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Abstract11

The ocean and atmosphere have very different characteristic timescales and display a rich12

range of interactions. Here, we investigate the sensitivity of the dynamical properties of13

the coupled atmosphere-ocean system to time-averaging. We base our analysis on a con-14

ceptual model of the atmosphere-ocean dynamics which allows us to compute the attrac-15

tor properties for different coupling coefficients and averaging time-scales. When the av-16

eraging time is increased, the local dimension shows a non-monotonic behaviour for short17

averaging times, but ultimately decreases for windows longer than 1 year. The analy-18

sis of daily, monthly and annual instrumental and reconstructed indices of oceanic and19

atmospheric circulation supports our results. This has important implications for the anal-20

ysis and interpretation of long climate timeseries with a low temporal resolution, but also21

on the possible convergence of climate observables for long time-averages toward attrac-22

tors close to hyperbolicity.23

1 Introduction24

The climate system is a complex system characterised by turbulent dynamics. The25

time-energy spectra of instrumental and proxy climate data show a rich structure with26

energy cascades from timescales of millions of years to a few seconds and no spectral gaps27

[Lovejoy et al., 2001]. Moreover, atmospheric and oceanic motions feature specific char-28

acteristics which differentiate them from the homogeneous and isotropic turbulence of29

Kolmogorov [Pouquet and Marino, 2013]. Indeed, the rotation and stratification effects30

allow for an inverse energy cascade contributing to large-scale motions, such as the at-31

mospheric planetary waves and ocean currents. The different components of the climate32

system - each with their own complex dynamics - further show a broad range of inter-33

actions. In this study we will specifically focus on the interplay between the ocean and34

atmosphere. The former has slow characteristics timescales (up to thousands of years),35

while the latter has a swifter temporal evolution, with synoptic-scale features typically36

evolving over periods of days [Pedlosky , 2013]. These fast timescales limit our ability to37

predict the future evolution of atmospheric dynamics: indeed, Lorenz [1969, 1982] and38

Dalcher and Kalnay [1987] postulated a limit of mid-latitude weather predictability at39

10-15 days. However, the ocean’s slow variability provides a possible predictability path-40

way beyond this range [Palmer and Anderson, 1994; Baehr et al., 2015; Vannitsem and41

Ghil , 2017]. This makes the study of the ocean’s low frequency variability (LFV) and42
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its coupling with the atmosphere a topic of considerable scientific and practical inter-43

est.44

The most famous example of ocean-led predictability is the alternance of El-Nino45

and La-Nina events and their effects on large-scale precipitation and temperatures. This46

phenomenon has provided some of the earliest indications of the feasibility of annual and47

longer forecasts [Cane et al., 1986]. However, extracting the full predictability potential48

inherent to LFV features on longer timescales remains a challenge. Long instrumental49

time-series are scarce, and even reanalysis products only provide well-constrained data50

over the past few decades. Long-term reconstructions of coupled ocean/atmosphere vari-51

ability must therefore rely on model simulations, documentary evidence or proxy data.52

The latter typically provide a time series representative of some feature of oceanic and/or53

atmospheric circulation on a regional or larger scale, with a time resolution of seasons54

to decades or longer [Bond et al., 2001; Vinther et al., 2010]. This type of data is essen-55

tial to verify that the coupled dynamics generated by climate models are compatible with56

those found in real world.57

An important question is whether it is possible to quantify the impact of the av-58

eraging procedure implicit in proxy records when performing such comparisons. In this59

paper, we address this question from a theoretical angle by using a conceptual coupled60

ocean-atmosphere model and investigating its dynamical properties. We apply dynam-61

ical systems theory to measure the dimensionality of the system, and compare the re-62

sults for model output with a high temporal resolution versus a degraded dataset where63

the system is known only through long-term averages. This allows us to objectively quan-64

tify the modifications induced by the averaging. We conclude by applying our approach65

to a number of instrumental and reconstructed indices of large-scale climate modes and66

discussing the implications of our results for the general analysis of climate data.67

2 A dynamical systems approach68

Determining the attractor properties of complex systems has been a long-standing69

challenge in the field of dynamical systems theory. However, recent theoretical advances70

in our understanding of the limiting distribution of Poincaré recurrences now enable us71

to compute both mean and instantaneous (in time, and hence local in phase space) dy-72

namical properties of complex systems. The key finding is that, under suitable rescal-73
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ing, the probability p of entering a ball in phase space centred on ζ with a radius r for74

chaotic attractors obeys a generalized Pareto distribution [Freitas et al., 2010; Faranda75

et al., 2011; Lucarini et al., 2012, 2016]. In order to compute such probability, we first76

calculate the series of distances dist(ζ, x(t)) between the point on the attractor ζ and77

all other points x(t) on the trajectory. We then put a logarithmic weight on the time se-78

ries of the distance to increase the discrimination of small values of dist(ζ, x(t)), which79

correspond to large values of g(x(t)):80

g(x(t)) = − log(dist(ζ, x(t))).

The probability of entering a ball of radius r centred on ζ can now be expressed81

as the probability p of exceeding a threshold q of the distribution of g(x(t)). In the limit82

of an infinitely long trajectory, such probability is the exponential member of the gen-83

eralized Pareto distribution:84

p = Pr(g(x(t)) > q, ζ) ' exp(−[x− µ(ζ)]/β(ζ))

whose parameters µ and σ are a function of the point ζ chosen on the attractor.85

Remarkably, σ = 1/d(ζ), where d(ζ) is the local dimension around the point ζ. The86

attractor dimension 〈d〉 can then be obtained by averaging d for a sufficiently large sam-87

ple of points ζi on the attractor. Here, we use the quantile 0.98 of the series g(x(t)) to88

determine q. We have checked the stability of the results against reasonable changes in89

the quantile. The universality of the convergence law implies that the above is akin to90

a central limit theorem of Poincaré recurrences. For further details, the reader is referred91

to Lucarini et al. [2016]. The above approach has been successfully used to describe the92

evolution of sea-level pressure [Faranda et al., 2017a] and geopotential height fields [Mes-93

sori et al., 2017] over the North Atlantic, as well as sea-level pressure, temperature and94

precipitation fields at hemispheric scale [Faranda et al., 2017b].95

3 Data and Model Specifications96

3.1 A Conceptual Atmosphere-Ocean Coupled Model97

The coupled ocean-atmosphere model we use here is the same as described by Van-98

nitsem [2015]. The atmospheric component is based on the vorticity equations of a two-99
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layer, quasi-geostrophic flow defined on a β-plane, supplemented with a thermodynamic100

equation for the temperature at the interface between the two atmospheric layers. The101

ocean component is based on the reduced-gravity, quasi-geostrophic shallow-water model102

with the same first order approximation of the Coriolis parameter. The oceanic temper-103

ature is considered as a passive scalar transported by the ocean currents, but it displays104

strong interactions with the atmospheric temperature through radiative and heat exchanges.105

A time-dependent radiative forcing mimicks the annual radiative input coming from the106

Sun at midlatitudes. A low-order model version is built based on truncating the Fourier107

expansion of the fields at the minimal number of modes that are believed to capture key108

features of the observed large scale dynamics of both the ocean and the atmosphere. The109

truncation leads to 20 ordinary differential equations for the atmospheric variables, 8 equa-110

tions for the ocean transport variables, 6 equations for the temperature anomaly within111

the ocean, and 2 additional equations for the spatially averaged temperatures in the at-112

mosphere and the ocean. The parameter values used are the same as in Figure 3 of Van-113

nitsem [2015], except that here we test a different range of values of the friction coef-114

ficient between the ocean and the atmosphere, namely C. Specifically, we consider 4 dif-115

ferent runs, coined CD0002, CD0005, CD0007 and CD0008, corresponding to 4 differ-116

ent values of the friction coefficient between the ocean and the atmosphere, namely C=0.002,117

0.005, 0.007 and 0.008 kgm−2s−1, respectively. The last two runs display LFV, while the118

first two do not. The lengths of the series is such that we can retain 10000 time-steps119

for all averaging windows in what follows.120

3.2 Data121

In addition to output from an idealised model, we also analyse real-world timeseries122

at different temporal resolutions. Specifically, we use daily NINO3 data provided by the123

NOAA climate prediction center [Barnston and Livezey , 1987; Reynolds et al., 2007] over124

the period 01 Jan 1981 - 28 Feb 2018, monthly NINO3 data over 1854 to 2016 provided125

by [Huang et al., 2017] and a yearly NINO3 dataset over the period 1049-1995 provided126

by Mann et al. [2009]. We further analyse daily NAO data provided by the NOAA cli-127

mate prediction center [Barnston and Livezey , 1987; Reynolds et al., 2007] over the pe-128

riod 01 Jan 1981 - 28 Feb 2018, monthly NAO data over 1854 to 2016 provided by [Jones129

et al., 1997] and yearly data over the period 1049-1995 [Trouet et al., 2009].130

–5–



Confidential manuscript submitted to Tellus A

4 Dynamical Implications of Time-Averaging131

We begin by analysing the dependence of the phase portraits on the time-averaging132

of model output. In order to depict this we have to choose 3 of the 36 modes of the model133

to represent the attractor on a Poincaré section. We choose modes ψo,2, θo,2 and ψa,1134

(Figure 1). These three modes are the dominant modes of the coupled ocean-atmosphere135

dynamics as discussed in detail in Vannitsem et al. [2015]. We consider a run with no136

LFV (C=0.002, Figure 1 a, c, e, g) and a run with a marked LFV (C=0.007, Figure 1137

b, d, f, h). The colourscales show the values of the local dimension d (for readability each138

panel has a different colourscale). The effect of averaging depends both on the chosen139

time-window and on the coupling. The daily portraits show quasi-periodic cycles, asso-140

ciated with the annual cycle present in the system, in both simulations (Figure 1 a, b).141

These are partly destroyed by the monthly averaging (Figure 1 c, d). Longer time-averaging142

rapidly smooths all structures in the phase portraits of the no-LFV run (Figure 1 e, g),143

so that the Poincaré section looks like that of a noisy fixed point in 3 dimensions. For144

the LFV run, the slow signal associated with the ocean dynamics survives the averag-145

ing procedures, and is still evident under an 8-year averaging. We further note that at146

sub-annual time scales (Figure 1 a, b, c, d), the local dimension is in general higher dur-147

ing the winter period, i.e. when ψa,1 – characterizing the amplitude of the atmospheric148

zonal flow – displays high values. We will come back to this point in the next section.149

A more quantitative analysis of the changes in the attractor properties under av-150

eraging is reported in Figures 2 and 3, which present the mean values and distributions151

of d. The first remarkable feature is the non-monotonic behaviour of the dimension with152

the averaging window. A naive hypothesis would be that, independently of the coupling,153

one might observe a decrease of the dimension with increasing time-averaging. However,154

this is only true for averaging periods larger or equal to 1 year, for which the seasonal155

cycle is averaged out. Indeed, all four simulations analysed here show non-monotonic be-156

haviour for shorter averaging times. This feature reveals that the filtering through av-157

eraging tends to modify the frequency of specific categories of local dimensions. The anal-158

ysis of the distributions of d, shown in Figure 3, provides further insights on this behaviour.159

Taking C=0.002 as example, one can see a clear shift of the distribution toward larger160

values in going from daily to monthly values.161
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On the contrary, averaging beyond 1 year time-scales suppresses the extreme d val-162

ues in the tails of the distributions, which corresponds to a smoothing of the variabil-163

ity of the dimension, thus lowering 〈d〉. This is particularly evident for the case of C=0.007164

and C=0.008 (LFV runs) and should be expected since there is a smoothing of the vari-165

ability on the attractor (Figure 1 b, d, f, h). This smoothing removes specific frequen-166

cies in the dynamics, as discussed in details in Nicolis and Nicolis [1995]; Vannitsem and167

Nicolis [1995, 1998], and also reduces the local variability of the instability properties168

of the flow. Another interesting result is that at monthly and seasonal scales the distri-169

butions of d display a double peak for runs both with and without LFV (Figure 4). This170

double peak is associated with the seasonal variability; there is a dominance of large d171

in Winter and low d in Summer. For instance for C=0.005, there is a maximum around172

d = 8 for the winter conditions and d = 4 for summer conditions (Figure 4) . To in-173

terpret this feature one must recall that the large-scale winter dynamics in the mid-latitudes174

is driven by a larger gradient of equator-to-pole radiative input than in summer [Goosse,175

2015; Vannitsem, 2015, 2017]. This has strong implications for the instability proper-176

ties of the flow [Buizza and Palmer , 1995]. This is also a property of the coupled ocean-177

atmosphere model used here, which displays lower averaged local Lyapunov exponents178

(and averaged local Lyapunov dimensions) in Summer than in Winter [Vannitsem, 2017].179

The technique we adopt here succesfully captures this increase in the complexity of the180

dynamics. The distributions further highlight the fact that, in some cases, the average181

of d remains roughly constant but the positive tails of the distributions change radically.182

This suggests that a decrease in 〈d〉 due to averaging might change little in the system’s183

ground state while altering the configurations with the largest number of degrees of free-184

dom. Table 1 reports the values of the first four moments of the distribution of d for all185

C and averaging times.186

One can further wonder whether 〈d〉 are determined predominantly by the oceanic187

or the atmospheric modes. To do this, we compute the local dimensions of the oceanic188

and atmospheric components separately. The results are shown in Figure 5 for different189

averaging periods. Except for the C=0.007 case, the atmospheric modes alone return al-190

most the same value of the total dimension as the joint calculation. The analysis of the191

ocean variables instead gives a lower dimension. This interesting feature likely reflects192

the fact that, although the ocean variables are coupled to the atmosphere, they only re-193

tains part of the complex structure of the system, in particular for the low values of C.194
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In our view, this results from the fact that the dynamics in the ocean is only ”weakly”195

driven by the chaotic variability present in the atmosphere for small values of C due to196

the large inertia of the ocean that integrates the atmospheric forcing on long time scales.197

For large values of C, LFV develops and this effect is considerably weakened; variables198

from both components then provide similar results. However, the behavior observed for199

C = 0.007 is still slightly non-monotonic because this run still gives a chaotic attrac-200

tor, whereas the run C = 0.008 provide a quasi-periodic flow.201

5 Implications for Ocean-Atmosphere Coupling and conclusions202

In the present study we have investigated the effects of time averaging on the ocean-203

atmosphere system as represented by a conceptual coupled model. The impact of aver-204

aging is quantified in terms of changes in the attractor properties of the system. When205

the averaging time is increased, the local dimension shows a non-monotonic behaviour206

for short averaging times, but ultimately decreases for windows longer than 1 year. For207

these averaging windows, the distribution of the local dimension becomes closer to Gaus-208

sian and the variability decreases. This corresponds to a progressive smoothing of the209

attractor. Time-averaging therefore has profound and sometimes counter-intuitive im-210

plications for the dynamical characteristics of climate data. Our results also suggest that,211

on longer time scales, the climate dynamics is smoother and closer to that of homoge-212

nous, hyperbolic systems.213

It is however necessary to verify whether the results from the idealised model pre-214

sented above find a match in real-world data. Here, we repeat our analysis for El Nino-215

Southern Oscillation Nino3 and North Atlantic Oscillation (NAO) indices. As a caveat,216

we note that this analysis has an important difference from that of the full coupled model.217

Indeed, the NAO and Nino3 indices do not represent the full climate attractor whereas218

they can be thought of as a projection (a special Poincaré section) of the full dynam-219

ics. In this sense the analysis can still inform us on numerous aspects of the system (see220

for example Faranda et al. [2017c] for a similar argument on the Von Karmann turbu-221

lent swirling flow). A separate problem to consider is the length of the time series, as222

our method for computing the local dimensions is dependent on processing a sufficiently223

long series. The shortest timeseries we analyse are the yearly ones, for which we only dis-224

pose of 947 years; we therefore perform two different computations of the dimension: i)225

for each dataset we use the complete timeseries, ii) for each dataset we only use 947 data226
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points. This provides some indication of the robustness of our conclusions. The results227

are reported in Figure 6. The top panels show the boxplot of the local dimension dis-228

tributions when all the data are considered, whereas the lower panel presents the aver-229

age dimension for the two cases described. The analysis of the boxplots suggest that the230

extremes of d change with the time scale considered. For the yearly time series, we ob-231

tain values of d up to 10. This may seem nonphysical since we are only analyzing two232

time series but, following again Faranda et al. [2017c], can be understood by consider-233

ing the role of small scale turbulence in increasing the effective dimension of the attrac-234

tor. Sampling issues may be discarded because both the full and reduced datasets show235

comparable relative changes between the different temporal resolutions. Finally the non-236

monotonic behavior of the average dimension for the climate indices follows the one found237

in the coupled model. We therefore conclude that the inferences drawn from the con-238

ceptual model provide valuable insights into the behaviour of real-world climate data and239

should be considered when performing dynamical analyses of data with low temporal res-240

olutions. It is worth performing further analysis in more sophisticated climate models241

in order to clarify in particular the increase of variability of the local dimension found242

in Figure 6. For that, very long (historical) runs should be considered in order to have243

enough data for the extreme value analysis, provided that climate models can correctly244

reproduce the internal variability of the climate system.245
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Table 1. Moments of the distributions of d for different C and averaging times.350

—C=0.002 —C=0.005 —C=0.007 —C=0.008

year seas month day year seas month day year seas month day year seas month day

median 8.10 7.50 8.09 5.78 7.81 6.04 6.50 5.57 1.98 1.87 2.95 3.56 0.92 2.04 2.81 2.42

std 1.19 2.33 2.33 1.84 1.27 1.53 2.97 2.47 0.62 0.78 1.49 3.8 0.11 0.64 0.99 1.16

skewness 0.31 0.88 1.19 1.55 0.28 0.50 0.59 2.5 1.19 1.68 1.47 2.67 3.09 1.66 1.10 2.21

kurtosis 3.31 3.98 4.87 6.61 3.45 3.95 3.41 12.34 4.67 7.71 5.98 12.55 23.27 13.24 5.43 10.38

Figure 1. Poincaré sections for the modes 2,9,15. Different couplings a,c,e,g): C=0.002.

b,d,f,h) C=0.007. Different averaging windows: a,b) daily; c,d) monthly; e,f) yearly; g,h) 8 years

averages.
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Figure 2. Average local dimensions as a function of the coupling and the averaging window.354

Figure 3. Attractor dimensions’ distributions as a function of the coupling and the averaging

window. a) C=0.002, b) C=0.005, c) C=0.007, d) C=0.008
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Figure 4. Attractor dimensions’ distributions as a function of the coupling for monthly (a)

and seasonal (b) averaging time.

357

358

Figure 5. Average dimensions 〈d〉 computed selecting all modes (blue stars) atmospheric

modes only (red crosses), oceanic modes only (yellow triangles). a) daily, b) monthly, c) seasonal

and d) yearly data.
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Figure 6. a,b,c): boxplots of local dimensions d for NAO and Nino3 indices at different time

scales. On each box, the central mark is the median, the edges of the box are the 25th and 75th

percentiles, the whiskers extend to the most extreme data points not considered outliers, and

outliers are plotted individually. a) daily, b) monthly and c) yearly data. d): average dimension

〈d〉 computed with the full length time-series (blue) and only 947 time steps (red).
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