
HAL Id: hal-01759919
https://hal.science/hal-01759919v1

Submitted on 5 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

(In)Corruptibility of Routing Protocols
Raphaël Jamet, Pascal Lafourcade

To cite this version:
Raphaël Jamet, Pascal Lafourcade. (In)Corruptibility of Routing Protocols. Foundations and Practice
of Security - 7th International Symposium, FPS 2014, Nov 2014, Montréal, Canada. �hal-01759919�

https://hal.science/hal-01759919v1
https://hal.archives-ouvertes.fr

(In)Corruptibility of Routing Protocols?

Raphaël Jamet1 and Pascal Lafourcade2

1 Univ. Grenoble Alpes, VERIMAG, F-38000 Grenoble, France
CNRS, VERIMAG, F-38000 Grenoble, France

raphael.jamet@imag.fr,
2 Université d’Auvergne, LIMOS, France
pascal.lafourcade@udamail.fr

Abstract. Analyses of routing protocols security are nearly always supported by
simulations, which often evaluate the ability to deliver messages to a given desti-
nation. Several competing definitions for secure routing exist, but to our knowl-
edge, they only address source routing protocols. In this paper, we propose the
notion of corruptibility, a quantitative computational definition for routing secu-
rity based on the attacker’s ability to alter the routes used by messages. We first
define incorruptibility, and we follow with the definition of bounded corruptibil-
ity, which uses two routing protocols as bounds for the evaluated protocol. These
definitions are then illustrated with several routing algorithms.

1 Introduction

Internet is made out of several independent entities controlling their own net-
works. To be routed, packets need to get through several networks until they
reach their destination, and so the Internet can be seen as a large ad hoc net-
work. In this context, routing relies on several protocols, including the Border
Gateway Protocol (BGP, [10]). This protocol ensures the dissemination of rout-
ing information between autonomous systems (AS), and is notoriously inse-
cure [12,13,9].

For instance, the AS 7007 incident [3] caused an internet-wide outage in
1997 because this AS declared itself able to route to the whole Internet. This
declaration was made in a way that ensured most networks would choose the
AS as the preferred gateway to the rest of the Internet. This misconfiguration
then propagated through the Internet, overloading the faulty AS, and causing
huge packet losses.

Another example, still related to BGP, has been seen more recently in the
wild [7]. In this incident, China Telecom’s subnetwork declared itself prefer-
ential for the routing to more than 50,000 IPs, including some strategic sub-
networks for the USA. Unlike the previous example, the infrastructure of the
problematic subnetwork still managed to route packets to their destination.
? This research was conducted with the support of the ”Digital trust” Chair from the Foundation

of the University of Auvergne.

In the context of wireless ad hoc networks (WANET), attacks and misconfig-
urations are not as well studied as in traditional networks. For instance, in [17],
the authors present some usual routing protocol vulnerabilities. In [8], the anal-
ysis is more specific to the security of routing protocols on wireless sensor net-
works, which are a subset of the WANET family with more limited resources
and specific protocols.

Our intuition is that a secure routing protocol should guarantee that mali-
cious parties cannot influence the routes a message will take, or at least that
this influence is limited in a clearly stated way. We call such protocols incor-
ruptible, and using an incorruptible routing protocol would have prevented both
previously mentioned incidents. We do not consider confidentiality or integrity
of the data, as they are properties which are not necessarily tied to the routing
layer. Furthermore, this study is centered on wireless networks, but we believe
the notion can easily be transposed to the context of wired networks.

Contribution: We propose the first steps towards a computational notion for
the security of routing protocols, based on the ability for an attacker to influence
how messages are routed. We provide three measures. The first one quantifies
the difference between routing protocols in a safe context. The second one, de-
noted routing protocol corruption, quantifies how much an attacker is able to
change how messages are routed. The last definition allows one to prove that an
attacker can only corrupt a protocol within some limits. We only consider pro-
tocols where the nodes memories do not evolve once the attack begins. Finally,
we illustrate these definitions with the analysis of a simple protocol.

Related Work: In [14], the authors proposed the Source Routing Protocol
(SRP), which is an on-demand route discovery protocol. In on-demand rout-
ing protocols, route discovery is the process of building a valid path for a given
data message. Using BAN logic [4], they claimed that routes generated by this
protocol are correct and their integrity is respected. An attack has been found
later on that protocol by [11], who argued that the results of the analysis are
flawed because such an analysis is ”a misuse of BAN”, as this logic has been
designed to study trust relationships, and not security notions.

The authors of [1] provide a definition of provably secure on-demand route
discovery. They assume the adversary has compromised a few nodes in the net-
work which gives him full control of their actions and memories. To prove se-
curity of protocols, they use the simulation paradigm, which uses two models:
the real-world model, and an ideal-world model where the protocol is idealized.
This way, they can detect specific problems in the protocol, while avoiding the
inherent problems of such routing protocols. In their model, a protocol is con-

2

sidered secure if the executions set in the real-world model are indistinguishable
from those set in the ideal-world version. This model was expanded in [5], where
the authors provided an automated way to check protocols in this model.

The main differences between our model and theirs lie in the limitations on
the evaluated protocols, and the property being evaluated. Regarding protocols,
their model is able to track of the evolution of the internal states on nodes and
to model broadcasts, while we do not consider these situations. Regarding the
properties, the one we verify is universal to routing protocols, and could be
applied to any, while their property of secure route discovery only makes sense
on source routing protocols.

Outline: In Section 2, we model networks and protocols in our formalism, and
in Section 3 we provide some routing protocols. We present our definitions of an
incorruptible routing protocol in Section 4, along with the analysis of one of the
protocols given in Section 3. Finally, we conclude and present the perspectives
of this work in Section 5.

2 Definitions

To represent the network topology, we use a vertex-labeled directed graph named
the topology, and denoted by T = {V,E, f}, where vertices V represent net-
work nodes, and edges E represent their connectivity. We consider only static
networks, and we suppose that nodes cannot send messages to themselves. The
function f associates labels to nodes, which are used to model pre-existing dis-
tinctions between nodes, such as sinks and sensors in the case of a wireless
sensor network. We denote by Neigv the set of neighbors of a node v (that is,
the nodes at one hop of v). We notice that v 6∈ Neigv.

2.1 Routing Protocols

To forward messages, all the nodes follow a routing protocol P . This protocol
must verify that all messages are routed independently at the time of the anal-
ysis. The path that a message will take should not be influenced by what other
messages have been routed before. Note that acknowledgments can be modeled
by considering they are the continuation of the route of the initial message.

We define K as the array of individual node memories, denoted by K[v]
for any node v ∈ V . Once initialized, a node’s memory is never modified again.
This is a strong restriction, and it reduces the range of protocols that can be mod-
eled. On the other hand, for a given message, these protocols generate routes that

3

do not depend on the past messages, which is an important property for the fol-
lowing security proofs, and we embrace that assumption in the rest of this paper.
We discuss ways to lift this restriction in the conclusion.

We denote by ηd the data size, and by η the security parameter for crypto-

graphic functions. a $←− X denotes that a is a random value obtained according
the distribution represented by X . If X is a set, a is randomly drawn using the
uniform law on X . Similarly, if X is a probabilistic algorithm, a is drawn at
random using the algorithm.

We define a routing protocolP as the set of four oracles {PI ,PG,PR,PD}
which respectively model the initialization, message generation, routing and the
depacketing phases. They are defined in Definitions 1 through 4.

Definition 1 (Initialization oracle). Let T = {V,E, f} be a topology, which
contains nodes v1 . . . vn ∈ V . The initialization oracle PI(T, η) models the
setup phase of P on the topology represented by T , with security parameter η,
which initializes the memories of the nodes. This oracle call returnsK, an array
associating to each node its memories.

Definition 2 (Message generation oracle). Let T = {V,E, f} be a topology
with o, d ∈ V . Once memories K have been initialized, the message generation
oracle PGK(o, d, ηd) models the generation of a new random data of length ηd to
route by o, for d. This oracle call returns a message m, and does not modify K.

Definition 3 (Routing oracle). Let T = {V,E, f} be a topology with v ∈ V .
Once memories K have been initialized, the routing oracle PRK(v,m) models
how v would route m given the initialization K. This oracle call returns either
⊥ if no message is forwarded, or (w,m′) if a message m′ is forwarded to w
(with w ∈ Neigv). That call does not modify K.

Definition 4 (Depacketing oracle). Let T = {V,E, f} be a topology with d ∈
V . Once memories K have been initialized, the depacketing oracle PDK (d,m)
models how d would unpack the message m given the initialization K. This
oracle call returns either the Data contained in the message if extractable, or
⊥ if that operation is not possible. That call does not modify K.

2.2 Message Lifecycle and Routes

We now present how to model the natural lifecycle of a message. First, the

network needs to be initialized by calling K $←− PI(T, η). Then, a new mes-
sage containing a random data is generated by a node o with destination d
using the generation oracle m0 = PGK(o, d, ηd). That message is first routed

4

by the node o with the routing oracle PRK(o,m0) = (h1,m1), assuming that
message is not dropped. We then continue with its first hop, h1, who reacts ac-
cordingly: PRK(h1,m1) = (h2,m2). This process continues until the message
finally reaches a node hn such that PRK(hn,mn) = ⊥: at this point, the message
is stopped. We refer to such a sequence [h0, . . . , hn] = R as a route, which can
be empty, in which case it is denoted by [].

Definition 5 (GENROUTE(m0, h0,PRK)). Given a message m0, a node identi-
fier h0, and a routing oracle PRK initialized with node memories K, we define
GENROUTE(m0, h0,PRK) the function that generates a route for m0 starting at
h0. This function calls PRK , first with arguments (h0,m0), and then with the pair
(hi,mi) returned by the previous call, until the oracle returns ⊥. The function
returns the route [h1, . . . , hn].

As P can be probabilistic, making several calls to GENROUTE with the
same arguments can result in different routes. However, since we require mes-
sage routing independence, the probabilistic distribution of routes should stay
the same, no matter what messages have been routed before. Finally, we define
a predicate on routes which we denote by Φ.

Definition 6 (Φ(R, a, b)). Given a route R and two nodes a and b, Φ(R, a, b) is
a function that returns true if and only if a route R contains a and that a appears
before any occurrence of b.

3 Examples of Routing Protocols

We now provide some routing protocols in our formalism. Given a message m
and the initialized memories array K, the PD oracles return the Data that is
contained in m.

Let S be a signature scheme with three functions: GENASYMKEYPAIR(η)
generates asymmetric key pairs given the security parameter η, SIGN(x, sk)
generates a signature of x using the key sk, VERIFY(x, pk, S) verifies a sig-
nature S against the input x with key pk. The function SHORTROUTE(o, d, T)
takes as input an origin, a destination, and a topology, and returns uniformly at
random one of the shortest routes between the origin and destination. Finally,
FINDNEXT(R, v) is the function that returns the node identifier coming right
after v in the route R, or ⊥ otherwise.

The null protocol P∅ is defined in Figure 1. It drops all messages, and adds
no information in the packets it generates. The uniform random walk RW is
defined in Figure 2. The following protocol is called SI (for Shortest-Insecure)
and it is described in Figure 3. That protocol stores routes in messages without
protecting them.

5

We define two other protocols, which stem from SI, and use the signature
scheme S. First, S∅ (Figure 4) is a secured version of SI, which prevents any
alteration to the route stored in a message by using signatures. The route is
signed by the message sender, and if that signature does not verify, then the
message is discarded. The next protocol, SR (Figure 5), works in a similar way,
but instead of discarding the message, it routes it randomly until the message
reaches the destination.

4 Incorruptibility

We now present how our notion of incorruptibility is formalized, and how it
can be used to show the security of routing protocols. We begin by defining
what is an attacker in our context, and follow with the measures of distance,
incorruptibility, and bounded corruptibility.

4.1 Attacker

Our model deals with an attacker external to the network, who did not com-
promise any honest node. This entity controls the network links, and is able to
intercept, create and manipulate messages. Its goal is to alter how a challenge
message is routed. Notice that manipulating communications implies the pos-
sibility of forging messages to observe how nodes would react, and to observe
which messages are generated in the network. However, since we suppose the
attacker is external to the network, it does not have any direct access to the
node’s memories.

This adversary is modeled as a probabilistic polynomial-time Turing ma-
chine. It can query the oracles PGK , PRK and PDK a polynomial number of times,
but does not have direct access to the array of node memories K. None of its
actions can modify K by hypothesis, but the adversary has its own memory.
Note that we provide access to PDK to the adversary, as we are not concerned by
confidentiality.

We denote the trivial attacker that returns its given input message by Asafe.
We name it ”safe” as it is a placeholder attacker that effectively does nothing.

4.2 Measuring How Routing Protocols Operate

We define an experiment named ExptRtP , which allows us to reason on an ad-
versary’s ability to influence how a message is routed.

6

Initialization P∅I(T, η):
1: Return ∅

Message generation P∅GK(o, d, ηd):

1: Data $←− {0, 1}ηd
2: Return Data

Message routing P∅RK(m, v):
1: Return ⊥

Fig. 1: Protocol P∅

InitializationRWI(T, η):
1: Return ∅

Message generationRWG
K(o, d, ηd):

1: Data $←− {0, 1}ηd
2: Return next, (Data, d)

Message routingRWR
K(m, v):

1: (Data, d)← m
2: if v 6= d then
3: next

$←− Neigv
4: Return next, (Data, d)
5: else
6: Return ⊥
7: end if

Fig. 2: ProtocolRW

Initialization SII(T, η):
1: for all nodes v in T do
2: K[v]← T
3: end for
4: Return K

Message generation SIGK(o, d, ηd):

1: Data $←− {0, 1}ηd
2: R← SHORTROUTE(o, d,K[o])
3: Return (Data,R, d)

Message routing SIRK(m, v):
1: if v 6= d then
2: next← FINDNEXT(R,v)
3: Return (next, (Data,R, d))
4: end if
5: Return ⊥

Fig. 3: Protocol SI

Initialization S∅I(T, η):
1: for all nodes v in T do
2: (pk[v], sk[v])← GENASYMKEYPAIR(η)
3: K[v]← (T, pk, sk[v])
4: end for
5: Return K

Message generation S∅GK(o, d, ηd):

1: Data $←− {0, 1}ηd
2: R← SHORTROUTE(o, d,K[o])
3: S ← SIGN((Data,R, o, d), sk[o])
4: Return (Data,R, o, d, S)

Message routing S∅RK(m, v):
1: (Data,R, o, d, S)← m
2: if v 6= d then
3: if VERIFY((Data,R, o, d), pk[o], S) then
4: next← FINDNEXT(R,v)
5: Return (next, (Data,R, o, d, S))
6: end if
7: end if
8: Return ⊥

Fig. 4: Protocol S∅

Initialization SRI(T, η):
1: for all nodes v in T do
2: (pk[v], sk[v])← GENASYMKEYPAIR(η)
3: K[v]← (T, pk, sk[v])
4: end for
5: Return K

Message generation SRGK(o, d, ηd):

1: Data $←− {0, 1}ηd
2: R← SHORTROUTE(o, d,K[o])
3: S ← SIGN((Data,R, o, d), sk[o])
4: Return (Data,R, o, d, S)

Message routing SRRK(m, v):
1: (Data,R, o, d, S)← m
2: if v 6= d then
3: if VERIFY((Data,R, o, d), pk[o], S) then
4: next← FINDNEXT(R,v)
5: else
6: next

$←− Neigv
7: end if
8: Return (next, (Data,R, o, d, S))
9: end if

10: Return ⊥

Fig. 5: Protocol SR

7

Definition 7 (ExptRtP (A, T, o, d, s, a, b, η, ηd)). Let P be a routing protocol.
Let A be an adversary and T = {V,E, f} a topology with o, d, s, a, b ∈ V . We
define:

ExptRtP (A, T, o, d, s, a, b, η, ηd) :

K
$←− PI(T, η)

m
$←− PGK(o, d, ηd)

m′ $←− APR
K ,P

G
K ,P

I ,PD
K (m, o, d, s, a, b, T)

If PDK (d,m′) 6= PDK (d,m)

m′ ← m

R
$←− GENROUTE(m′, s,PRK)

Return Φ(R, a, b)

First, the initialization is done by calling PI(T, η), which returns the array
of node memories K that is used through the experiment. A challenge message
m is generated using K, and given to the adversary. The adversary should then
change m in a new message m′, containing the same data as m. The experiment
returns a value Φ(R, a, b) with R a route generated for m′ from the node s.
The predicate Φ(R, a, b) is true when the route passes through a before b. We
use the equality of depacketed messages as a way to prevent replay attacks: an
attacker has no incentive in returning new messages containing random data,
as their answer would get replaced by the challenge message, which they could
have output in the first place. Note that we do not take into account the messages
formats or contents because we focus only on their route.

For instance, the return value of ExptRtP (Asafe, T, o, d, s, a, b, η, ηd) mod-
els whether a random message m generated by o in destination of d gets routed
by a before b when sent first from s, when all those nodes follow the rout-
ing protocol P . When we use an arbitrary adversary A, then the experiment
ExptRtP (A, T, o, d, s, a, b, η, ηd) represents the same observation, except that
m has been tampered with by A before being routed by s. We remark that P∅
has an interesting property here: for any A, T and o, d, s, a, b, the probability
Pr[ExptRtP∅(A, T, o, d, s, a, b, η, ηd)] = 0.

We then compare two such measures in order to define the distance between
a tuple protocol, attacker and another.

Definition 8 (Distance). For a topology T = {V,E, f}with nodes o, d, s, a, b ∈
V , two adversariesA1 andA2, two protocols P1 and P2, we define the distance
Dist((P1,A1), (P2,A2), T, o, d, s, a, b, η, ηd) as∣∣Pr[ExptRtP1

(A1, T, o, d, s, a, b, η, ηd)]− Pr[ExptRtP2
(A2, T, o, d, s, a, b, η, ηd)]

∣∣
8

The notion of distance is a way to compare the routes being generated by
(P1,A1) and (P2,A2), given T and o, d, s, a, b. We now present how to measure
observable differences between routing protocols using this experiment.

4.3 Routing Similarity

We begin by expressing the similarity of routing protocols usingDist. We recall
that stating that a function µ(x) : N→R is negligible in x means that for every
positive polynomial P there exists an integer I such that for all x > I , µ(x) <
| 1
P (x) |, as given in [2].

Definition 9 (Routing protocols similarity). For a topology T = {V,E, f},
we say that two protocols P1 and P2 route messages similarly on the topology
T if ∀o, d, s, a, b ∈ V , Dist((P1,Asafe), (P2,Asafe), T, o, d, s, a, b, η, ηd) is
negligible in η and in ηd.

o = s

ax

d = b

Fig. 6: Topology Ts

Intuitively, two protocols route messages sim-
ilarly on a topology if the routes generated for
random messages are computationally indistin-
guishable for all origins o, destinations d, and
senders s. For instance,RW and SI are not sim-
ilar for all topologies, as the latter generates dis-
tinguishably shorter routes. However, on a topol-
ogy T2 consisting of two connected nodes, they
are similar, as messages are either routed to the
neighbor if o 6= d and not routed at all otherwise.

Consider for instance S∅ and P∅ on a topo-
logy Ts as described in Figure 6. We observe that on this topology,
the probability Pr[ExptRtS∅(Asafe, Ts, o, d, s, a, b, η, ηd)] = 0.5, as there
are two shortest routes from o to d and only one reaches a before b.
We know that Pr[ExptRtP∅(Asafe, Ts, o, d, s, a, b, η, ηd)] = 0, since null
routes will never reach any of the two nodes. So, we can deduce that
Dist((S∅,Asafe), (P∅,Asafe), Ts, o, d, s, a, b, η, ηd) = 0.5, which means that
those two protocols are not similar on Ts, and we can conclude that P∅ and S∅
are not similar on every topology, as they differ on at least Ts.

Notice that this definition does not include attackers: two protocols routing
messages similarly may not behave in the same way in presence of an active
adversary. This allows us to show that a secure version of a protocol is similar
to its original counterpart. For instance, SR, S∅ and SI are all similar.

9

4.4 Incorruptibility of a Protocol

We propose a measure which evaluates whether an attacker can alter a message
m into another message m′ in order to make its routing distinguishably differ-
ent. We call this measure the incorruptibility of a routing protocol, the related
advantage is denoted by AdvINCP , and we define it using Dist.

Definition 10 (AdvINCP (A, T, o, d, s, a, b, η, ηd)). For an adversaryA, a topol-
ogy T = {V,E, f} with five nodes o, d, s, a, b ∈ V , we define
AdvINCP (A, T, o, d, s, a, b, η, ηd) = Dist((P,A), (P,Asafe), T, o, d, s, a, b, η, ηd)

Definition 11 (Incorruptible protocol). If for any adversary A, any topology
T = {V,E, f}, and any five nodes o, d, s, a, b ∈ V , the value of the advantage
AdvINCP (A, T, o, d, s, a, b, η, ηd) is negligible in η and in ηd, we say that P is
incorruptible.

Informally, a protocol is corruptible if an adversary’s alterations of a mes-
sage can result in distinguishably different routes. For instance, the P∅ protocol
is incorruptible, as it always generates null routes. Similarly, RW is incorrupt-
ible: it is not influenced by any information contained in the messages, and so
intuitively an attacker which can only alter the content of a message is not able
to influence in any way how a message is routed.

However, this definition is too restrictive for some protocols that intuitively
cannot be attacked, such as S∅. Most protocols whose behavior depends on the
message contents can be influenced, as an attacker can use that dependency
in order to differ from the safe behavior of the protocol. We now provide an
attacker for S∅ to illustrate this reasoning, and in the next subsection, we provide
a generalization of the incorruptibility advantage to answer those concerns.

In order to show the corruptibility of S∅ (which is described in Figure 4), we
use the adversaryAzero that takes as input the messagem = (Data,R, o, d, S),
and returns the altered m′ = (Data,R, o, d, 0). Intuitively, this attacker de-
stroys the signature S of the message m, which ensures the protocol drops it at
the next hop. This behavior differs significantly from how the original m would
have been routed.

We recall the definition of AdvINCS∅ (Azero, T, o, d, s, a, b, η, ηd) =∣∣Pr[ExptRtS∅(Azero, o, d, s, a, b, η, ηd)]− Pr[ExptRtS∅(Asafe, o, d, s, a, b, η, ηd)]
∣∣

We omit T, o, d, s, a, b, and η, ηd from the parameters list when it is clear
from the context. We are first interested in the left part of this subtraction.Azero
changes the signatures of messages it is given. Let us consider what happens
with an altered message m′zero (containing Szero) and its corresponding Rzero,

10

generated in the ExptRtS∅(Azero, o, d, s, a, b, η, ηd) experiment. We separate the
case where S is valid and where it is not. We have:

Pr[ExptRtS∅(Azero, o, d, s, a, b, η, ηd)] =
Pr[Φ(Rzero, a, b)|VERIFY((Data,Rzero, o, d), pk[o], Szero)]×
Pr[VERIFY((Data,Rzero, o, d), pk[o], Szero)]+

Pr[Φ(Rzero, a, b)|¬VERIFY((Data,Rzero, o, d), pk[o], Szero)]×
Pr[¬VERIFY((Data,Rzero, o, d), pk[o], Szero)]

If we assume that S∅ uses a secure (UF-CMA in the sense of [6]) signature
scheme S of security parameter η, then we know that the probability ε of the
signature being forged by an intruder (i.e. VERIFY((Data,R, o, d), pk[o], S)
returns true) becomes negligible in η. Therefore:

Pr[ExptRtS∅(Azero, o, d, s, a, b, η, ηd)] =
Pr[Φ(Rzero, a, b)|VERIFY((Data,Rzero, o, d), pk[o], Szero)]× ε +
Pr[Φ(Rzero, a, b)|¬VERIFY((Data,Rzero, o, d), pk[o], Szero)]× (1− ε)

We first consider the case where the signature is invalid. Consider the oracle
S∅RK described in Figure 4. If the signature of the message is not valid, then the
message is dropped. Therefore, all the routes generated for m′ in this context
are equal to the empty route []. We know that Φ([], a, b) is always false for
any a and b. We can therefore conclude that the experiment returns 0 with a
probability (1− ε), and remove it from the equation.

Pr[ExptRtS∅(Azero, o, d, s, a, b, η, ηd)] =
Pr[Φ(Rzero, a, b)|VERIFY((Data,Rzero, o, d), pk[o], Szero)]× ε

We denote by p the probability of the experiment returning 1 when the sig-
nature is valid. Going back to the advantage, we have:

AdvINCS∅ (Azero) =
∣∣(0 + ε× p)− Pr[ExptRtS∅(Asafe)]

∣∣
The first part of the subtraction is negligible in η, as p is a probability and

ε is negligible in η. However, Pr[ExptRtS∅(Asafe, T, o, d, s, a, b)] may not be
negligible, depending on T and o, d, s, a, b (as we have shown using the topol-
ogy in Figure 6). Intuitively, without attacker interference, S∅ actually routes
messages to their destination, which ensures the existence of such nodes. There-
fore, there exist some topologies T (Ts being one of them) where the advantage
AdvINCS∅ (Azero, T, o, d, s, a, b, η, ηd) is not negligible in η and in ηd, and so S∅
is not incorruptible on all topologies.

11

4.5 Bounded Corruptibility

We generalize the notion of corruptibility to a definition using two reference
protocols. We define another advantage, called AdvBINCP,B1,B2 . It follows the same
principle as AdvINCP , but instead of considering how an attacker can force P
to behave differently, we consider how it can be corrupted to the outside of a
reference routing interval, defined by the safe execution of two protocols B1
and B2 on T , measured for the parameters o, d, s, a, b.

Definition 12 (AdvBINCP,B1,B2(A, T, o, d, s, a, b, η, ηd)). LetA be an attacker, and
let T = {V,E, f} be a topology with nodes o, d, s, a, b ∈ V . We consider
a protocol P , which is compared with two protocols B1 and B2. We define
AdvBINCP,B1,B2(A, T, o, d, s, a, b, η, ηd) as:

max(Dist((B1,Asafe), (B2,Asafe), T, o, d, s, a, b, η, ηd),
Dist((P,A), (B1,Asafe), T, o, d, s, a, b, η, ηd),
Dist((P,A), (B2,Asafe), T, o, d, s, a, b, η, ηd))

) −Dist((B1,Asafe), (B2,Asafe), T, o, d, s, a, b, η, ηd)

Informally, AdvBINCP,B1,B2(A, T, o, d, s, a, b, η, ηd) is a measure of the maxi-
mal distance the behavior of P attacked by A can get from the outside of the
interval determined by the safe behavior of B1 and B2. Remark that if the at-
tacked protocol’s behavior is in the interval, then the advantage is 0.

Definition 13 (Bounded corruptibility). If for any adversaryA, for any topol-
ogy T , and for all o, d, s, a, b, AdvBINCP,B1,B2(A, T, o, d, s, a, b, η, ηd) is negligible
in η and in ηd, we say that P’s corruptibility is bounded between B1 and B2.

Remark that this definition has some interesting properties:

– AdvBINCP,B1,B2(A, T, o, d, s, a, b, η, ηd) = AdvBINCP,B2,B1(A, T, o, d, s, a, b, η, ηd):
The bounds for bounded corruptibility are commutative.

– AdvBINCP,P,P(A, T, o, d, s, a, b, η, ηd) = AdvINCP (A, T, o, d, s, a, b, η, ηd):
Stating that a protocol is bounded between itself and itself is the same as
stating its incorruptibility.

– Dist(B1,B2, T, o, d, s, a, b, η, ηd) = 0⇒ ∀B3,
AdvBINCP,B1,B3(A, T, o, d, s, a, b, η, ηd) = AdvBINCP,B2,B3(A, T, o, d, s, a, b, η, ηd):
If two protocols route messages identically, then those protocols are equiv-
alent for bounding purposes.

Example: Bounded Corruptibility of S∅: We try to bound S∅ using itself
and P∅. We assume that S∅ uses a secure UF-CMA signature scheme [6] S of
security parameter η. By definition, AdvBINCS∅,S∅,P∅(A, T, o, d, s, a, b) equals:

12

max(Dist((S∅,Asafe), (P∅,Asafe)),
Dist((S∅,A), (S∅,Asafe)),
Dist((S∅,A), (P∅,Asafe)),

)−Dist((S∅,Asafe), (P∅,Asafe))

By using the fact that Pr[ExptRtP∅(Asafe)] = 0, we get the following:

max(|Pr[ExptRtS∅(Asafe)]|,

|Pr[ExptRtS∅(Asafe)]− Pr[ExptRtS∅(A)]|,

|Pr[ExptRtS∅(A)]|

)−|Pr[ExptRtS∅(Asafe)]|

Probabilities are positive, which allows us to remove some of the absolute val-
ues. We also rewrite |a| as max(a,−a) in the last case, to remove all absolute
values:

max(Pr[ExptRtS∅(Asafe)],

P r[ExptRtS∅(Asafe)]− Pr[ExptRtS∅(A)],

P r[ExptRtS∅(A)]− Pr[ExptRtS∅(Asafe)],

P r[ExptRtS∅(A)]

)−Pr[ExptRtS∅(Asafe)]

We include the subtraction in the maximum and simplify further:

max(0, 0− Pr[ExptRtS∅(A)],

P r[ExptRtS∅(A)]− 2Pr[ExptRtS∅(Asafe)],

P r[ExptRtS∅(A)]− Pr[ExptRtS∅(Asafe)])

We know Pr[ExptRtS∅(A)]− 2Pr[ExptRtS∅(Asafe)] ≤ Pr[ExptRtS∅(A)] −
Pr[ExptRtS∅(Asafe)], and therefore we can remove the right part of the inequa-
tion from the maximum. Similarly, 0 − Pr[ExptRtS∅(A)] ≤ 0. We therefore
simplify the maximum to:

max(0, P r[ExptRtS∅(A)]− Pr[ExptRtS∅(Asafe)])

We want to prove that this is negligible in η and in ηd for all T = {V,E, f} and
o, d, s, a, b ∈ V . We reformulate this asPr[ExptRtS∅(A)]−Pr[ExptRtS∅(Asafe)]
≤ ε, with ε negligible in η and in ηd. Looking at the experiment, this means that

Pr[Φ(GENROUTE(m′, s,S∅RK), a, b))]− Pr[Φ(GENROUTE(m, s,S∅RK), a, b))] ≤ ε

13

The difference between these probabilities is null unless the routes gener-
ated from attacked messages m′ and the routes generated from m are different.
Looking at the route generation process, the only factors influencing the ora-
cle S∅RK (defined in Figure 4) are the validity of the signature, the contents of
R, and the identity of the receiver (which cannot be modified by the attacker).
Furthermore, all those solutions require S∅DK(m′) = S∅DK(m), as otherwise the
experiment would have run as if the attacker output m.

We therefore know that the advantage is null unless the attacker either made
the signature invalid, or it altered the route stored in the message and the signa-
ture is still valid. In that first case, the invalid signature forces the message to be
dropped. Consequently, the generated route is equal to the empty route []. Since
Φ([], a, b) = 0, then the probability of the experiment returning true is null, and
so this strategy does not provide an higher advantage. In the other case, the at-
tacker managed to alter the route stored in the message, while keeping the same
data, and keeping the signature valid. To have a valid signature for an altered
message, the attacker has either forged it, or recovered it from S∅GK(o, d). Note
that it cannot create a valid signature for a key it created, as that key would not
be present in any node’s K.

We first consider the case of the attacker trying to forge the signature. We
proceed by assuming it manages to forge or guess the signature with a proba-
bility pF when running on T ′, o′, d′, s′, a′, b′. This adversary A could also be
used to build an adversary AS who breaks the UF-CMA experiment with prob-
ability pF . AS needs to emulate S∅ on T ′, creating its own initialization on the
network except for the node o′, who uses the challenge’s key. As AS does not
know the keys of o′, it should use the chosen-plaintext oracle and verification
oracle provided in the UF-CMA experiment to simulate its knowledge. A will
therefore be in the right simulated context for ExptRtS∅(A, T ′, o′, d′, s′, a′, b′),
and will be provided a message m originating from o′ (which costs AS one call
to its chosen-plaintext oracle). By assumption, this adversary will therefore re-
turn a message m′ containing a valid forged signature with probability pF . In
the end, given an adversary A for ExptRtS∅ who makes qG queries to S∅GK and
qR queries to S∅RK to forge signatures with probability pF , we built an adver-
sary AS making qG + 1 queries (A’s queries, plus one to create the setting) to
the chosen-plaintext oracle, and qR queries to the verification oracle such that
AdvUFCMAS (AS , η) = pF . As we supposed the signature scheme S secure, we
know that pF is negligible in η.

The attacker can also try to obtain the signature without forging it. The only
source of valid signatures for A is S∅GK(o, d), but this oracle provides pack-
ets containing random data. Therefore, given the attacker does qG queries, the
probability of obtaining a valid packet m′ verifying S∅DK(m′) = S∅DK(m) is

14

(
2ηd−1
2ηd

)qG , which is negligible in ηd. Summing all the possibilities before:

Pr[Φ(GENROUTE(m′, s,S∅RK), a, b))]− Pr[Φ(GENROUTE(m, s,S∅RK), a, b))]

≤ AdvUFCMAS (AS , η) +
(
2ηd − 1

2ηd

)qG
Therefore, we can say that for all adversaries A making a polynomial num-

ber of queries to S∅GK(o, d) and S∅RK(m, v), AdvBINCS∅,S∅,P∅(A, T, o, d, s, a, b) is
negligible in η and in ηd.

5 Conclusion

In this paper, we have presented a notion of routing security, named incorrupt-
ibility. Incorruptibility is a quantitative measure, based on the ability of an at-
tacker to influence how messages are routed. We provide a few example proto-
cols in our modelization, and proved that some of them are indeed incorruptible.
However, some protocols require a broader notion: after showing why one of
them is corruptible, we propose the notion of bounded corruptibility, a general-
ization of the previous measure. This more accommodating notion allows us to
prove that some routing protocols can only be influenced between given limits,
which are exprimed using routing protocols. We finally provide a proof of the
bounded corruptibility of one of our example routing protocols.

Perspectives: There are several ways this work could be expanded. Modeling
node state changes is possible, but this would require more complex proof tech-
niques to obtain results given messages influence how the next ones are routed.
This would be an important step towards more complex protocols.

Insider attacks on routing protocols suppose one or more nodes in the net-
work are controlled by the attacker. To model this, our first intuition was to allow
the attacker some degree of access to K, for instance K[s] (as s represents the
last hop before attacker alteration of m). However, this simple modification of
the game does not work because of the PDK (d,m′) 6= PDK (d,m) check: if the at-
tacker has enough access to K, most protocols get trivially broken in this model
as the attacker can create a completely new message containing the data of its
choice. However, this attack, based on building from scratch another packet,
is not meaningful as all protocols relying on cryptography are vulnerable to it.
Our goal is to ensure the attacker’s m′ is based on m, without blocking any
legitimate alteration of the message that would change its route.

Finally, it may be interesting to consider dynamic topologies, which cor-
respond better to what may be actually found in a network, either because of

15

varying wireless transmission quality, or because of an intruder actively dis-
rupting the connections. To do this, the attacker could be able to actively choose
the topology used by the network during initialization and evaluation of the
challenge message.

References

1. G. Ács, L. Buttyán, and I. Vajda. Provably secure on-demand source routing in mobile ad
hoc networks. Transactions on Mobile Computing, 5(11):1533–1546, 2006.

2. M. Bellare. A note on negligible functions. Journal of Cryptology, 15(4):271–284, 2002.
3. V. J. Bono. 7007 explanation and apology. Appears in NANOG mailing list, 1997.
4. M. Burrows, M. Abadi, and R. M. Needham. A logic of authentication. Proceedings of

the Royal Society of London. A. Mathematical and Physical Sciences, 426(1871):233–271,
1989.

5. L. Buttyán and T. V. Thong. Formal verification of secure ad-hoc network routing pro-
tocols using deductive model-checking. In Wireless and Mobile Networking Conference
(WMNC’10), pages 1–6. IEEE, 2010.

6. S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure against adap-
tive chosen-message attacks. SIAM Journal on Computing, 17(2):281–308, 1988.

7. R. Hiran, N. Carlsson, and P. Gill. Characterizing large-scale routing anomalies: A case
study of the China Telecom incident. In Passive and Active Measurement, pages 229–238.
Springer, 2013.

8. C. Karlof and D. Wagner. Secure routing in wireless sensor networks: Attacks and counter-
measures. Ad hoc networks, 1(2-3):293–315, 2003.

9. S. T. Kent. Securing the border gateway protocol: A status update. In Communications and
Multimedia Security. Advanced Techniques for Network and Data Protection, pages 40–53.
Springer, 2003.

10. K. Lougheed and Y. Rekhter. Border Gateway Protocol (BGP). RFC 1105 (Experimental),
June 1989. Obsoleted by RFC 1163.

11. J. Marshall. An analysis of SRP for mobile ad hoc networks. In International Multiconfer-
ence in Computer Science (IMECS’02), pages 18–21, 2002.

12. S. Murphy. BGP Security Vulnerabilities Analysis. RFC 4272, January 2006.
13. O. Nordström and C. Dovrolis. Beware of BGP attacks. ACM SIGCOMM Computer Com-

munication Review, 34(2):1–8, 2004.
14. P. Papadimitratos and Z. J. Haas. Secure routing for mobile ad hoc networks. In Communi-

cation Networks and Distributed Systems Modeling and Simulation Conference (CNDS’02),
pages 193–204, 2002.

15. C. Tseng, P. Balasubramanyam, C. Ko, R. Limprasittiporn, J. Rowe, and K. Levitt. A
specification-based intrusion detection system for AODV. In Workshop on Security of Ad
hoc and Sensor Networks (SASN’03), pages 125–134. ACM, 2003.

16. C. Tseng, T. Song, P. Balasubramanyam, C. Ko, and K. Levitt. A specification-based in-
trusion detection model for OLSR. In Recent Advances in Intrusion Detection (RAID’06),
pages 330–350. Springer, 2006.

17. B. Wu, J. Chen, J. Wu, and M. Cardei. A survey of attacks and countermeasures in mobile
ad hoc networks. In Wireless Network Security, pages 103–135. Springer, 2007.

16

	(In)Corruptibility of Routing Protocols

