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Polyhedral combinatorics of the K-partitioning problem
with representative variables

Zacharie Ales†,‡, Arnaud Knippel†, Alexandre Pauchet‡

†: LMI INSA Rouen (EA 3226) ‡: LITIS INSA Rouen (EA 4051)

Abstract

The K−partitioning problem consists in partitioning the vertices of a weighted graph in K sets in order
to minimize a function related to the edge weights. We introduce a linear mixed integer formulation with
edge variables and representative variables. We investigate the polyhedral combinatorics of the problem,
study several families of facet-defining inequalities and evaluate their efficiency on the linear relaxation.
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1 Introduction

Graph partitioning consists in splitting the vertices of a graph in several sets called clusters, so that a given
function of the edge weights is minimized or maximized. In many papers this function is linear hence minimizing
the weight of the edges in the clusters is equivalent to maximizing the total weight of the multicut (i.e., the
total weight of the edges between two different clusters). For this reason different names are used in literature
and the most frequent are graph partitioning problem [1, 2, 3] and min-cut problem [4]. The max-cut problem
obtained when maximizing the cut of a graph with positive weights on its edges is known to be NP-complete [5].
The problem is sometimes called clique partitioning problem when the graph is complete [6, 7]. When dealing
with general graphs, Chopra and Rao [1] note that additional edges can be considered to obtain a complete
graph. For the sake of simplicity we adopt this point of view and only consider complete graphs. Specific valid
inequalities such as the star inequalities or the cycle with ear inequalities can however be considered when
dealing with sparse graphs [3].

Graph partitioning has many applications (e.g., image segmentation or VLSI design [2]) and many variants,
which in most cases are NP-hard [5]. The number of sets in a solution may be specified as a part of the problem
definition [8, 9] or not [10, 11]. In this paper we consider the former case that we call the K-partitioning problem,
where K is the number of sets.

Our motivation comes from a clustering problem for dialogues analysis in psychology [12]. Dialogues can be
encoded using two-dimensional tables (or series of item-sets), among which dialogue patterns, representative
of human behaviors, are repeated approximately. Partitioning a graph of dialogue patterns would enable to
group similar instances and therefore to characterize significant behaviors. For this application, instances are
in general complete graphs of 20 to 100 vertices that have to be partitioned in 6 to 10 sets. Even if big instances
require approximate solutions, we are interested in improving the exact methods based on branch and bound
(such as in [13, 14, 15]), by studying more precisely the polyhedral structure of a linear formulation in order
to provide better bounds.

A general linear integer formulation using edge variables was proposed in [6], together with several facet-
defining inequalities. We call this formulation edge formulation or node-node formulation, and it has experi-
mentally proved to be stronger than the node-cluster formulation [15], although this may depend on the data
sets. Contrary to the node-cluster formulation, the edge formulation however doesn’t allow to fix the number
of clusters easily. Some authors use a formulation with both edge variables and node-cluster variables. A
formulation with an exponential number of constraints has been proposed in [16] – when a bound on the size
of the clusters is considered – and applied to sparse graphs. More compact formulations have been proposed
based on the linearization of the quadratic formulation [17, 13]. In [17] the weights of the edges are positive and
the total edge weight is minimized, while in [13] it is maximized. When considering the triangle inequalities
from both formulations [1], graph with arbitrary weights on the edges can be partitioned.

All these formulations have a common drawback: they contain a lot of symmetry (i.e., equivalent solutions
can be obtained by permuting variables indices) and this can considerably slow down methods based on branch-
and-bound or branch-and-cut. One approach consists in dealing with the symmetry in the branching strategies.
To this end, Kaibel et al [17] have proposed a general tool, called orbitopal fixing. Another way is to break
the symmetry directly in the formulation. This approach has already been used in [18] for the vertex coloring
problem. More recently a similar idea has been applied in the node-cluster formulation [15]. In this paper we
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propose a formulation based on both edge variables of [6, 19] and vertex variables that we call representative
variables. This allows not only to break the symmetry, but also to fix the number of clusters to K.

A side effect of breaking the symmetry is the complication of the polyhedral study. To simplify the presen-
tation of the paper, the most technical proofs are skipped. In this paper we only include complete proofs related
to the general clique inequalities and inequalities derived from our new variables (the strengthened triangle
inequalities and the paw inequalities). For further details, the reader may refer to our technical report [20].

In Section 2, we introduce notations and a possible integer linear programming formulation of the problem.
In Section 3, we study the dimension of the polyhedron Pn,K associated to our formulation. We characterize, in
Section, 4 all the facet-defining inequalities from our formulation. In Subsection 4.6, we strengthen the triangle
inequalities that do not define facets. In Section 5, we study four families of inequalities (namely the 2-chorded
cycle inequalities, the 2-partition inequalities, the general clique inequalities and the paw inequalities) and we
determine cases for which they are facet defining of Pn,K . In the last section we illustrate the improvement
on the linear relaxation value of our formulation for the facet-defining inequalities of the previous sections, on
complete graphs with different kind of weights.

2 Notations and problem statement

Let V = {1, . . . , n} be a set of indexed vertices and G = (V,E) the complete graph induced by V . A K-partition
π is a collection of K non-empty subsets C1, C2, . . . , CK , called clusters, such that ∀i 6= j, Ci ∩ Cj = ∅ and⋃K
i=1 Ci = V . The aim of the K-partitioning problem is to find a K-partition which minimizes the total weight

of the partition.
To each K-partition π, we associate a characteristic vector xπ ∈ {0, 1}|E|+|V | such that:

• for each edge uv ∈ E, xπuv (equivalent to xπvu) is equal to 1 if u, v ∈ Ci for some vertex i in {1, 2, . . . ,K}
and 0 otherwise;

• for each vertex u ∈ V , xπu = 1 if u is the vertex with the smallest index of its cluster (in that case u is
said to be the representative of its cluster) and 0 otherwise.

An edge uv ∈ E is said to be activated for a given partition π if xπuv = 1. In this context, vertex u is said
to be linked to vertex v and vice versa. A vertex i is said to be lower than another vertex j (noted i < j) if
index i is lower than index j.

Let dij denote the cost of edge ij ∈ E. We consider the following formulation for the K−partitioning
problem:

(Per)



min
∑
ij∈E

dijxij

xik + xjk − xij ≤ 1 ∀i, j, k ∈ V, i 6= k, j 6= k, i < j (1)
xj + xij ≤ 1 ∀i, j ∈ V, i < j (2)

xj +

j−1∑
i=1

xij ≥ 1 ∀j ∈ V (3)

n∑
i=1

xi = K (4)

xij ∈ {0, 1} ij ∈ E (5)
xi ∈ [0, 1] i ∈ V (6)

Constraints (1), called the triangle inequalities, ensure that if two incident edges ij and jk are activated

then ik is also activated. Note that there are n(n−1)(n−2)
2 many constraints (three for each triangle a, b, c of

G = (V,E)). Constraints (2), called the upper representative inequalities, ensure that every cluster contains no
more than one representative. If vertex j is a representative then it is not linked to any lower vertex i. If vertex
j is linked to such a lower vertex then it is not a representative. Constraints (3), called the lower representative
inequalities, guarantee that a cluster contains at least one representative. Indeed, on one hand if vertex j is
not a representative then it is linked to at least one lower vertex, on the other hand if vertex j is not linked to
any of these vertices then it is a representative. Finally, constraint (4) ensures that the number of clusters is
equal to K.
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Note that in the above formulation the representative variables can be relaxed, as fixing all edge variables
to 0 or 1 forces the representative variables to be in {0, 1} thanks to Equations (2) and (3). So we only have
|E| binary variables.

As the polyhedron associated to the above formulation is not full-dimensional, we fix x1 to 1 (since vertex
1 is always a representative), substitute x2 by 1 − x1,2 (since vertex 2 is a representative if and only if it is
not in the same cluster than vertex 1) and x3 by K − 2 + x1,2 −

∑n
i=4 xi using Equation (4). Therefore, the

characteristic vector of a partition π now contains the n− 3 remaining representative components followed by
the |E| edges components:

(xπ)T = (x4, . . . , xn, x1,2, . . . , x1,n, x2,3, . . . , xn−1,n).

In the following, we use the artificial variables x1, x2 and x3 instead of their substituted expression to
simplify the notations. For a given hyperplane H = {x ∈ R|E|+|V |−3 | αTx = α0} the coefficients α1, α2 and
α3 related to the three artificial variables may be mentionned in subsequent proofs. Since these coefficients are
associated to artificial variables, they are equal to 0.

Let Pn,K be the convex hull of all integer points which are feasible for (Per):

Pn,K = conv{x ∈ {0, 1}|E|+|V |−3|x satisfies (1), (2), (3), (4), (5), (6)}.

To simplify the notations, a singleton {s} may be denoted by s. Likewise for a given vector α ∈ R|E|+|V |−3
and a subset E1 of E, the term α(E1) is used to denote the sum of the α components in E1 (

∑
e∈E1

αe). Finally,
if we consider two subsets of V , V1 and V2, the sum of the α inter-set components

∑
i∈V1

∑
j∈V2

αij and the
sum of the α intra-set components

∑
i,j∈V1,i<j

αij are respectively denoted by α(V1, V2) and α(V1).

2.1 Transformations

To study the dimension of a polytope P ⊂ R|E|+|V |−3 (either Pn,K or one of its face), we identify the number
of affinely independant hyperplanes H = {x ∈ R|E|+|V |−3 |αTx = α0} which include P . In order to obtain
relations between the coefficients of H, we successively consider pairs of valid K-partitions π1 and π2 in P and
use the fact that

αTxπ
1

= αTxπ
2

. (7)

To quickly identify the relation obtained after simplification of (7), we define an operator T hereafter called
transformation. Given two disjoint clusters C1, C2 and a set of vertices R ⊂ C1∪C2 we define T : {C1, C2, R} 7→
{C ′1, C ′2}, with C ′1 = (C1\R) ∪ (R\C1) and C ′2 = (C2\R) ∪ (R\C2). The corresponding transformation is
presented in Figure 1.

C1\R1

R1 C2\R2

R2

Figure 1: Representation of T (C1, C2, R) with R1 = R ∩ C1 and R2 = R ∩ C2.

A transformation T : {C1, C2, R} 7→ {C ′1, C ′2} is said to be valid for the polytope P if there exists two
K-partitions π = {C1, C2, C3, . . . , CK} and π′ = {C ′1, C ′2, C3, . . . , CK} such that xπ and xπ

′
are included in P .

3 Dimension of Pn,K

Theorem 3.1. Depending on K, the dimension of Pn,K is:

(i) dim(Pn,2) = |E|+ n− 4;

(ii) dim(Pn,K) = |E|+ n− 3, for K ∈ {3, 4, . . . , n− 2} (i.e., it is full dimensional);

(iii) dim(Pn,n−1) = |E| − 1.
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Proof. The complete proof of this theorem is available in [20, 21]. Here we present an alternative proof of case
(ii).

We assume that Pn,K is included in a hyperplane H = {x ∈ R|E|+|V |−3| αTx = α0} and prove that all its
coefficients are equal to 0.

Since K is in {3, . . . , n − 2}, a transformation T (C1, C2, R) 7→ {C ′1, C ′2} is valid for Pn,K if C1, C2, C
′
1 and

C ′2 are non empty (otherwise less than K clusters are obtained) and if |C1 ∪ C2| ≤ 4 (otherwise no partition
with K clusters can be obtained if K is equal to n− 2).

Let i be a vertex of V \{1, 2, 3} and let a and b be two vertices lower than i. Transformation T ({a, i}, b, i)
represented in Figure 2 gives:

αai = αbi. (8)

a

i
b

Figure 2: T ({a, i}, b, i)

Indeed, xai is equal to 1 only before the transformation and xbi becomes equal to 1 after the transformation.
No representative variable appears in (8), since vertices a and b remain the representative of their respective
clusters during the transformation. Equation (8) shows that for each vertex i ∈ V \{1, 2, 3} the value of αhi for
all vertices h ∈ {1, . . . , i− 1} is equal to a constant that we denote by βi.

The transformation represented in Figure 3 leads to βi = 0 ∀i ≥ 4. Transformation T ({1, i}, 2, 1) (see
Figure 4) is used to prove that

0 = αi + α1,2. (9)

1

i
2 3

2

1
i

Figure 3: T ({1, i}, {2, 3}, i) Figure 4: T ({1, 2}, i, 1)

Vertex i becomes a representative after the transformation, thus it appears on the right-hand side of (9).
Vertex 2 is the lowest vertex of its cluster only before the transformation but it does not appear on the left-hand
side of (9), since x2 is an artificial variable (i.e., it is not associated to a coefficient in H).

In the previous transformation, {1, 2} can be replaced by {1, 3} and {2, 3} to show that α1,2, α1,3 and α2,3

are all equal to −αi.
Finally, the transformation represented in Figure 5 proves that αi is equal to 0.

i

1
2 3

Figure 5: T ({1, i}, {2, 3}, 1)

Thereafter, we study facet-defining inequalities for Pn,K when it is full-dimensional (i.e., K ∈ {3, . . . , n−2}).
For each studied face F = {x ∈ Pn,K | ωTx = ω0}, we consider a facet-defining inequality αTx ≤ α0 such that
F ⊆ {x ∈ Pn,K |αTx = α0}. We then prove that F is facet-defining by highlighting, with reference to Theorem
3.6 in Section I.4.3 of [22], that (α, α0) is proportional to (ω, ω0).

As mentionned in the introduction we refer to [20] for the most technical proofs.

4 Trivial inequalities

In this section, we show which of the inequalities from the integer formulation (Per) are facet-defining. We
restrict our study to the general cases where Pn,K is full-dimensional (i.e., K ∈ {3, 4, . . . , n− 2}).
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4.1 The edge bound inequalities

Remark The inequalities xuv ≤ 1 for all uv ∈ E are not facet-defining since they are induced by the two
following inequalities: xuv + xui − xvi ≤ 1 and xuv + xvi − xui ≤ 1, for all vertices i ∈ V \{u, v}.

Theorem 4.1. If Pn,K is full-dimensional, xuv ≥ 0 is facet-defining if and only if uv 6∈ {12, 13, 23}.

4.2 The representative bound inequalities

Remark The inequalities xv ≤ 1, for all vertices v ∈ {4, 5, . . . , n} are not facet-defining since the face induced
by xv = 1 is contained in the hyperplanes {x ∈ R|E|+|V |−3|xu,v = 0} for all vertices u ∈ {1, 2, . . . , v − 1}.
Indeed, if vertex v is the representative of a cluster C, it must be the lowest vertex of C. The dimension of the
face induced by xv ≤ 1 is consequently lower than or equal to dim(Pn,K)− v + 1.

Remark For the same reason, the inequality
∑n
i=4 xi − x1,2 ≥ K − 3 which corresponds to x3 ≤ 1, is not

facet-defining. Neither is x3 ≥ 0 since in that case x1,3 + x2,3 − x1,2 = 1 (i.e., vertex 3 is not a representative
so it is in the same cluster than 1 or 2).

Theorem 4.2. If Pn,K is full-dimensional, the inequalities xv ≥ 0, for all vertices v ∈ {4, 5, . . . , n}, are
facet-defining if and only if K 6= n− 2.

4.3 The upper representative inequalities

Theorem 4.3. If Pn,K is full-dimensional, then the inequalities xu,v + xv ≤ 1 for all vertices v ≥ 4 and u < v
are facet-defining if and only if n ≥ 6 or {u, v} 6= {4, 5}.

Theorem 4.4. If Pn,K is full-dimensional, then the inequalities x1,2 + xa,3 −
∑n
i=4 xi ≤ 3 − K for vertex

a ∈ {1, 2} - which correspond to xa,3 + x3 ≤ 1 - are facet-defining.

4.4 The lower representative inequalities

Theorem 4.5. If Pn,K is full-dimensional, then the inequalities xu +
∑u−1
i=1 xiu ≥ 1 for all vertices u ≥ 4 are

facet-defining.

Theorem 4.6. If Pn,K is full-dimensional, then the inequality x1,2 + x1,3 + x2,3 −
∑n
i=4 xi ≥ 3−K for vertex

a ∈ {1, 2} - which corresponds to x3 + x1,3 + x2,3 ≤ 1 - is facet-defining.

4.5 The triangle inequalities

Theorem 4.7. If Pn,K is full-dimensional, then the inequality xik + xjk − xij ≤ 1 for vertices i, j, k distinct
in V is facet-defining if and only if the following conditions are satisfied

(i) k < i or k < j;

(ii) {i, j, k} 6= {1, 2, 3}.

4.6 The strengthened triangle inequalities

Theorem 4.7 states that inequalities (1) are not facet-defining if k is greater than both i and j. However, they
can be strengthened by adding the term xk to the left side of the inequality whenever k is greater than three
(otherwise xk is an artificial variable):

xik + xjk − xij + xk ≤ 1. (2’)

For three distinct vertices i, j and k, let Pi,j,k be the face of Pn,K defined by Equation (2’).

Theorem 4.8. Let i, j and k be three vertices in V such that i < j < k and k > 3. When Pn,K is full-
dimensional, the inequality xik + xjk − xij + xk ≤ 1 is facet-defining if and only if (j > 3) or (K ≤ n − 3).
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Proof. Assume that j ≤ 3 and K = n− 2. Let π be a K−partition such that the three first vertices are in the
same cluster. As K is equal to n− 2 the K − 1 other clusters are necessarily reduced to one vertex. Hence the
left part of equation (2’) is equal to zero and π is not in Pi,j,k. Since 1, 2 and 3 cannot be together the equation

n∑
i=4

xi − x1,2 − x1,3 − x2,3 = K − 3. (10)

is always satisfied. Thus, Pi,j,k is included in the hyperplane induced by (10).
Let U = {u1, u2, . . . , u|U |} be V \{i, j, k} such that u1 < u2 < . . . < u|U | and letH = {x ∈ R|E|+|V |−3| αTx =

α0} be a hyperlane which includes Pi,j,k. Let π be a K-partition such that vertex k is either a representative
of its cluster or it is in the same cluster than vertices i or j. The vector xπ associated to such a K-partition is
in Pi,j,k. This remark ensures that each transformation considered throughout this proof is valid for Pi,j,k.

We first consider two cases (i.e., j > 3 and j ≤ 3) and prove that in both of them αib and αjb are equal to
0 for all vertices b in U . Let m and a be two vertices respectively in {i, j} and U\{b}. If j is greater than 3 we
additionaly assume that a ≤ 3. In this case, the transformations T ({m, k}, a,m) and T ({m, k}, {a, b},m) give
the result by respectively leading to: αm + αkm = αk + αam and αm + αkm = αk + αam + αbm. In the other
case, the theorem hypothesis ensures that K is strictly lower than n− 2 and the same result is obtained using
the two following transformations: T ({i, j, k}, a,m) and T ({b, i, j, k}, a,m).

The transformations T ({j, k}, {a, i}, a) and T ({i, k}, {a, j}, a) give αi = αj . If i is stricly lower than 4, xi is
an artificial variable, αi and αj are then equal to 0. If j ≥ 4 the same can be proved through T ({u1, u3}, u2, u3),
T ({i, u1, u2}, u3, {u1, u2}) and T ({u1, u2}, i, u2).

The value of the remaining coefficients of H is obtained using the transformations presented in table 1.

Conditions Transformation Results

- i k
j

u1 αik = −αij

k

i
u1 αik = αk

i

k
j αik = αjk

a i

k
j αak = 0

∀b ∈ U\u1
∀a ∈ V \{b, k} a < b

i

k b

u1 αu1b = αb

u1

b
a αab = αb

k
i u1

b αb = 0

Table 1: Transformations used in Theorem 4.8. Each line presents a step of the proof. The last column
corresponds to the result.

5 Valid inequalities

In this section we consider several classes of inequalities, looking for facets. Except for the paw inequalities,
which contain our representative variables, the other classes of inequalities have already been studied for other
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variants of graph partitioning problems. Due to technicality, we skip the proofs in the two first subsections but
the reader may refer to [20].

5.1 The 2−chorded cycle inequalities

In this subsection, we address the 2−chorded cycle class of inequalities, first introduced in [6]. Let C =
{e1, . . . , e|C|} be a cycle in E so that ei = cici+1 for all vertices i in {1, 2, . . . , |C| − 1} and e|C| = c1c|C|.

Let VC
def
= {c1, c2, . . . , c|C|} and U

def
= V \VC . The set of 2−chords of C is defined as C = {cici+2 ∈ E|i =

1, . . . , |C| − 2} ∪ {c1c|C|−1, c2c|C|}. The 2−chorded cycle inequality induced by a given cycle C of length at

least 5 and its corresponding C is defined as

x(E(C))− x(E(C)) ≤ b1
2
|C|c. (11)

We skip the proof of the following lemma. The reader can refer to [6] for further details.

Lemma 5.1. The 2−chorded cycle inequality (11) induced by a cycle C of length at least 5 is valid for Pn,K .
The corresponding face FC is not facet-defining if |C| is even.

Theorem 5.2. The face FC induced by an odd cycle C of size 2p+1 is facet-defining if the following conditions
are satisfied:

(i) Pn,K is full-dimensional;

(ii) |U ∩ {1, 2, 3}| ≥ 2;

(iii) 2 ≤ p ≤ n−K − |U ∩ {1, 2, 3}|;

(iv) K ≥ 4.

5.2 The 2-Partition inequalities

This section is dedicated to the study of the 2-partition inequalities, first introduced in [6] for the general clique
partitioning problem. For two disjoint nonempty subsets S and T of V are defined as

x(E(S), E(T ))− x(E(S))− x(E(T )) ≤ min(|S|, |T |). (12)

Let FS,T be the face of Pn,K defined by Equation 12.
The proof of the following lemma is skipped, for further details the reader may refer to [6].

Lemma 5.3. Inequality (12) is valid for Pn,K .

Theorem 5.4. If Pn,K is full-dimensional, the 2-partition inequality (12) is facet-defining for two non empty
disjoint subsets S and T of V if and only if the following conditions are satisfied:

(i) |T | − |S| ∈ {1, 2, . . . ,K − 1};

(ii) |S| ≤ n− (K + 2);

(iii) ∀s ∈ S ∃t ∈ T, t > s;

(iv) if |S| = 1 ∃u ∈ U ∩ {1, 2, 3}.
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5.3 The general clique inequalities

The clique inequalities have been introduced by Chopra and Rao [1] and correspond to the fact that for any
m-partition π (m ≤ K) and any set Z ⊂ V of size K + 1, at least two vertices of Z are necessarily in the same
cluster. The clique inequality induced by a given set Z is:

x(E(Z)) ≥ 1. (13)

The general clique inequalities are obtained by increasing both the size of Z and the value of the right-hand
side of Equation 13. Thus, the general clique inequalities induced by a set Z ⊂ V of size qK + r with q ∈ N
and r ∈ {0, 1, . . . ,K − 1} is defined by Chopra and Rao as:

x(E(Z)) ≥
(
q + 1

2

)
r +

(
q
2

)
(K − r). (14)

Let PZ be the face of Pn,K defined by Equation (14). As represented in Figure 6, the lower bound of
inequality (14) corresponds to the minimal value of x(E(Z)) in the incidence vector of a K-partition – thus
ensuring the validity of this inequality. It is obtained by setting q+ 1 vertices of Z in each of the r first clusters
and q vertices in each of the K − r remaining clusters.

. . . . . .

C1 Cr Cr+1
CK

r clusters with

q + 1 vertices in Z

K − r clusters with

q vertices in Z

Figure 6: Distribution of Z vertices in a K-partition included in FZ (case where q is equal to three).

These inequalities have also been studied by Labbé and Öszoy [19] in the case where the clusters must
contain at least FL vertices. In this context, the size of Z must be greater than or equal to b nFL

c. Finally, Ji
and Mitchell also studied these inequalities that they called the pigeon inequalities [23].

In the following U = {u1, u2, . . . , u|U |} is used to denote V \Z such that u1 < u2 < . . . < u|U |. The vertices
in Z = {z1, . . . , zK+1} are similarly sorted.

Theorem 5.5. If Pn,K is full-dimensional, for a given Z ⊂ V of size K+1, then inequality (14) is facet-defining
if and only if:

(i) |U | ≥ 1 and u1 ≤ 3;

(ii) z|Z| = n

(iii) |Z| ∈ {K + 1, . . . , 2K − 1}.

Lemma 5.6. Let V1 and V2 be two disjoint subsets of V and let Z be a subset of V which satisfies the conditions
of Theorem 5.5. Then, there exists a K−partition in FZ which includes V1 and V2 if {|V1 ∩ Z|, |V2 ∩ Z|} is
equal to {1, 2}.

Proof. Given the bounds on the size of Z in theorem 5.5, q is necessarily equal to one and r ∈ {1, . . . ,K − 1}.
Consequently, each K-partition included in FZ contains at least one cluster with exactly one vertex in Z and
at least one cluster with exactly two vertices in Z.

Let π = {C1, . . . , CK} be the K-partition such that:

• C1 = V1 and C2 = V2.

• Cluster Ci, i ∈ {3, . . . , r + 1}, contains q + 1 vertices from Z.

• Cluster Cj , j ∈ {r + 2, . . . ,K}, contains q vertices from Z.
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• The vertices in U which are not included in V1 or V2 are in CK .

This construction is always possible since |Z| is equal to qK + r. It can be easily checked – by computing
xπ(Z) – that π is in FZ .

Each transformation T (C1, C2, R) 7→ {C ′1, C ′2}, considered in the proof of Theorem 5.5 is such that the
couples (C1, C2) and (C ′1, C

′
2) satisfy the conditions imposed on V1 and V2 in Lemma 5.6. This ensures the

validity of the transformations. We now present the proof of Theorem 5.5.

Proof. If the first condition of the theorem is not satisfied, the three first vertices are in Z and cannot be in the
same cluster. Consequently PZ is included in the hyperplane defined by

∑n
i=4 xi−x1,2−x1,3−x2,3 = K−3. If

(ii) is false, the vertices u which are greater than zK+1 cannot be representative since each cluster contains at
least one element of Z. Thus, PZ is included in the hyperplanes: xu = 0 ∀u > z|Z|. Eventually, if Z contains
more than 2K − 1 vertices, each cluster necessarily include at least two vertices from Z. Thus, z|Z| cannot be
a representative and FZ is included in the hyperplane induced by xz|Z| = 0.

Let H = {x ∈ R|E|+|V |−3 | αTx = α0} be a hyperplane which includes PZ and let zi < zj < zk be three
elements of Z. The transformation T ({zi, zk}, {zj}, {zk}), first shows: αzizk = αzjzk . Thus, for a given vertex
k and for all vertices j ∈ {1, . . . , k − 1} the coefficients αzjzk are equal to a constant, referred to as βk.

For all j and k greater than i, T ({zi, zk}, {zj}, {zi}) gives

βk − zk = βj − zj . (15)

Let z, z′ and z′′ be three distinct vertices of Z. The transformation T ({u1, z}, {z′}, {u1}) leads to αz′ +
αu1z = αz + αu1z′ . This result and T ({u1, z}, {z′, z′′}, {u1}) give for all h ∈ {2, . . . ,K + 1}: αu1zh = 0 and

αu1z1 + αzh = αz1 . (16)

From Equations (15) and (16), we obtain that for all h ∈ {2, . . . ,K + 1}, the representative coefficients of
zh are equal and that the same applies to the βh.

If |U | is equal to one, the proof is over. Indeed, in that case, z2 is lower than four and thus αz2 is equal to
zero, which gives via Equation (16) αu1z1 = 0.

If |U | is greater than two, we then prove that αuz is equal to zero for all u ∈ U\{u1} and all z ∈ Z. This is
obtained due to T ({u1, u, z1}, {z}, {u1, u}), T ({u1, u, z1}, {z, z′}, {u1, u}) and Equation (16).

We show that αz1 is equal to αz2 , thanks to T ({u2, z2}, {z1}, {u2}) which leads through Equation (16) to
αu1z1 = 0.

If |U | is equal to two, then αz is equal to zero, and it remains to prove that αu1u2 is equal to zero, which
can be done by T ({u1, u2, z2}, {z1}, {u2}).

Otherwise, for a given vertex u in U , let U ′ be a subset of U\{u} which contains vertices u1 or u2. The
transformation T ({u, z, U ′}, {n}, {u}) gives∑

u′∈U ′

αuu′ + αz = αu ∀z ∈ Z. (17)

This equation shows that the sum of αuu′ is equal to a constant for any possible U ′. Let u′ and u′′ be two
vertices in U\{u}. By successively choosing U ′ equal to {u′′} and {u′, u′′} we obtain: αuu′ = 0.

Eventually, Equation (17) gives: αz = αu ∀(u, z) ∈ U × Z. Since αu1
is equal to zero, the same applies to

the other representative variables.

5.4 The paw inequalities

Given a subset W = {a, b, c, d} of V , we define the paw inequality associated to W by:

xab + xbc − xac + xcd + xb + xc ≤ 2. (18)

Figure 7 represents the variables in this inequality.

Lemma 5.7. Let K ∈ {3, . . . , n− 2}. Inequality (18) is valid for Pn,K if and only if
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a

b

c d

: value 1

: value −1

: value 0

: value 1

Figure 7: Representation of the coefficients of the paw inequality associated to a subset {a, b, c, d} of V .

1. a < b;

2. min(b, c, d) = d.

Proof. If min(b, c, d) is not d, the left-hand side of Equation (18) is equal to 3 for any K-partition with a cluster
equal to {b, c, d}. If b is lower than a, then Equation (18) is not satisfied for any K-partition π = {C1, . . . , CK}
such that {a, b} ⊂ C1 and C2 = {c}.

The addition of the triangle inequality (1)

xab + xbc − xac ≤ 1 (19)

and the lower representative inequality (3)
xc + xcd ≤ 1 (20)

ensures that the paw inequality is valid if xb is equal to zero.
If xb is equal to one, we show that (18) is still valid since Equation (19) and Equation (20) cannot both

be tight. In that case, vertices a and d cannot be in the same cluster as vertex b since their indices are lower
than b. The only way for (19) to be tight under these conditions is for b and c to be together. Equation (20)
is tight if vertex c is representative or if vertices c and d are together. In both cases xb cannot be equal to one
if vertices b and c are together.

Let FP be the face of Pn,K associated to inequality (18).

Lemma 5.8. Under the conditions of Lemma 5.7, the face FP is not a facet if c < b or K = n− 2.

Proof. If c is lower than b we prove that FP is included in the hyperplane induced by xc + xcd = 1. The
expression

xc + xcd (21)

can be equal to 0, 1 or 2.
If expression (21) equals 0, the solutions in FP satisfy : xab + xbc − xac + xb = 2. This equation cannot

be true since b has to be greater than both a and c according to Lemma 5.7 and the condition of the current
lemma. The expression (21) cannot be equal to two either since d is lower than c. As a result, expression (21)
is necessarily equal to one.

If K is equal to n − 2, no K-partition can contain both vertices a and c and thus, FP is included in the
hyperplane induced by xac.

Theorem 5.9. Let K ∈ {3, n− 3} and b ∈ {4, . . . , n}, FP is facet defining of Pn,K if and only if

1. d < b < c;

2. a < b.

Proof. A K-partition containing a cluster equal to {b, c} satisfies the paw inequality. Thus, by setting C3 equal
to {b, c}, one can use the same reasoning as in the proof of Theorem (3.1) to obtain the following relations on
the coefficients of an equation αTx = α0 satisfied by all the points in FP :

• αij = 0 ∀i ∈ V \{b, c, 1, 2, 3}∀j ∈ V \{b, c, i};

• α1,2 = α1,3 = α2,3
def
= β;
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• αi = −2β ∀i ∈ V \{b, c, 1, 2, 3}.

The value of the remaining α coefficients can be obtained through the transformations represented in Table 2.

Conditions Transformation Results

- b
c

d αbc = αcd
def
= γ

∀i ∈ V \{a, b, c, d} d i
c

b αci = 0

a b

i c
d αbi = 0

if d ≥ 4 ∀e, f ∈ {1, 2, 3}
{a, b} ⊂ C3

c

d e

f β = 0

if d ≤ 3
∀e, f ∈ {1, 2, 3}\{d}
C2 ⊂ V \{b, c, d, e, f}

C3 = {b, c, d}

e

f
C2

β = 0

∀i ∈ V \{a, b, c, d} a i

b
c αc + αab = γ + αb

a i d

b
c αbd = 0

c d

a b
i αac = −γ

b c d
a

i αab = γ, αb = αc

b c

a d
i αb = γ

Table 2: Transformations used in Theorem 5.9. Each line presents a step of the proof. The last column
corresponds to the result.

Theorem 5.10. Let K ∈ {3, n − 3}. The face FP associated to the inequality xab + xbc − xac + xcd + xc +
x1,2 −

∑n
i=4 xi ≤ 4−K – which corresponds to the paw inequality (18) for b equal to three – is facet for Pn,K

if and only if

1. d < 3 < c;

2. a < 3.

6 Numerical experiments

In this section we study the strength of our formulation and of the reinforcements with facets of the previous
sections. We consider three data sets generated randomly, and we believe that the instances are quite difficult
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since there are no preexisting classes to detect. Each data set D1, D2, D3 contains 100 instances formed from
complete graphs. In D1, D2 and D3, the edge weights are respectively in the intervals [0, 500], [−250, 250] and
[−500, 0].

We first compare the value of the linear relaxation from our formulation to that of Chopra and Rao’s
formulation [1] (also in [17, 13]) adapted to obtain exactly K clusters:

(Pcr)



min
∑
ij∈E

wi,jxi,j

−yit + yjt + xij ≤ 1 ∀ij ∈ E ∀t ∈ {1, . . . ,K} (22)
yit − yjt + xij ≤ 1 ∀ij ∈ E ∀t ∈ {1, . . . ,K} (23)
yit + yjt − xij ≤ 1 ∀ij ∈ E ∀t ∈ {1, . . . ,K} (24)∑
t∈{1,...,K} yit = 1 ∀i ∈ V (25)∑
i∈V yit ≥ 1 ∀t ∈ {1, . . . ,K} (26)

yit ∈ {0, 1} ∀i ∈ V ∀t ∈ {1, . . . ,K} (27)
xij ∈ {0, 1} ∀ij ∈ E (28)

For each vertex i ∈ V and each cluster k ∈ {1, . . . ,K}, variable yi,k is equal to 1 if vertex i is assigned to the
cluster number K and 0 otherwise. Similarly to the triangle inequalities (1), Constraints (22) to (24) ensure
the coherence of the obtained partition. Constraints (25) guarantee that each vertex is assigned to exactly one
cluster and Constraints (26) ensure that the K clusters are non empty.

The comparison of the results of formulations (Per) and (Pcr) over the three data sets are displayed in
tables 3, 4 and 5. In each table and for each couple (n,K), the value corresponding to formulation (Per) is the
second one. Our formulation gives better relaxation values in all cases except in the case of data set D1 (i.e.,
positive weights) when K is equal to 2.

We now only focus on formulation (Per). Tables 6 and 7 give the number of instances for which the linear
relaxation of (Per) gives an optimal solution for data set D1 and D2. No optimal solution is obtained for the
instances of D3. D2 instances have weights of both signs, like in [10], and D3 corresponds to a variant which
it considered to be easier (minimizing a cut with K parts and positive weights).

To evaluate the efficiency of a family of inequalities, we use a separation algorithm to add some of them to
the formulation and observe the percentage of improvement of the value of the linear relaxation. This requires
the definition of separation algorithms for each of the considered family.

The values of n considered in our experiments are low enough to allow an exhaustive enumeration of all the
valid paw inequalities. Separating the 2−partition inequalities is NP-hard [7] and we are not able to enumerate
them all. Instead we use a heuristic inspired from the well-known Kernighan-Lin algorithm [24]. A similar
procedure is used for the separation of the general clique inequalities.

Separating the 2−chorded cycle inequalities is a bit more technical. In [25], Müller adapted an approach,
introduced by Barahona and Mahjoub [26], to separate in polynomial time odd closed walk inequalities in
directed graphs. Müller showed that the same algorithm can be applied to undirected graphs to allow the
separation of a class of inequalities which includes the 2−chorded cycle inequalities. We adapted this approach
to separate 2−chorded cycle inequalities from cycles which may contain repetitions.

We define a graph H = (VH , AH) such that for each edge ij ∈ E, AH contains (see example Figure 8):

• eight vertices: uij1 , u
ij
2 , v

ij
1 , v

ij
2 , u

ji
1 , u

ji
2 , v

ji
1 and vji2 ;

• four arcs: (uij1 , u
ij
2 ), (vij1 , v

ij
2 ), (uji1 , u

ji
2 ), (vji1 , v

ji
2 ) of weight xij .

Moreover, to each pair of edges ij, ik ∈ E with a common endnode, we associate four additional arcs in AH :
(uji2 , v

ik
1 ), (vji2 , u

ik
1 ), (uki2 , v

ij
1 ) and (vki2 , u

ij
1 ) of weight −xjk − 1

2 .
Let C = {c1, . . . , c2p+1} be an odd cycle of G. By construction, C induces a walk in H from uc1,c21 to vc1,c21

(see example Figure 9) of weight

xc1,c2 − 1
2 − xc1,c3 + . . .+ xc2p+1,c1 − 1

2 − xc2p+1,c2

= x(E(C))− x(E(C))− 2p+1
2

= x(E(C))− x(E(C))− b |C|2 c −
1
2 .

Thus, there exists a cycle C which violates inequality (11) if and only if there exists a path from uc1,c21 to
vc1,c21 in H whose length is greater than − 1

2 .
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n
K

2 3 4 5 6 7 8 9 10

10
1102 114 40 16 7 3 2 1 0

978 679 462 295 172 88 39 11 0

11
1268 123 45 19 8 4 2 1 0

1033 737 522 356 227 135 71 33 10

12
1408 140 49 20 9 4 2 1 0

1124 816 593 422 288 187 112 59 27

13
1529 125 46 20 8 4 2 1 0

1177 874 649 476 341 231 149 90 47

14
1607 124 46 17 8 4 2 1 0

1207 904 687 521 387 278 191 123 72

15
1733 125 48 20 8 4 2 1 0

1275 971 749 578 440 327 234 159 100

16
1883 127 44 19 8 4 2 1 0

1284 993 784 623 490 378 284 206 142

17
2010 118 43 19 8 4 2 1 0

1375 1079 858 684 542 426 329 246 177

18
2055 117 41 18 9 4 2 1 0

1391 1105 893 726 589 474 377 293 221

19
2270 133 49 21 9 4 2 1 1

1463 1164 941 765 621 503 404 317 243

20
2359 123 43 17 8 4 2 1 0

1439 1146 936 774 642 530 433 348 273

Table 3: Mean value of the linear relaxation from formulation (Per) and formulation (Pcr) over the data set
D1. For each couple (n,K), second line corresponds to formulation (Per).

Müller’s approach for undirected graphs only considers four vertices per edge (uij1 , u
ij
2 , v

ij
1 and vij2 ). As a

consequence, a path in H between vertices uij1 and vij1 corresponds to a sequence of edges in G such that each
edge has a common endnode with its neighbors. Such a sequence may not be a cycle (e.g: {ij, ik, il}). Four
additional vertices per edge enable to give an orientation to the edge in the obtained sequence and thus ensure
that it is a cycle (possibly with vertex repetitions).

uki2uki1

vki1 vki2

uij1 uij2

vij1 vij2

−xjk − 1
2

xik xij

uji2uji1

vji1 vji2

uik1 uik2

vik1 vik2

−xjk − 1
2

xij xik

Figure 8: Vertices and arcs of H associated to edges (ij) and (ik) in E.

After creating H, we obtain for all ij ∈ E the shortest path between vertices uij1 and vij1 using the Floyd-
Warshall shortest path algorithm [27] and deduce the corresponding cycle in G and its associated 2−chorded
cycle inequality. Eventually, the violated inequalities are added to the problem and the root relaxation is
updated. This process is repeated until no more violated inequality is found.

For each family of inequalities and each couple (n,K) such that n ∈ {10, 11, . . . , 20} and K ∈ {2, 3, . . . , 10},
the average gain obtained over the instances of each data set is computed. The results are summed up in
Table 8.

In our experiments, the paw inequalities are useless when all the weights are non negative (instances of D1)
but they improve the value of the relaxation in the two other data sets. In the case of D3 (all negative weights)
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n
K

2 3 4 5 6 7 8 9 10

10
-2246 -2251 -2213 -2146 -2064 -1940 -1754 -1409 0

-1566 -1620 -1570 -1431 -1236 -990 -709 -385 0

11
-2784 -2778 -2740 -2672 -2591 -2484 -2341 -2136 -1731

-1861 -1919 -1869 -1746 -1563 -1330 -1062 -752 -407

12
-3374 -3352 -3314 -3245 -3159 -3057 -2931 -2775 -2532

-2115 -2171 -2149 -2050 -1891 -1679 -1422 -1131 -804

13
-4159 -4140 -4091 -4017 -3933 -3833 -3717 -3577 -3389

-2557 -2606 -2576 -2480 -2326 -2119 -1867 -1575 -1250

14
-4936 -4901 -4846 -4768 -4674 -4566 -4452 -4318 -4157

-2938 -2997 -2978 -2891 -2747 -2556 -2318 -2037 -1719

15
-5732 -5693 -5634 -5552 -5467 -5361 -5243 -5115 -4965

-3332 -3399 -3388 -3314 -3180 -2994 -2759 -2483 -2171

16
-6683 -6641 -6582 -6496 -6410 -6306 -6193 -6067 -5919

-3803 -3861 -3850 -3779 -3648 -3467 -3242 -2970 -2662

17
-7510 -7484 -7428 -7347 -7257 -7150 -7038 -6919 -6783

-4250 -4308 -4304 -4240 -4117 -3945 -3726 -3463 -3161

18
-8539 -8510 -8449 -8364 -8272 -8163 -8050 -7925 -7784

-4788 -4839 -4829 -4768 -4657 -4492 -4277 -4014 -3711

19
-9606 -9559 -9501 -9412 -9319 -9209 -9093 -8960 -8828

-5300 -5361 -5357 -5306 -5199 -5041 -4839 -4588 -4300

20
-10770 -10725 -10666 -10576 -10483 -10374 -10259 -10135 -10000

-5936 -5991 -5979 -5915 -5797 -5628 -5410 -5153 -4860

Table 4: Mean value of the linear relaxation from formulation (Per) and formulation (Pcr) over the data set
D2. For each couple (n,K), the second line corresponds to formulation (Per).

u121 u122

v121v231 v232

u341 u342

v451 v452

u511 u512

Figure 9: Path in H which corresponds to the cycle C = {1, 2, 3, 4, 5} in G.

we fail at finding any violated inequality except for the paw inequalities. These instances are however easier
in practice. Regarding D2 the paw inequalities give the best improvement in average, but they are actually
complementary to the generalized clique inequalities in the sense that they help more for the highest values of
K while the generalized clique inequalities are more efficient for the smallest values of K.

For instances in D1 and D2, the 2-chorded cycle inequalities are much less efficient than the 2-partition
inequalities or the generalized clique inequalities. In particular, the general clique inequalities lead to a spec-
tacular improvement for small values of K in the case of D1 instances.
Conclusion

We have introduced a new formulation for the K-partitioning problem. By the addition of representative
variables, we are able to break the symmetry in the edge variable formulation and fix the number of clusters.
The resulting formulation seems to be stronger than the formulation with node-cluster variables and edge
variables used by several authors ([1, 17, 13]) when K is greater than 2, at least on complete graphs. We have
proved in this paper facet-defining results for several classical families of inequalities, and for a new family of
inequalities that seems to be useful when there are negative weights.

The computing time for the 20-vertex instances takes only a few minutes using CPLEX 12.5 on a desktop
computer. To actually solve problems to optimality for higher values of n will need to find a compromise
between the separation and the solving of the linear programs at the nodes of a branch and bound procedure.
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n
K

2 3 4 5 6 7 8 9 10

10
-10929 -10438 -9935 -9294 -8622 -7848 -6925 -5549 0

-9959 -8724 -7488 -6253 -5017 -3780 -2540 -1293 0

11
-13490 -13001 -12498 -11865 -11191 -10453 -9589 -8557 -6986

-12375 -11009 -9643 -8277 -6911 -5545 -4174 -2801 -1422

12
-16107 -15611 -15111 -14477 -13802 -13068 -12246 -11317 -10185

-14876 -13397 -11918 -10439 -8960 -7480 -5999 -4517 -3028

13
-19402 -18912 -18414 -17773 -17102 -16372 -15574 -14680 -13651

-18019 -16390 -14761 -13131 -11502 -9872 -8243 -6611 -4977

14
-22638 -22135 -21626 -20988 -20311 -19567 -18784 -17912 -16963

-21141 -19390 -17639 -15888 -14137 -12385 -10634 -8883 -7130

15
-26015 -25517 -25003 -24366 -23716 -22983 -22206 -21357 -20428

-24402 -22537 -20673 -18808 -16943 -15078 -13214 -11347 -9481

16
-29871 -29372 -28864 -28226 -27573 -26841 -26078 -25250 -24336

-28121 -26122 -24124 -22125 -20126 -18128 -16129 -14130 -12132

17
-33803 -33308 -32805 -32174 -31515 -30786 -30034 -29226 -28346

-31935 -29818 -27702 -25585 -23469 -21352 -19236 -17118 -15001

18
-38126 -37624 -37113 -36473 -35816 -35081 -34329 -33520 -32650

-36139 -33893 -31648 -29402 -27157 -24911 -22666 -20420 -18174

19
-42640 -42143 -41643 -41001 -40352 -39621 -38871 -38047 -37207

-40515 -38143 -35771 -33399 -31027 -28655 -26283 -23911 -21539

20
-47565 -47065 -46560 -45916 -45262 -44534 -43788 -42981 -42148

-45309 -42801 -40294 -37786 -35279 -32771 -30263 -27755 -25247

Table 5: Mean value of the linear relaxation from formulation (Per) and formulation (Pcr) over the data set
D3. For each couple (n,K), the second line corresponds to formulation (Per).

n
K

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

10 0 0 0 12 47 75 95 100

11 0 0 0 0 15 50 77 94 100

12 0 0 0 0 8 29 70 91 99 100

13 0 0 0 0 0 8 37 60 87 99 100

14 0 0 0 0 0 0 20 45 72 91 98 100

15 0 0 0 0 0 0 6 28 61 84 94 99 100

16 0 0 0 0 0 0 3 13 31 66 80 91 98 100

17 0 0 0 0 0 0 0 3 18 46 69 84 90 96 100

18 0 0 0 0 0 0 0 0 6 19 51 70 91 97 99 100

19 0 0 0 0 0 0 0 0 1 13 34 56 76 92 96 99 100

20 0 0 0 0 0 0 0 0 0 4 12 37 60 78 94 99 100 100

Table 6: Number of instances of D1 for which the linear relaxation of (Per) gives an optimal solution.

Still the results of this work are promising and show the interest of the polyhedral approach.
Further work will concentrate on improving the separation procedures and developing a branch and cut
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n
K

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

10 20 53 31 4 3 0 0 0

11 16 37 16 4 1 1 0 0 0

12 8 21 16 4 0 0 0 0 0 0

13 12 17 11 2 1 0 0 0 0 0 0

14 6 14 9 3 0 0 0 0 0 0 0 0

15 2 10 9 3 0 0 0 0 0 0 0 0 0

16 2 5 5 1 0 0 0 0 0 0 0 0 0 0

17 2 10 4 2 0 0 0 0 0 0 0 0 0 0 0

18 2 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0

19 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 7: Number of instances of D2 for which the linear relaxation of (Per) gives an optimal solution.

Data
Inequalities Minimum Maximum Mean

Standard
sets deviation

D1

2-chorded cycle 0.0 4.7 1.6 1.3
2-partition 0.0 30.1 13.6 8.2
general clique 0.0 1186.6 198.3 253.4
paw 0.0 0.0 0.0 0.0

D2

2-chorded cycle 0.0 5.5 2.9 1.8
2-partition 1.2 14.4 7.7 3.5
general clique 0.0 24.9 3.1 6.5
paw 0.0 37.3 8.2 10.3

D3

2-chorded cycle 0.0 0.0 0.0 0.0
2-partition 0.0 0.0 0.0 0.0
general clique 0.0 0.0 0.0 0.0
paw 0.6 33.3 5.9 6.5

Table 8: Statistical indicators related to the average gain in percentage obtained for values of n ∈ {10, 11, . . . , 20}
and values of K ∈ {2, 3, . . . , 10} over the three data sets for each family of inequalities.

framework for the application that motivated this study [12].
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