop
23: LQueue ← LQueue \ 〈No, 〉
24: else
25: if v 6= o then
26: H ← HASH(No)
27: if 〈H, 〉 ∈ LAckRouting then
28: next← GET(LAckRouting, H)
29: LAckRouting ← LAckRouting \ 〈H, 〉
30: else
31: next← RAND(Neigv ,Lv

RW)
32: end if
33: Send 〈ACK, No, o〉 to next with probability N−1

N
34: end if
35: end if

Algorithm 2 SR3 for the sink s
Input: keys[]: array of shared keys, indexed on node identifiers

On reception of 〈MSG, C,H, o〉 from f

36: 〈Data,No〉 ← DECRYPT(C,keys[o])
37: if HASH(No)= H then
38: Deliver Data to the application
39: Send 〈ACK, No, o〉 to f
40: end if

On reception of 〈ACK, No, o〉 from f

41: next← RAND(Neigs,Ls
RW)

42: Send 〈ACK, No, o〉 to next with probability N−1
N

Assume that node v initiates the routing of some value
Data. It first generates a nonce Nv (NEW NONCE(), Line 1).
Then, it encrypts in a ciphertext C the concatenation of
Data and Nv using the key kvs it shares with the sink
(ENCRYPT(〈Data,Nv〉,kvs), Line 3). Then, both C and the
identifier of v (in plaintext) are routed to the sink, and only the
sink is able to decrypt C. So, upon receiving the data packet,
the sink decrypts C using kvs, delivers Data, and sends back
to v an acknowledgment ACK containing Nv (Lines 36-39).
Finally, if v receives this acknowledgment, it has the guarantee
that Data has been delivered, thanks to Nv .

Now, during the routing, a compromised relay node can
blindly modify the encrypted part of the message. To prevent

the sink from delivering erroneous data, we add a hash of the
nonce into the data message (HASH(Nv), Line 2). This way,
when receiving a message 〈MSG, C,H, o〉, the sink can check
the integrity of the message by first decrypting C using kos
(DECRYPT(C,keys[o]), Line 36), and then comparing the hash
of the nonce in C to H: if they do not match, the message
is simply discarded. Similarly, if a compromised node has
modified the plaintext identifier in the message, then the sink
will decrypt C with a wrong key, and therefore the hash of
the decrypted nonce will not match H .

Upon receiving an acknowledgment, if the receiving node
v is the initiator of the corresponding data message m, v can
conclude that m has been delivered. In that case, v should
reinforce the probability associated to the neighbor to which
it previously sent m. To achieve that, we proceed as follows:
when v initiates the routing of m, v saves in the list LQueue
the nonce stored in m, together with the identifier of the
neighbor to which v sends m (LQueue is appended in Line 5
in using �, this latter operator is defined below). Hence, on
reception of an acknowledgment, v checks (in Line 20) if it
is the destination of the acknowledgment and if the nonce No
attached to that acknowledgment appears in LQueue (see the
test 〈No, 〉 ∈ LQueue in Line 20).6 In that case, v gets back
the corresponding neighbor from the list (GET(LQueue, No),
Line 21), increases its confidence on that neighbor, and re-
moves the record from LQueue (LQueue \ 〈No, 〉, Line 23).
(If v is the destination of the acknowledgment, but No does not
appear in LQueue, the acknowledgment is simply discarded.)

Due to the memory limitations, LQueue must have a max-
imum size, sQ. If a node v has some new data to route and
LQueue is full (that is, it contains sQ elements), then the oldest
element is removed from the list to make room for the new
one. A side effect is that records about lost messages or of
messages whose acknowledgment has been lost are eventually
removed from LQueue.

Note that it may happen that some data message m comes
back to the node v from which it originates because m
followed a cycle in the network. In this case (Lines 8-13),
the validity of m is checked, and then the routing process of
m is restarted. Since the old entry in LQueue is not relevant
anymore, it is simply replaced by the new one.

Consequently, the concatenation of 〈x, y〉 to the list L using
� works as follows: first, if L contains any pair with a left
member equal to x, that pair is removed from L; then, if L
is (still) full, the rightmost pair is removed; finally, 〈x, y〉 is
inserted on the left side of the list. Note that, using �, any
left member of a pair in the list is unique.

D. Compute the Reputation

To choose the next hop of some data message, a node
performs a random choice among its neighbors, weighted
according to their reputation (see Lines 4 and 7).

The reputation of a neighbor actually corresponds to the
number of occurrences of its identifier in the list LRouting:

6“ ” means “any value”. So, 〈No, 〉 is any record whose left value is No.

3

each time a node v wants to reinforce the reputation of some
neighbor u, it simply adds an occurrence of u into its list
(Line 22).

Our reputation mechanism is implemented using the proba-
bility law LvSR3(LRouting): Let X be a random variable taking
value in Neigv; ∀x ∈ Neigv , the law LvSR3(LRouting) is
defined by:

Pr(X = x) =
|LRouting|x + δ−1

v

|LRouting|+ 1

where δv is the degree of v, |LRouting| is the number of
elements in LRouting , and |LRouting|x is the number of
occurrences of x in LRouting . Hence, when v wants to route
a data message, it chooses its next destination according to
LvSR3(LRouting) (see RAND(Neigv ,LvSR3(LRouting)) in Lines
4 and 7).

Informally, when a node needs to route a message, it draws
at random a value from LRouting plus a blank element. If
the blank element is drawn, it selects a neighbor uniformly at
random, and sends the message to that neighbor. Otherwise,
the message is sent to the neighbor whose identifier has been
drawn. This way, the more a neighbor is trusted, the more it
will be selected. However, because of the blank element, there
is always a positive probability of selecting a neighbor without
taking trust into account. Note that, initially LRouting is empty,
and consequently the first selections are made uniformly at
random.

To ensure a better resiliency against attackers that change
their behavior over time, and to reduce memory consumption,
LRouting is defined as a FIFO list of maximum size, sR. The
insertions in LRouting use the operator • that satisfies the
following condition: when the list is full, the next insertion
is preceded by the removing of the oldest (and consequently,
less relevant) element.

Using such a FIFO finite list, a node only stores the freshest
information. Interestingly, if a compromised node first behaves
well, its reputation increases, resulting in attracting the traffic.
Then, it may change its behavior to become a blackhole (a
node losing all messages it receives). Now, thanks to our
mechanism, regularly some messages will be routed via other
nodes and consequently the reputation of the compromised
node will gradually decrease, inducting then a severe reduction
of the traffic going through that node.

E. Acknowledgment Routing

Let ack be an acknowledgment message. Since ack has
been emitted because the corresponding data message m has
been successfully delivered by the sink, we can suppose that
the path followed by m was safe. Therefore, we can use the
bidirectionality of the links to route ack (as much as possible)
through the reverse of the path followed by m.

This reverse routing is accomplished by letting a trail along
the path followed by m. This trail is stored thanks to the list
LAckRouting maintained at each node: after the reception of
each data message, the relaying nodes store the hash of the
nonce available in the message, together with the identifier of

the neighbor from which they received the message (Lines 14-
17). This information will be then used during the return trip
of the acknowledgment: when a node v receives an acknowl-
edgment containing the nonce Nx, it checks whether it is the
final destination of that acknowledgment (Lines 20 and 25). If
this is not the case, v checks if an entry containing HASH(Nx)
exists in LAckRouting (Lines 26-30). If v finds such an entry, it
sends the acknowledgment to the corresponding neighbor and
removes the entry from LAckRouting (Line 29). Otherwise,
the next hop of the acknowledgment is chosen uniformly at
random, in a best-effort mindset (LvRW denotes the probability
law of the uniform random walk, see Line 31).

If a data message loops back to a node it already visited,
the most relevant information regarding acknowledgments for
this node is the oldest one. Therefore, before inserting a new
trail, the node checks if LAckRouting already contains a trail
for that message. If a related entry exists, we do not update
LAckRouting (Lines 14-17).

Acknowledgments can be still dropped by compromised
nodes. The trail for such lost acknowledgments would un-
necessarily clutter the memory of nodes. To avoid this, we
manage LAckRouting similarly to LRouting , i.e., LAckRouting
is a list of bounded size sA, appended using operator •.

Finally, an intruder may build acknowledgments with false
nonces. These fake acknowledgments will increase the load
of the network, and impact the energy consumption. Now,
some nodes being compromised, a safe node cannot trust
information coming from its neighbors to decide whether it
should forward or drop an acknowledgment. To circumvent
that problem, a relay node decides to drop a received acknowl-
edgment with probability 1

N , where N is an upper bound on
the number of nodes (Lines 33 and 42). So, on the average,
an acknowledgment makes N hops in the network before
being dropped. An interesting side effect of this method is the
following: in a safe network (i.e., a network without attackers),
the acknowledgments that follow long routes are often dropped
before reaching their final destination. Since the length of the
routes followed by the acknowledgments are directly related to
the length of the route taken by the corresponding messages,
the reputation mechanism ends up favoring shorter routes, thus
improving the overall hops complexity.

III. SECURITY ANALYSIS

To evaluate the security properties of SR3, we use the tool
CryptoVerif [3]. In this tool, the properties of the cryptographic
primitives can be modeled using random oracles and games.

A random oracle works as follows: for every input i, the first
time the oracle is queried with i, it returns a value v, picked
uniformly at random from its output domain; then, each time
it is queried again with i, it returns the same value, v.

Here, the hash function is modeled by a random oracle with
output domain of size ηh.

A game is an algorithm that evaluates the ability of an
adversary (a probabilistic polynomial-time Turing machine)
to break a property. A game allows to compute the advantage
of the adversary, i.e., a measure of how successfully it can

4

win the game. More formally, the advantage of an adversary
A in a game is the difference between the probability of A
to win the game minus the probability of randomly winning
the game. Consequently, the advantage in a game gives the
security level of the property: the lower the advantage is, the
safer the property is.

Depending on the security property, we assume that the
block cipher used in SR3 is either PRP-CPA secure or PRP-
CCA secure [9], each of these two properties being modeled
by a game.

Given a permutation family F , PRP-CCA works as follows:
the adversary A should guess whether an oracle O is a
permutation extracted from F or a truly random permutation.
A is allowed to make several calls to O and O−1 (the
inverse of O). The advantage of A in this game is noted
AdvPRP−CCAF (A), and depends on the number of callsAmade
to O and O−1. The game PRP-CPA is similar to PRP-CCA,
except that the adversary has only access to O. The advantage
of A in this game is noted AdvPRP−CPAF (A), and depends
on the number of calls A made to O. Note that PRP-CPA
is weaker that PRP-CCA, i.e., for every adversary A, there
exists an adversary B, using the same resources as A, such
that AdvPRP−CPAF (A) ≤ AdvPRP−CCAF (B).

We assume that the block cipher of SR3 is PRP-
CCA-secure. Therefore, both AdvPRP−CCAF (A) and
AdvPRP−CPAF (A) becomes negligible in the size of the
block cipher, ηc, i.e., for every positive polynomial P we
have ∃K,∀ηc > K,AdvPRP−CPAF (A) < 1

P (ηc)
.

In CryptoVerif, we analyzed the confidentiality of the data
and the nonces as well as the unforgeability of the MSG

messages in SR3. Each of these three properties is evaluated
thanks to a game. For each game, CryptoVerif outputs a bound
on the advantage of any adversary in that game. This bound
is obtained after successive game reductions.

Since honest nodes change neither the MSG messages nor
the ACK messages while they are routed through the network,
we can consider only two participants evolving in a hostile
network for our security analysis: a source and the sink.

We first studied the confidentiality of the data in SR3 using
a Find-then-Guess (FG) game. This game is played in two
phases. First, the adversary A outputs two data, d0 and d1.
Then, one of them is selected uniformly at random, and a MSG

message m is generated with the selected data. Finally, m is
given to A. To win, A must guess which of the two data is in
m. Throughout this game, A has access to an oracle which,
when queried with a data d, returns two outputs: a (new) MSG
message m′ containing d, and the nonce inside m′. The bound
of advantage output by CryptoVerif depends on the ability to
break the block cipher, i.e., this FG game can be reduced to a
PRP-CPA game. So, the bound on this FG game depends on
the advantage AdvPRP−CPAF (B) of any adversary B in a PRP-
CPA game. Formally, for all adversaries A making qG data
message-building queries and qH queries to the hash function,
there exists an adversary B (making qG+1 queries to O) such
that the advantage of A in this FG game is smaller than

2qG + 2q2G
2ηc

+
2q2G + 4qG + 2

2ηn
+ 2AdvPRP−CPAF (B)

where ηn is the size of the nonces in the MSG messages. Note
that ηc ≤ ηn. Therefore, this bound becomes negligible when
increasing ηn.

We then studied the Unforgeability under Chosen Message
and Verification Attack (UFCMVA) of the MSG messages, a
property which implies both indistinguishability and authentic-
ity of the MSG messages. To that goal, we modeled a UFCMVA
game that measures the ability of an arbitrary adversary to
come up with a MSG message which is both valid and original.
A MSG message m is original if and only if the data and the
nonce in m have never been used before in any other MSG

message. Here, the adversary can access two oracles: the first
one, given a data d, returns a MSG message containing d, and
the second one evaluates whether a MSG message is valid.

As in the previous game, the advantage of A depends on
the strength of the block cipher. Formally, for all adversaries
A making qG queries to the message generation oracle, qV
queries to the message verification oracle, and qH queries
to the hash function, there exists an adversary B making qG
queries to O and qV +1 queries to O−1 such that the advantage
of A in the UFCMVA game is smaller than

qH + qHqV + qV qG + qG + qHqG + 2q2G
2ηn

+

q2G + qG + 2qV qG + qV + q2V
2ηc

+
1 + qV
2ηh

+AdvPRP−CCAF (B)

Once again, this bound becomes negligible when ηh and ηn
increase.

We also showed that an adversary cannot acknowledge a
MSG message if that message has not been effectively delivered,
by showing the confidentiality of the nonces in MSG messages
which have not yet reached the sink. The corresponding game
consists in giving a MSG message m to an adversary A that
can call the two same oracles as in the UFCMVA game. To
win, A must guess the nonce that is inside m. A is allowed to
make qA tries. Once again, the strength of the block cipher is
crucial in this game. For all adversaries A making qG queries
to the message generation oracle, qV queries to the message
verification oracle, and qH queries to the hash function, there
exists an adversary B making qG + 1 queries to O such that
the advantage of A in this game is smaller than

qA + qH + qHqG + 2qG + 2q2G
2ηn

+
qG + q2G

2ηc
+AdvPRP−CPAF (B)

Once again, this bound is negligible when ηh and ηn increase.
These three bounds allow us to select the necessary trade-

off between the desired level of security and the mandatory
minimization of the message overhead. For instance, we
can choose an advantage smaller than 2−60 for the three
properties against an adversary A that can query each oracle
up to 230 times (around 1 billion queries). To achieve this,
we set ηn to 128 bits (16 bytes) and ηh to 96 bits (12
bytes). Then, the advantage of A would be smaller than

5

2−64 + 2AdvPRP−CCAF (B) in the UFCMVA game; the results
are similar for the other properties. From this, if we use AES-
128 as block cipher, the best attack known to this day needs
2126.1 operations. Therefore, we can expect AdvPRP−CCAF (B)
to be much smaller than 2−64, and consequently our security
bound of 2−60 would be satisfied. Using these sizes, the
overhead for each data message would be 36 bytes: 16 bytes
for the nonce, 12 bytes for the hash function, and 8 bytes to
store a node identifier. All our security proofs are given in [2].

IV. EXPERIMENTAL RESULTS

We ran simulations in Sinalgo,7 an event-driven simulator
for WSNs, to study the resiliency of SR3 against several attack
scenarios. We compared its performance to those of six other
routing protocols. Due to space limitation, only few of our
results are presented here, but these results are representative
of the general trends we observed in all our simulations. All
our experimental results are available in [2].

A. Experimental Conditions
We deployed sensors uniformly at random on a square

plane. We positioned the sink at the center of the square plane.
Two nodes can communicate if and only if their Euclidean
distance is less or equal to a preset fixed range, i.e., the
topology is a UDG. The compromised nodes are selected
uniformly at random among the sensors. We only considered
connected UDGs. The communication links are asynchronous
and FIFO. The transmission time of each link follows an
exponential random distribution of constant parameter. Only
honest sensors generate data to route. The time between two
consecutive data generations at the same sensor also follows
an exponential random distribution, whose parameter is the
same for all sensors and whose value depends on the average
degree and the number of sensors in the network, to prevent
congestion.

If we fix the number of nodes n and the range, we can tune
the size of the simulation area to control the average degree δ
of the network. In our simulations, n varies from 50 to 400 and
δ varies from 8 to 32. The percentage of compromised nodes
varies from 0 to 30%. We considered various attack scenarios,
where compromised nodes made selective forwarding: each
compromised node drops received messages with a probability
p ∈ (0..1] (if p = 1, the node is called a blackhole). In
addition, some compromised nodes may have some additional
“bad” skills (they may be wormholes or Sybil).

For each setting (number of nodes, average degree, attack
scenario, amount of compromised nodes and routing algo-
rithm), we ran simulations over 20 UDGs. Each simulation
stops once 500 000 data have been routed or lost. We made
more than 13 000 simulation runs and the overall number of
generated data is greater than 6 billion.
B. Parameters of SR3

Our algorithm requires four parameters: N (an upper bound
on the number of nodes) and the maximum sizes of each list,
respectively denoted by sR, sQ and sA. In each simulation,

7http://www.disco.ethz.ch/projects/sinalgo/

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300 350 400

A
v
e
ra

g
e
 d

e
liv

e
ry

 r
a
te

Number of nodes

GFG
GBR

RGBR
PRGBR

PRDGBR
RW

SR3

Fig. 1. Average delivery rate (30% of BH nodes, δ = 8)

we set N to the actual number of nodes. We respectively
set sR, sQ, and sA to 10, 3, 5. The choice of these values
has been led by an experimental evaluation, detailed in the
technical report [2]. These values ensure good performances,
while keeping the memory consumption low.
C. Benchmark Protocols

We selected a panel of six protocols from the literature:
the uniform Random Walk (RW) [1], the Greedy-Face-Greedy
protocol (GFG) [4], the gradient-based protocol (GBR) [16],
and three of its variants (RGBR, PRGBR, PRDGBR) [6]. Note
that RGBR, PRGBR, and PRDGBR have been introduced
for resiliency purpose. GFG is a geographic routing protocol,
where two modes are alternatively used: Greedy and Face. The
Greedy mode is preferably used, but may lead a message to a
dead end. In this case, the Face mode allows the message to
escape from this dead end. GBR consists in routing messages
along the breadth-first spanning tree (BFS tree) rooted at the
sink. RGBR uses the levels of neighbors in the BFS tree:
each sensor chooses the next hop for each message uniformly
at random among its lowest-level neighbors. In PRGBR, each
sensor chooses between two modes: (1) with probability 0.4
the message is routed according to RGBR; (2) with probability
0.6 the message is routed to a neighbor of same level (if no
such a neighbor exists, the sensor uses mode 1). PRDGBR
duplicates the messages at each hop and routes the two
messages independently using PRGBR. To avoid congestion,
each node drops the received copies of messages it already
saw.
D. Some Scenarios and Results

1) Average Delivery Rate: Figure 1 shows the delivery rates
observed in networks of average degree δ = 8 facing 30% of
blackholes (BH), that is, nodes that drop all messages they
receive. The size of the networks varies from 50 to 400 nodes.
(Note that, with 30% of blackholes, several honest nodes
cannot safely reach the sink and consequently have delivery
rate zero.) We can remark that SR3 always offers a better
delivery rate than the other protocols. In particular, the greater
the networks are, the greater the gap is.

Figure 2 shows the delivery rates observed in networks of
size n = 200 facing 30% of blackholes (BH). The average
degree of the networks varies from 8 to 32. Again, we can
remark that SR3 always offers a best delivery rate in that
case. Moreover, as RW and GFG, the average delivery rate

6

 0

 0.2

 0.4

 0.6

 0.8

 1

 8 12 16 20 24 28 32

A
v
e
ra

g
e
 d

e
liv

e
ry

 r
a
te

Average degree of the network

GFG
GBR

RGBR
PRGBR

PRDGBR
RW

SR3

Fig. 2. Average delivery rate (30% of BH nodes, n = 200)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
v
e
ra

g
e
 d

e
liv

e
ry

 r
a
te

Drop rate of SF nodes

GFG
GBR

RGBR
PRGBR

PRDGBR
RW

SR3

Fig. 3. Average delivery rate (20% of SF nodes, n = 200, δ = 8)

of SR3 is insensitive to the degree variation. In contrast, the
observed delivery rates for gradient-based protocols are low in
sparse networks. In high-density networks, the performances
of PRDGBR match those of SR3. However, SR3 use only two
messages per data, while PRDGBR duplicates the messages
at each hop, and consequently heavily increases the load of
the network.

Figure 3 shows that SR3 also efficiently combats the selec-
tive forwarding (SF) attacks. We show the average delivery
rates observed in networks of size n = 200 and average
degree δ = 8 that have to face 20% of compromised nodes,
according to the drop rate. We can observe that, except RW,
all protocols of the panel achieve a graceful degradation in the
delivery rate when the drop rate increases. Still, SR3 has the
best performance. Only PRDGBR has performances closed
to those of SR3, when the drop rate is of 100% (that is,
when compromised node are actually blackholes). But again,
this performance comes at the price of a high communication
overhead.

We also considered networks of size n = 200 and average
degree δ = 8, where 10% of nodes are both blackholes and
Sybil (SY). The number of pseudonymous identifiers of these
compromised nodes varies from 1 to 10. We can observe
in Figure 4, that except for GFG, adding Sybil nodes does
not change the relative performances in the panel. Actually,
GFG is insensitive to Sybil attacks because it does not use
node identifiers. Now, still in that case, SR3 offers the best
performances.

2) Fairness: Fairness among the delivery rates of honest
nodes is an expected property in routing protocols. A classical
way to capture this property is to compute the standard
deviation of the delivery rates of honest nodes. Figure 5 shows

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

A
v
e
ra

g
e
 d

e
liv

e
ry

 r
a
te

Number of pseudonymous identities per SY node

GFG
GBR

RGBR
PRGBR

PRDGBR
RW

SR3

Fig. 4. Average delivery rate (10% of SY nodes, n = 200, δ = 8)

Algorithm Average delivery rate Standard deviation
GFG 0.117 0.308
GBR 0.487 0.487

RGBR 0.491 0.307
PRGBR 0.306 0.223

PRDGBR 0.750 0.179
RW 0.008 0.017
SR3 0.777 0.060

Fig. 5. Average delivery rate and standard deviation of the delivery rate of
nodes (30% of BH, n = 200, δ = 32)

the average and standard deviation of delivery rates observed
in networks of size n = 200 and average degree δ = 32, when
facing 30% of BH nodes. The smaller the standard deviation is,
the fairer the algorithm is. Now, a shortcoming of this measure
is that when the delivery rates are uniformly bad (like for
example in RW), the observed fairness is good. So, analyzed
alone, this measure is misleading.

Instead, we propose here to visualize the distributions of
delivery rates. Figure 6 shows an example of our method. In
this figure, we consider the same simulations as in Figure 5.
There is one column per algorithm of the panel. Each column
represents the range of possible delivery rates from 0 to 100%,
by intervals of 10%. The color shade encodes the proportion
of nodes having the corresponding delivery rate. Consider, for
example, the RW protocol: almost all nodes have a delivery
rate of less than 10%. In contrast, using SR3, almost all nodes
have a delivery rate greater or equal to 70%. We can clearly
observe two classes of processes when looking at GFG and
GBR: nodes have either 0% or 100% of delivery rates; these
protocols are unfair. The probabilistic variants of GBR are
fairer: the delivery rates are spread on the whole range, but
still these results are weaker than those observed for SR3.

3) Average Number of Hops: Here, we are only interested
in the messages that are successfully delivered. So, we con-
sider safe networks. Figure 7 shows the average number of
hops of data messages in networks of average degree δ = 16,
where the size n varies from 50 to 400. First, note that
we do not show results for RW in the figure because they
are drastically worse than other protocols of the panel, e.g.,
for 50 nodes, its average number of hops is 40, and for
400 nodes, its average number of hops is 529. Then, by
definition, routes followed using GBR or RGBR are optimal.
Finally, SR3 generates longer routes than the geographical and
gradient-based protocols due to its lack of knowledge about the

7

0 10 20 30 40 50 60 70 80 90 100
Proportion of nodes (%):

0

10

20

30

40

50

60

70

80

90

100

GFG

0

10

20

30

40

50

60

70

80

90

100

GBR

0

10

20

30

40

50

60

70

80

90

100

RGBR

0

10

20

30

40

50

60

70

80

90

100

PRGBR

0

10

20

30

40

50

60

70

80

90

100

PRDGBR

0

10

20

30

40

50

60

70

80

90

100

RW

0

10

20

30

40

50

60

70

80

90

100

SR3

Fig. 6. Average delivery rate distribution (30% of BH, n = 200, δ = 32)

 0

 5

 10

 15

 20

 25

 30

 50 100 150 200 250 300 350 400

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f
h
o
p
s

Number of nodes

GFG
GBR

RGBR
PRGBR

PRDGBR
RW

SR3

Fig. 7. Average number of hops in safe networks (δ = 16)

network. However, this length stays reasonable (i.e. we always
observed lengths drastically smaller than n), and scales with
the number of nodes.

4) Self-adaptativity: Thanks to its reputation mechanism,
SR3 self-adapts to the variation of the hostile environment.
To see this, consider the following scenario: in a network of
n = 200 nodes with average degree δ = 8, we assume 5% of
BH nodes and 5% of compromised nodes (WH/BH nodes) that
first behave as wormholes (WH) to attract the traffic and then
become blackholes. Here, a wormhole is a compromised node
that violates the UDG topology by directly communicating
with the sink. Thanks to this channel, WH nodes appear more
attractive to their neighbors because they allow delivering
messages faster. In our scenario, the WH/BH nodes behave
as wormholes during the first third of the simulation and
then become blackholes. Figure 8 shows the evolution of the
delivery rates of each protocol: for each point (x, y) of the
curves, y is the delivery rate computed over a window of
10 000 messages, from the (x− 10000)th to the xth emitted
message. Only SR3 recovers from this attack.

V. CONCLUDING REMARKS

We proposed SR3, a secure and resilient algorithm for
convergecast routing in wireless sensor networks. Using
lightweight cryptographic primitives, SR3 achieves data con-
fidentiality and data packet unforgeability. Using simulations,
we showed the resiliency of SR3 in various attack sce-
narios, including selective forwarding, blackhole, wormhole,
and Sybil nodes. The comparative study shows that the re-
siliency accomplished by SR3 is drastically better than the
one achieved by several routing protocols of the literature,

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

A
v
g
.
d
e
liv

e
ry

 r
a
te

 o
n
 t
h
e
 w

in
d
o
w

 (
x
-1

0
3
..
x
]

The x
th

 message has been processed (either delivered or lost)

GFG
GBR

RGBR
PRGBR

PRDGBR
RW

SR3

Fig. 8. Average delivery rate (5% of WH/BH, 5% of BH, n = 200, δ = 8)

even those whose targeted metric is resiliency.
The immediate perspective of this work is to study the

performance of SR3 in a more dynamic environment, e.g.,
networks with mobile nodes or networks where nodes are
added/removed on the fly. Another future work is the effective
deployment of SR3 in a WSN testbed platform.

REFERENCES

[1] R. Aleliunas, R. Karp, R. Lipton, L. Lovasz, and C. Rackoff. Random
walks, universal traversal sequences, and the complexity of maze prob-
lems. In 20th Annual Symposium on Foundations of Computer Science,
pages 218–223, 1979.

[2] K. Altisen, S. Devismes, R. Jamet, and P. Lafourcade. SR3 : A secure
and resilient reputation-based routing protocol. Technical Report TR-
2013-4, Verimag Research Report, 2013.

[3] B. Blanchet. A computationally sound mechanized prover for security
protocols. IEEE Trans. Dependable Sec. Comput., 5(4):193–207, 2008.

[4] P. Bose, P. Morin, I. Stojmenović, and J. Urrutia. Routing with
guaranteed delivery in ad hoc wireless networks. Wireless Networks,
7(6):609–616, 2001.

[5] T. Eisenbarth and S. Kumar. A survey of lightweight-cryptography
implementations. Design & Test of Computers, IEEE, 24(6):522–533,
2007.

[6] O. Erdene-Ochir, A. Kountouris, M. Minier, and F. Valois. Enhancing
resiliency against routing layer attacks in wireless sensor networks:
Gradient-based routing in focus. International Journal On Advances
in Networks and Services, 4(1 and 2):38–54, 2011.

[7] O. Erdene-Ochir, M. Minier, F. Valois, and A. Kountouris. Resiliency
of wireless sensor networks: Definitions and analyses. In Telecommu-
nications (ICT), 2010 IEEE 17th International Conference on, pages
828–835, 2010.

[8] O. Erdene-Ochir, M. Minier, F. Valois, and A. Kountouris. Toward
resilient routing in wireless sensor networks: Gradient-based routing
in focus. In Proceedings of the 2010 Fourth International Conference
on Sensor Technologies and Applications, SENSORCOMM ’10, pages
478–483, 2010.

[9] S. Goldwasser and M. Bellare. Lecture Notes on Cryptography. 2008.
[10] Y. Hu, A. Perrig, and D. Johnson. Ariadne: A secure on-demand routing

protocol for ad hoc networks. Wireless Networks, 11(1-2):21–38, 2005.
[11] N. Koblitz. Elliptic Curve Cryptosystems. Mathematics of Computation,

48(177):203–209, 1987.
[12] D. Liu and P. Ning. Multilevel tesla: Broadcast authentication for

distributed sensor networks. ACM Transactions in Embedded Computing
Systems (TECS), 3:800–836, 2004.

[13] V. S. Miller. Use of elliptic curves in cryptography. In Advances in
Cryptology CRYPTO 85 Proceedings, volume 218, pages 417–426,
1986.

[14] P. Papadimitratos and Z. Haas. Secure Routing for Mobile Ad hoc
Networks. In Proceedings of the SCS Commnication Networks and
Distributed Systems Modeling and Simulation Conference (CNDS),
pages 193–204, 2002.

[15] A. Perrig, R. Szewczyk, J. Tygar, V. Wen, and D. Culler. Spins: Security
protocols for sensor networks. Wireless networks, 8(5):521–534, 2002.

[16] C. Schurgers and M. Srivastava. Energy efficient routing in wireless
sensor networks. In Proceedings of MILCOM 2001, pages 357–361,
2001.

8

