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Abstract. For more than three decades, the exploitation of Compton scattering
has led to significant progress in imaging the inner parts of an optically opaque
object. In this imaging process, the Compton scattering angle plays an essential
role as it labels the recorded data, suppressing the motion of the scanning camera,
as well as generates new geometric manifolds on which radiation measurements
are made and thereby introducing new relevant Radon transforms. The present
paper is aimed to synthetize the conceptual development of Compton scattering
imaging in order to gain a constructive overview and possibly induce a further
innovative growth to it. We believe this may lay foundation to new mathematical
tools as well as lead to a great diversity of applications.

1. Introduction

Since the seminal work of A M Cormack in 1963 [1], the original Radon transform
has become the major mathematical tool for imaging hidden features of an object.
This is the case in medicine, non-destructive evaluation or control and in many other
fields of research, inspection and exploitation. During this time, many new imaging
processes have come up thanks to the advances in science and technology. Many of
them have led to generalizations of the original Radon transform. Most importantly
are generalizations that are due to the exploitation of the so-called Compton effect in
physics. In this paper, we give an account of the development of imaging proposals
whic have emerged from the use of the Compton effect in recent years and their
underlying generalized Radon transforms.

The exposition adopted here will follow a historical path in order to show how
ideas evolve in time and how breakthroughs are made in the course of research. To
emphasize new aspects, we shall first recall the state of art of the current imaging
processes using penetrating radiation, which comprises emission, transmission and
reflection imaging (section 2). Then we reexamine the properties of the Compton
effect in these imaging processes before introducing the concept of scattered radiation
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imaging (section 3). In the next step, we exhibit some typical new Radon transforms
that have emerged from these considerations, namely the Cone Radon transform
(section 4) and its two-dimensional counter part, called the V-line Radon transform
(section 5). Curiously we shall also discover later that V-line Radon transform is
connected to a special modality of the so-called Compton Scatter Tomography (CST),
which is in fact a transmission-scattering imaging process, an evolved form of the
original Compton Scatter Tomography (CST) designed by S J Norton in 1995 [2]. We
should recall that CST is also an alternate way of exploiting the Compton effect for
imaging purposes. The next section 6 describes some main potential applications in
diverse fields such as medical diagnostic, non-destructive material evaluation, nuclear
safety monitoring, etc. illustrated by simulations. A conclusion will summarize the
merits and challenges of the Cone and V-line Radon transforms in future developments
of imaging science.

2. Primary radiation imaging based on ray-matter interaction

All of primary radiation imaging principles are based on rectilinear propagation and
its interaction with traversed matter. This results in three main imaging processes by
transmission, emission and reflection, as illustrated in Fig. 1.

Figure 1. Primary radiation imaging modalities

Transmission imaging measures the values of integrated radiation attenuation
along all rectilinear paths of propagation which cross an object. Attenuation is due to
absorption and scattering of radiation in traversed matter. The complete set of these
collected measured values may be represented as the classical Radon transform of the
linear coefficient of attenuation of the studied object. As it is well-known, one may
reconstruct this quantity using the inverse classical Radon transform.

In transmission imaging, the object is a passive medium. This object may be
turned into an active emitting medium, for example by injection of a radioactive
tracer which shall distribute itself non uniformly in the bulk of the object. Then
by positioning outside the object a hole collimated detector, one may measure the
emanating radiation flux along the line, which is the axis of the hole collimator. Then
a complete set of such measurements may be again identified to the Radon transform
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of the density of radiation emitters in the object. This is called Single Photon Emission
Tomography (SPECT).

Lastly, reflection imaging makes use of the reflectivity of the surfaces of object.
It concerns mainly optical and(or) microwave radiation (radar). The third figure at
right in Fig. 1 shows that there is a need of illumination by an external source, the
detector may simply be a photographic plate.

By primary radiation imaging, we mean that the detected radiation has the same
energy (or wavelength) as the original (or incident, or emitted) radiation. Image
quality from primary (X or gamma ray)-radiation imaging processes is usually affected
by the phenomena of Compton scattering, and a lot of efforts is devoted to removing
its de-gradating effects.

3. Compton effect and its consequences in primary radiation imaging

In this section we recall some properties of Compton scattering. Light scattering is a
wide spread phenomena experienced by all of us. When we see a green line in the dark
night sky arising from a ”green” laser source, this is because the green light emitted
by the laser strikes the air molecules of the atmosphere and gets reflected back to the
observing eye. Such scattering is called elastic in the sense that this scattering does
not change the wavelength after scattering.

However for higher energy radiation (such as X or gamma rays), this radiation
does not collide with molecules but with electrons in matter and concurrently there
is a change in energy (or wavelength) after scattering. This is the main feature in
Compton scattering. In fact scattered radiation emerges with an energy E(ω) given
by the so-called Compton formula

E(ω) = E0
1

1− ε cosω
, (1)

where ω is the scattering angle (see Fig. 2), E0 the incident radiation energy,
ε = E0/mc

2 and mc2 the electron rest energy.

Figure 2. Compton scattering

We now understand why Compton scattering contributes to the attenuation of a
traveling radiation beam as well as why it create blurs on images, see left figure of Fig.
3. Yet, one may take a resolutely opposite point of view by taking into account the
effects of Compton scattering to improve quality in gamma-graphic images, as done in
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[3], (see right figure of Fig. 3), or more drastically consider the possibility of turning
the Compton effect into a real effective imaging agent.

Figure 3. Left - Radiation attenuation, reprinted from [10]
Right - Bone scintigraphy: a scintigraphic image is restored without (left) and
with (right) the use of Compton-scattered radiation (Hot spots or nodules are
clearly displayed), reprinted from [3])

4. Three-dimensional Compton scattered radiation imaging and various
cone Radon transforms

Despite the negative aspects presented by the Compton effect, there are attempts to
use it for imaging the inner parts of objects as early as 1976 [4]. As can be seen from
the dynamics of the scattering, the image given by such Compton scatter tomography
would be the map of the electron distribution in the bulk of the objet under study. The
development of this idea has gone through decades of work and is reviewed in [5]. For
the moment we leave this topic for a later discussion (see section 6) and concentrate
on another aspect of the utility of Compton scattering in imaging processes.

In 1983, M Singh has suggested to use the Compton effect to create a so-called
electronic collimation to improve SPECT imaging sensitivity [6], see left figure of
Fig. 4. This idea consists in letting primary radiation emitted by a radiating
object Compton interact with a scattering planar medium (called scattering detector).
Scattered radiation is then detected by coincidence by another planar detector, called
absorption detector. The amount of scattered radiation collected at energy E(ω) and
the line connecting the scattering site to the absorption site form the data which give
the locations of all corresponding emitting source sites. It can be shown that all the
emitting sites of the object contributing to one such measurement are located on a
circular cone with vertex on the scattering detector, with opening angle ω and with
symmetry axis the line connecting the scattering site to the absorption site. Therefore
this set of conical projections, as opposed to linear projections encountered in primary
radiation imaging, leads naturally to the notion of Radon transform on circular cones
in R3. However a circular cone in R3 with vertex on a plane has up to five parameters
and the function to be reconstructed has only three variables. Thus the problem of
reconstructing the density of radio-activity emitters in R3 has remained a challenge
for decades. Recently progress has been made in this direction by many workers who
arrive at inversion formulas using full data (see section 4).
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About two decades ago, many attempts have been made to simplify the data
formed by the conical projections. One of them came from the work of M J Cree
and P J Bones [7], in which, for the problem to be manageable, one still keeps an
absorption detector with vertical collimated holes in a direction perpendicular to the
plane of the scattering detector, see right figure of Fig. 4. The set of relevant cones is
now cones with vertex on the scattering detector, with opening angle ω and vertical
symmetry axis, hence only with three parameters. However, no inverse formula has
been established then.

Figure 4. Compton camera (left) and Cree-Bones Compton camera (right),
reprinted from [37]

In 2002, reconsidering the set up of M J Cree and P J Bones, but removing
the scattering detector, we realized, that the counts at each site of the collimated
absorption detector and at a single scattered energy E(ω), have a very interesting
meaning. Take a site on the vertical line of a collimator hole, then this site may be
considered to be a Compton scattering site for all emitting sites of the object situated
on a circular cone admitting this vertical line as symmetry axis and having opening
angle ω. Thus the registered radiation counts at the absorption detector is due to the
contributions of the sum of a set of identical ”parallel” circular cones whose vertices
are lined up on the axis of each collimator hole, see Fig. 5.

Figure 5. Compounded Conical Radon Transform, reprinted from [9]

In [8], we have called such a mapping of the object electron density a compounded
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conical Radon transform (CCRT). Note that each of such compounded conical
projection has precisely three parameters: the two coordinates of the vertex on
the collimated detector and the scattering angle ω [9, 10]. Hence it may be used,
through its inverse, when it exists, to reconstruct the object electron density. We have
succeeded to obtain the inverse formula and have performed numerical simulations to
demonstrate the viability of this imaging process. The upshot of this new scattered
radiation imaging is that one obtains a direct three dimensional image without having
to rotate the detector as it was the case in conventional SPECT imaging. In short, we
may say that the data obtained by physical rotation of the detector is replaced by the
data at different scattering angle, in other words the physical rotation angle by the
scattering angle. The fact that the scattered radiation detector remains motionless
represents an enormous advantage in comparison with existing imaging modalities,
since one is now free from the heavy and cumbersome mechanical rotation mechanism
installed with the gamma camera. This imaging process may be given the name of
Compton scatter SPECT imaging (CS-SPECT).

In the course of time, we have also realized that one piece of the Compounded
Conical Radon Transform, which is the conical Radon transform considered by M
J Cree and P J Bones in their particular Compton camera may be exploited in
transmission-scattering imaging. In the mean time, this conical Radon transform
has led to an affiliated conical Radon transform, which has appeared recently in the
literature [12, 13, 14]. Two possibilities arise with when the object is illuminated by
a parallel beam, for example coming out from a synchrotron radiation accelerator, In
Fig. 5 on the left, incident radiation from a parallel beam falls on an object and at
a site of a detector is recorded scattered radiation with scattering angle 0 < ω < π/2
whereas on the right Compton scattering at an angle π/2 < ω < π (or backscattering)
is realized by letting in incident parallel beam through a hole in the detector plane.
The measured data is thus formed by these special conical projections with a fixed
direction of the scanning cones. They may be fed into the inversion formula (see [15]
to reconstruct the object electron density. As we shall see, the second procedure with
back scattering turns out to be relevant for cultural heritage research imaging [38, 39],
(see section 6).

To formalize the intuitive ideas, exposed above, we reproduce some theoretical
steps on Cone and Compounded Cone Radon transforms, denoted successively by RC
and RCC .

• In Fig. 7, a site S on a circular cone of vertical axis, with vertex N =
(xN = xD, yN = yD, zN = ζ), opening angle ω will have Cartesian components
(xS = xD + r sinω cosφ, yS = yD + r sinω sinφ, zS = ζ + r cosω), where φ is the
azimuthal angle of S. Thus the cone integral of a function f(x, y, z) with compact
support may be always brought to the form

RCf(xD, yD, ω|ζ) =

K(ω)

∫
S1

∫
R+

r sinω dφ dr g(r) f(xD+r sinω cosφ, yD+r sinω sinφ, ζ+r cosω),(2)

where r = SN , r sinω dφ dr, the cone integration measure, g(r) is a function describing
physical processes such as photometric effect g(r) = 1/r2 or constant attenuation
g(r) = e−µ r, or the combination of the two effects and K(ω) is the kinematic factor
of the Compton effect proportional to the differential cross-section.
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Figure 6. Three dimensional Transmission-Scattering Imaging with incident
parallel beam

Equation (2) can be put under the form of an integral transform

RCf(xD, yD, ω|ζ) =

∫
R3

dx dy dzKC(xD, yD, ω|x, y, z) f(x, y, z), (3)

where the kernel KC(xD, yD, ω|x, y, z) is given by

KC(xD, yD, ζ, ω|x, y, z) = K(ω) g
( ρ

sinω

)
δ ((z − ζ) sinω − ρ cosω) ,(4)

where ρ =
√

(x− xD)2 + (y − yD)2, displaying manifest translational invariance in
the xOy plane. For given (xD, yD, ζ, ω), the vanishing of the delta function argument
is just the equation of a circular cone of vertex at (xD, yD, ζ, ) with opening angle ω
in (x, y, z) space. Conversely, for given (x, y, z, ω, ), this is the equation of a circular
cone of vertex at (x, y, z) and opening angle ω in (xD, yD, ζ, ) space.

• For the Compounded Conical Radon Transform, we have the same structure

RCCf(xD, yD, ω) =

∫
R3

dx dy dzKCC(xD, yD, ω|x, y, z) f(x, y, z), (5)

except that the kernel has a further integration on ζ with dζ g(ζ), namely

KCC(xD, yD, ω|x, y, z) = K(ω)

∫
R+

dζ g(ζ) g
( ρ

sinω

)
δ ((z − ζ) sinω − ρ cosω) ,(6)

or

KCC(xD, yD, ω|x, y, z) = H

(
z sinω − ρ cosω

sinω

)
K(ω)

sinω
g
( ρ

sinω

)
g

(
z sinω − ρ cosω

sinω

)
,(7)

where H(z) is the Heaviside unit step function. More details can be found in [11], in
particular for g(r) ∼ r−2 this kernel has the shape of a ”Mexican hat”.

We now give the expressions of the inverse transforms, which are used in the
reconstruction of the unknown density f(x, y, z).
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Figure 7. Coordinates for the Compounded Conical Radon Transform

• In deriving the inverse formula of the Cone Radon Transform KC , we observe
that the set of complete data for reconstruction may consist of the scanning data with
0 < ω < π/2 or alternatively with π/2 < ω < π, in other words we may operate with
forward scattering or with backward scattering. These two theoretical possibilities are
in full agreement with the two imaging processes given in Fig. 4. We also note that
an analytical inverse can be obtained only for g(r) proportional to a power of r.

The derivation of K−1C follows the steps of [15] by transforming equation (2),
using polar coordinates, into a product of Hankel transforms of order zero and order

l for the lth of the unknown function. Let us define F (ρ, θ, z) = f(x, y, z), with

(x = ρ cos θ, y = ρ sin θ, z = z). Now let f̃(u, v, z) be the two dimensional Fourier

transform of f(x, y, z) in Cartesian coordinates. Similarly define F̃ (q, β, z) = f̃(u, v, z),
with (u = q cosβ, v = q sinβ, z = z). A further step consists in making respective

(θ/β) angular Fourier decomposition of F (ρ, θ, z)/F̃ (q, β, z))

F (ρ, θ, z) =
∑
l∈Z

Fl(ρ, z) e
ilθ, F̃ (q, β, z)

∑
l∈Z

F̃l(q, z) e
ilβ . (8)

Then equation (2) is reduced to an integral equation for the circular components

1

sinωK(ω)
(RCF )l(ρ, ω|ζ) =∫ ∞

0

r dr g(r)

∫ ∞
0

q dq 2π J0(2πqr sinω) 2π i−l Jl(2πρq) F̃l(q, ζ + r cosω), (9)

where (RF )l is the lth-circular component of RF .
Now using Hankel’s identity, for n = 0, l∫ ∞

0

ξ dξ 2π Jn(2πaξ) 2π Jn(2πbξ) =
1

a
δ(a− b),

one obtains the inverse formula, when g(r) = A/rν with ν ∈ R, under the form

F̃l(Q, ζ +
Z

Q
) =
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Zν

A
Q2−ν

∫ ∞
0

σ dσ 2πJ0(2πσZ) ilG(t)

∫ ∞
0

ρ dρ 2πJl(2πρQ) (RCF )l(ρ, σ|ζ), (10)

where ω = tan−1 σ with 0 < ω < π/2 and

G(t) =
cos2−ν ω

sinωK(ω)
, (11)

Z and Q are positive real numbers. The last step consists in collecting the circular
components to reconstruct the two dimensional Fourier transform F̃ (Q, β, ζ+Z/Q) =

f̃(U, V, ζ + Z/Q) in order to apply the inverse Fourier transform which gives back
f(X,Y, ζ + Z/Q).

Now for back scattering scanning, the procedure is the same but care must be
exercised for cosω < 0. The reader can find the derivation in [15]. As noted before,
this inverse formula supports the imaging procedure at right of Fig. 4.

• Inspection shows that, for RCC , the role of F̃l(q, ζ + r cosω) is replaced by∫ ∞
0

dζ
A

ζν
F̃l(q, ζ + r cosω). (12)

As the support of f(x, y, z) is in the upper space z > 0, we may extend the ζ integration
to the full R. Thus the expression of equation (12), is just a convolution where the

unknown function is F̃l. Hence by standard de-convolution, the Fourier transform
of A

ζν being known, one gets back F l(Q,P ), which is the one dimensional Fourier

transform in the last variable Z of F̃l(Q,Z), leading indirectly to the reconstruction
of f(x, y, z) (for details follow [8, 11]).

Lately, impressive progress has been achieved on cone Radon transforms on
cylinder or spherical surfaces by M Haltmeier and co-workers[18]. Several inverse
formula for three dimensional Compton cameras reconstruction have been established
by S Moon [19, 20], V Maxim et al [21] and P Kuchment and F Terzioglu [22, 23].
They surely will induce further results both useful for integral geometry as well as for
next generation imaging processes.

5. Two-dimensional Compton scattered radiation imaging and the V-line
Radon transform

5.1. Original proposal

As no reliable reconstruction procedure was found, in the early 90’s, for various forms
of Compton cameras since it was proposed, R Basko, G L Zeng and G T Gullberg
in 1997 have had the idea of considering a simpler one dimensional Compton camera,
which means that scattering and absorption detectors are linear arrays and which is
aimed to be used for two dimensional objects, as shown in Fig. 8. As data is gathered
along a two dimensional cone, which is a geometric figure made up of two half lines
meeting at a vertex site, these authors have coined the name of V-projections and
have sought to work out a reconstruction algorithm for the object electron density. A
full analytic solution for this one dimensional Compton camera has appeared recently
in [19, 25].

In 2005, we have considered a one dimensional Compton scatter SPECT (CS-
SPECT) [26], which uses a Compounded V-line Radon transform, a two dimensional
version of the previous Compounded Conical Radon Transform (CCRT), see Fig. 9.
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Figure 8. Basko-Zeng-Gulberg Compton camera

Figure 9. 2D Compton scatter SPECT (left) and 2D Cree-Bones Compton
camera (right), reprinted from [27]

• Looking back, we have realized that a two dimensional version of the Cree-Bones
Compton camera makes use now of a simple V-line Radon transform, which becomes
by its own status an interesting Radon transform worth of a separate study. This has
been done also in [27].

Following the outlay of section 4 with the same notations but suppressing one
coordinate, we define the V-line Radon Transform of a function f(x, y) supported in
the upper half-plane as

Vf(xD, ω|ζ) =

∫
R2

dx dyKV (xD, ω, ζ|x, y) f(x, y), (13)

with
KV (xD, ω, ζ|x, y) =

K(ω) g

(
y − ζ
cosω

)
(δ((x− xD) cosω − (y − ζ) sinω) + δ((x− xD) cosω + (y − ζ) sinω)) ,(14)

whereK(ω) and g(r) have been defined earlier in section 4. The reconstruction formula
for scanning angles 0 < ω < π/2 is a slight modification of the one given in [27] for
ζ = 0,

f(x, ζ + z) =
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1

2π2

∫ ∞
0

dτ

K(τ)
√

1 + τ2
P.V.

{∫
R
dxD

V f ′(xD, τ |ζ)

xD − x− (ζ + z)τ
+

∫
R
dxD

V f ′(xD, τ |ζ)

xD − x+ (ζ + z)τ

}
.(15)

where τ = tanω, K(τ) = K(ω) and V f ′(xD, τ |ζ) = d
dxD

V f(xD, ω|ζ), and g(r) = 1
for simplicity. It turns out that, although the V-line Radon transform has originated
from emission imaging, it will have also application in transmission-reflection imaging,
see section 6.

Finally, coming back to emission imaging, we may have here the two dimensional
counter parts of Fig. 5, respectively for scanning angle ranges 0 < ω < π/2 and
π/2 < ω < π.

Figure 10. Two dimensional Transmission-Scattering Imaging with parallel
beam

• A two dimensional version of emission scattering SPECT imaging can also
be considered here analogously to the three dimensional case of section 4. Image
formation is described by the previous V-line Radon transform but ζ-integrated. This
compounded V-line Radon transform of a function f(x, y) is given by

VCf(xD, ω) =

∫
R2

dx dyKCV (xD, ω|x, y) f(x, y), (16)

where the kernel is
KCV (xD, ω|x, y) =∫ ∞

0

dζ g(ζ)KV (xD, ω, ζ|x, y) =
K(ω)

sinω

{
g

(
y − x− xD

tanω

)
+ g

(
y − x+ xD

tanω

)}
.(17)

The inverse formula can be worked out as in section 4. The result of equation (15)
remains valid with the data V f ′(xD, τ |ζ) replaced by∫ ∞

0

dζ g(ζ)V f ′(xD, τ |ζ),

and the final step is also a de-convolution process as stated in [27].
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5.2. Connection to Compton scatter tomography (CST)

Further properties of the V-line Radon transform have been uncovered recently in [33].
It is well known that under geometric inversion of center O (origin of coordinates) and
modulus q

x′ = x
q2

x2 + y2
, y′ = y

q2

x2 + y2
, (18)

the line of equation x′ − y′τ − ξ = 0 in the plane (x′Oy′) is transformed into a circle
(Γ) of equation x2+y2−ξ′x−τξ′y = 0 in the plane (xOy), going through the origin O
with radius ξ′

√
1 + τ2/2 and center at (ξ′/2, ξ′τ/2), with ξ′ = q2/ξ. This observation

has an immediate and simple consequence for integral geometry. The classical Radon
transform of a function f(x, y) may be represented by the Cormack circular Radon
transform of the function

g(x′, y′) =
q2

x′2 + y′2
f

(
x′

q2

x′2 + y′2
, y′

q2

x′2 + y′2

)
.

on the circle (Γ). Moreover, the Radon transform on lines in an upper half place
of f(x, y) with support in this half plane may be expressed as the Cormack circular
Radon transform of g(x′, y′), not on full circles but on circular arcs located on the
corresponding upper half plane and going through the origin of coordinates.

At the beginning of section 4, we have mentioned Compton Scatter Tomography
(CST) as another imaging concept based on Compton scattering of ionizing radiation
with matter electrons. Norton S J, in [2] was the first to propose a concrete CST
modality, in which the collected data is the amount of scattered radiation detected at
energy E(ω) due to all scattering sites located on a circular arc connecting the point
source S to the detection point D and subtending an inscribed angle of (π−ω) radians,
see e.g. [5]. Under a geometric inversion of center S and arbitrary modulus q, this
circular arc is mapped onto a half-line in the upper half-plane starting at site D′ on
the line SD such that SD.SD′ = q2. Thus the ”Norton Radon circular arc transform”
is nicely mapped onto the Radon transform on half-lines of the upper-plane, which
was shown to be invertible [33].

So if one applies now the previous geometric inversion to a V-line with vertex on
the line SD, this V-line will be transformed into a pair of supplementary circular arcs
‡ passing through the inversion center S. Consequently the integral of a function on
the V-line becomes the integral of a new function on the double arc. This appears as
a generalization of the CST introduced by S J Norton, which has been studied in [33]
and shown to be relevant for CST, see Fig. 11

Thus the V-line Radon transform is thus instrumental in providing an inverse
formula to a new CST problem using a double scanning procedure which may be
considered as an extension of the one proposed long ago by S J Norton.

5.3. Subsequent generalizations of the V-line Radon transform

The concept of V-line Radon transform turns out to be very inspiring and has, since
2009 initiated a host of novel associated Radon transforms:

• the broken line transform of Florescu et al [28, 29, 30]. This Radon transform
has come up in the investigation in Single-Scattering Optical Tomography. This Radon

‡ In the sense that they subtend supplementary inscribed angles.
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Figure 11. Connection V-line Radon Transform and Double arc CST, reprinted
from [33]

transform integrates a function on a V-line shape contour with a constant opening
angle and with a movable vertex in a plane.

• the V-line Radon transform on circular path of Moon and Haltmeier [18]. This
Radon transform, which integrates a function on a V-line of opening angle ω inside
a circle, with vertex on this circle and with its symmetry axis intersecting the circle
center, is shown to have an inverse.

• the ”star transform” of Zhao-Schotland-Markel [31]. This Radon transform
integrates a function on several half-lines radiating from a movable vertex in the plane,
the angular position of each half-line is rigidly fixed with respect to other half-lines.

• Another original generalization is due to Ilmavirta J [32], who shows that Radon
transform can be also defined also on a broken line formed by several line segments
meeting pairwise at a number of vertices located on a curve in the plane, such that
the optical law of reflection on this curve is verified.

6. Applications

In this section, we present some simulations illustrating potential applications of the
Cone/V-line Radon transforms:

• compounded V-line Radon transform in emission imaging for medical purposes,
• V-line Radon transform in Transmission-Reflection imaging for non-destructive

evaluation/inspection,
• Cone Radon transform in Transmission-Scattering imaging for cultural heritage

research.

6.1. Biomedical imaging

Biomedical imaging is nowadays served almost totally by primary radiation imaging.
Overwhelmingly tomographic imaging dominates this domain of application. Here we
show simulations that demonstrate the imaging potentiality of Compounded V-line
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Radon Transform in future emission imaging [34]. In Fig. 12, we have displayed an
original thyroid phantom, the Compounded V-line Radon Transform data and the
reconstructed image of the thyroid. Details of the technical setup of the simulations
can be found in [34].

Figure 12. Original medical phantom (left), Compounded V-line Radon
transform data (center), Thyroid Reconstruction (right), reprinted from [34]

6.2. Non destructive Evaluation-Inspection

A surprising application of the simple V-line Radon transform has arisen in
non destructive evaluation-inspection. Instead of considering rectilinear radiation
propagation, one may use radiation reflection against appropriate surfaces to obtain
propagation along a V-line and collect transmission data along this V-line, see Fig.
13. This is why we have called this imaging process transmission-reflection imaging,
see [35]. In Fig. 14, we exhibit an original plastic crack, its V-line Radon transform
data and its reconstructed image.

Figure 13. V-line Radon transform in Transmission-Reflection Imaging,
reprinted from [35]
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Figure 14. Original plastic crack (left), V-line Radon transform data (center),
Reconstruction (right), reprinted from [35]

6.3. Cultural heritage object imaging

Cultural heritage research is a new application domain for imaging processes. The
need for conservation of cultural heritage treasures has led to investigations into
their deep internal structures and compositions. Such a knowledge would indicate
which conservation methods are appropriate to guarantee their survival over centuries.
Among a plethora of methods, the use of Compton scattered radiation imaging has
been advocated recently in [36]. Thus it is natural to test whether scattered imaging
processes which rely on Cone / V-line Radon transforms have performances that fit
the requirements of cultural heritage research.

Objects under investigation in cultural heritage research are of inestimable value
and rarity. They need to be treated with the utmost care even in the case of non
invasive inspection or scrutiny. Of course not all of them can be suitable for scattered
radiation imaging. Here we show that delicate flat but large objets in cultural heritage
research can be handled by three dimensional scattered radiation imaging. The chosen
modality is the one shown in the right figure of Fig. 4. This is because the object is
unique and of large size. It cannot be manipulated as an industrial object and must
be fitted to the radiation source (e.g. a synchrotron beam) from the back, see Fig. 15.
Data is then collected according to this setup. The reconstruction algorithm follows
the method developed in [37].

Simulations results are presented in Fig. 16 in order to ascertain the viability
of this imaging process. A numerical object corresponding to a flat stratigraphic
sample is created. Several cross sections of this phantom are represented with its
layers, electron densities and some inhomogeneities of random sizes and positions.
The reconstruction is performed with the conical Radon transform inversion formula
and results are given in Fig. 16. More details may be found in [38, 39].

7. Conclusion

Over the last two decades, decisive progress has be achieved in the field of Compton
scattering imaging thanks to the invertibility of a family of Radon transform on
circular cones. This class of Radon transform in R3, in the so-called compounded
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Figure 15. Practical setup for investigating a cultural heritage object using
synchrotron radiation beam, reprinted from [39]

Figure 16. Left - Stratigraphic phantom of dimensions 128 × 128 × 32 voxels.
Plane presented: z = 4. (a) original phantom, (b) direct inversion, (c) inversion
after normalizing values following z-axis, and (d) inversion after removing voxels
located at edges of single reconstructions of dimensions 4× 4× 32 voxels
Right - Stratigraphic phantom of dimensions 128 × 128 × 32 voxels. Plane
presented: y = 22. From top to bottom: original phantom, direct inversion,
inversion after normalizing values following z-axis, inversion after removing voxels
located at edges of single reconstructions of dimensions 4×4×32 voxels, reprinted
from [39]

form, supports a remarkable imaging process known as Compton scatter SPECT
imaging which can provide directly the three dimensional image of the interior of
an object by a standard gamma camera functioning in a fixed spatial position. The
absence of rotational motion characteristic of standard SPECT imaging represents a
major advantage resulting from the exploitation of scattered gamma rays for imaging
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purpose. It should be adequate and useful in many situations arising in medical
diagnostics as well as in security monitoring.

We have also explore the two dimensional version of this transform, which
is known under the name of V-line Radon transform. This concept was a very
fruitful concept which was shown to support some particular tomographic imaging
(or slice imaging). Most remarkably is an application to a new modality combining
transmission and reflection imaging using for example laser light traveling in slightly
opaque optical media. A surprising consequence is that it has led to some interesting
generalizations such as the ”broken line” Radon transform, the star Radon transform
and the Radon transform on generalized broken lines with vertices on a smooth curve
such that the optical reflection law is verified. Further generalizations can also be
expected.

The main interest in these Radon transforms is the existence of analytic inverse
formulas which lay foundations for corresponding imaging principles. Numerical
simulations under various working conditions are made in order to ascertain their
viability and performances. Of course there remains also additional steps to overcome,
for example how to include the effects of attenuation [40] and how to insure
reconstruction robustness against noise. These issues will be addressed certainly in
future work.

Finally it is very gratifying to recognize the utility of mathematical integral
geometry for solving practical inverse problems in Compton scatter imaging science.
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