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DEFORMING MONOMIAL SPACE CURVES INTO
SET-THEORETIC COMPLETE INTERSECTION

SINGULARITIES

MICHEL GRANGER AND MATHIAS SCHULZE

Abstract. We deform monomial space curves in order to con-
struct examples of set-theoretical complete intersection space curve
singularities. As a by-product we describe an inverse to Herzog’s
construction of minimal generators of non-complete intersection
numerical semigroups with three generators.

Introduction

It is a classical problem in algebraic geometry to determine the min-
imal number of equations that define a variety. A lower bound for this
number is the codimension and it is reached in case of set-theoretic
complete intersections. Let I be an ideal in a polynomial ring or a
regular analytic algebra over a field K. Then I is called a set-theoretic
complete intersection if

√
I =

√
I ′ for some ideal I ′ admitting height

of I many generators. The subscheme or analytic subgerm X defined
by I is also called a set-theoretic complete intersection in this case.
It is hard to determine whether a given X is a set-theoretic complete
intersection. We address this problem in the case I ∈ SpecK{x, y, z}
of irreducible analytic space curve singularities X over an algebraically
closed (complete non-discretely valued) field K.

Cowsik and Nori (see [CN78]) showed that over a perfect field K
of positive characteristic any algebroid curve and, if K is infinite, any
affine curve is a set-theoretic complete intersection. To our knowledge
there is no example of an algebroid curve that is not a set-theoretic
complete intersection. Over an algebraically closed field K of charac-
teristic zero, Moh (see [Moh82]) showed that an irreducible algebroid
curve K[[ξ, η, ζ]] ⊂ K[[t]] is a set-theoretic complete intersection if the
valuations `,m, n = υ(ξ), υ(η), υ(ζ) satisfy

(0.1) gcd(`,m) = 1, ` < m, (`− 2)m < n.

We deform monomial space curves in order to find new examples of
set-theoretic complete intersection space curve singularities. Our main
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2 M. GRANGER AND M. SCHULZE

result in Proposition 3.2 gives sufficient numerical conditions for the
deformation to preserve both the value semigroup and the set-theoretic
complete intersection property. As a consequence we obtain

Corollary 0.1. Let C be the irreducible curve germ defined by

OC = K
{
t`, tm + tp, tn + tq

}
⊂ K{t}

where gcd(`,m) = 1, p > m, q > n and there are a, b ≥ 2 such that

` = b+ 2, m = 2a+ 1, n = ab+ b+ 1.

Let γ be the conductor of the semigroup Γ = 〈`,m, n〉 and set

d1 = (a+ 1)(b+ 2), δ = min {p−m, q − n}.
(a) If d1 + δ ≥ γ, then Γ is the value semigroup of C.
(b) If d1 +δ ≥ γ+`, then C is a set-theoretic complete intersection.
(c) If a, b ≥ 3 and d1 + q − n ≥ γ + `, then C defined by

p := γ − 1− ` > m

is a non-monomial set-theoretic complete intersection.

In the setup of Corollary 0.1 Moh’s third condition in (0.1) becomes
ab < 1 and is trivially false. Corollary 0.1 thus yields an infinite list
of new examples of non-monomial set-theoretic complete intersection
curve germs.

Let us explain our approach and its context in more detail. Let
Γ be a numerical semigroup. Delorme (see [Del76]) characterized the
complete intersection property of Γ by a recursive condition. The com-
plete intersection property holds equivalently for Γ and its associated
monomial curve Spec(K[Γ]) (see [Her70, Cor. 1.13]) and is preserved
under flat deformations. For this reason we deform only non-complete
intersection Γ. A curve singularity inherits the complete intersection
property from its value semigroup since it is a flat deformation of the
corresponding monomial curve (see Proposition 2.3). The converse
fails as shown by a counter-example of Herzog and Kunz (see [HK71,
p. 40-41]).

In case Γ = 〈`,m, n〉, Herzog (see [Her70]) described minimal rela-
tions of the generators `,m, n. There are two cases (H1) and (H2) (see
§1) with 3 and 2 minimal relations respectively. In the non-complete
intersection case (H2) we describe an inverse to Herzog’s construction
(see Proposition 1.4). Bresinsky (see [Bre79b]) showed (for arbitrary
K) by an explicit calculation based on Herzog’s case (H2) that any
monomial space curve is a complete intersection. Our results are ob-
tained by lifting his equations to a (flat) deformation with constant
value semigroup. In section §2 we construct such deformations (see
Proposition 2.3) following an approach using Rees algebras described
by Teissier (see [Zar06, Appendix, Ch. I, §1]). In §3 we prove Propo-
sition 3.2 by lifting Bresinsky’s equations under the given numerical
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conditions. In §4 we derive Corollary 0.1 and give some explicit exam-
ples (see Example 4.2).

It is worth mentioning that Bresinsky (see [Bre79b]) showed (for
arbitrary K) that all monomial Gorenstein curves in 4-space are set-
theoretic complete intersections.

1. Ideals of monomial space curves

Let `,m, n ∈ N generate a semigroup Γ = 〈`,m, n〉 ⊂ N.

d = gcd(`,m).

We assume that Γ is numerical, that is, gcd(`,m, n) = 1.
Let K be a field and consider the map

ϕ : K[x, y, z]→ K[t], (x, y, z) 7→ (t`, tm, tn)

whose image K[Γ] = K[t`, tm, tn] is the semigroup ring of Γ.
Pick a, b, c ∈ N minimal such that

a` = b1m+ c2n, bm = a2`+ c1n, cn = a1`+ b2m

for some a1, a2, b2, b2, c1, c2 ∈ N. Herzog distinguished two cases and
proved the following statements (see [Her70, Props. 3.3, 3.4, 3.5, Thm. 3.8]).

(H1) 0 /∈ {a1, a2, b1, b2, c1, c2}. Then

(1.1) a = a1 + a2, b = b1 + b2, c = c1 + c2

and the unique minimal relations of `,m, n read

a`− b1m− c2n = 0,(1.2)

−a2`+ bm− c1n = 0,(1.3)

−a1`− b2m+ cn = 0.(1.4)

Their coefficients form the rows of the matrix

(1.5)

 a −b1 −c2

−a2 b −c1

−a1 −b2 c

 .

Accordingly the ideal I = 〈f1, f2, f3〉 of maximal minors

(1.6) f1 = xa − yb1zc2 , f2 = yb − xa2zc1 , f3 = xa1yb2 − zc

of the matrix

(1.7) M0 =

(
zc1 xa1 yb1

yb2 zc2 xa2

)
.

equals kerϕ, and the rows of this matrix generate the module
of relations between f1, f2, f3. Here K[Γ] is not a complete
intersection.
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(H2) 0 ∈ {a1, a2, b1, b2, c1, c2}. One of the relations (a,−b, 0), (a, 0,−c),
or (0, b,−c) is minimal relation of `,m, n and, up to a permu-
tation of the variables, the minimal relations are

a` = bm,(1.8)

a1`+ b2m = cn.(1.9)

Their coefficients form the rows of the matrix

(1.10)

(
a −b 0
−a1 −b2 c

)
.

It is unique up to adding multiples of the first row to the sec-
ond. Overall there are 3 cases and an overlap case described
equivalently by 3 matrices

(1.11)

(
a −b 0
a 0 c

)
,

(
a −b 0
0 −b c

)
,

(
a 0 −c
0 b −c

)
.

Here K[Γ] is a complete intersection.

In the following we describe the image of Herzog’s construction and
give a left inverse:

(H1’) Given a1, a2, b1, b2, c1, c2 ∈ N\{0}, define a, b, c by (1.1) and set

`′ = b1c1 + b1c2 + b2c2 = b1c+ b2c2 = b1c1 + bc2,(1.12)

m′ = a1c1 + a2c1 + a2c2 = ac1 + a2c2 = a1c1 + a2c,(1.13)

n′ = a1b1 + a1b2 + a2b2 = a1b+ a2b2 = a1b1 + ab2,(1.14)

and e′ = gcd(`′,m′, n′). Note that `′,m′, n′ are the submaximal
minors of the matrix in (1.5).

(H2’) Given a, b, c ∈ N \ {0} and a1, b2 ∈ N, define `′,m′, n′, d′ by

`′ = bd′,(1.15)

m′ = ad′,(1.16)

n′

d′
=
a1b+ ab2

c
, gcd(n′, d′) = 1.(1.17)

Remark 1.1. In the overlap case (1.11) the formulas (1.15)-(1.16) yield

(`′,m′, n′) = (bc, ac, ab).

Lemma 1.2. In case (H1), let ñ ∈ N be minimal with xñ − z ˜̀ ∈ I for

some ˜̀∈ N. Then gcd(˜̀, ñ) = 1 and (ñ, ˜̀) · gcd(b1, b2) = (n′, `′).

Proof. The first statement holds due to minimality. By Buchberger’s
criterion the generators 1.6 form a Gröbner basis with respect to the
reverse lexicographical ordering on x, y, z. Let g′ denote a normal form

of g = x
˜̀− zñ with respect to 1.6. Then g ∈ I if and only if g′ = 0.

By (1.1) reductions by f2 can be avoided in the calculation of g. If r2

and r1 many reductions by f1 and f3 respectively are applied then

g′ = xñ−a1r1−ar2yb1r2−r1b2zr1c+r2c2 − z ˜̀
.
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and g′ = 0 is equivalent to

˜̀= r1c+ r2c2, b1r2 = r1b2, ñ = a1r1 + ar2.

Then ri = bi
gcd(b1,b2)

for i = 1, 2 and the claim follows. �

Lemma 1.3.
(a) In case (H1), equations (1.12)-(1.14) recover `,m, n.
(b) In case (H2), equations (1.15)-(1.17) recover `,m, n, d.

Proof.

(a) Consider ñ, ˜̀∈ N as in Lemma 1.2. Then xñ − z ˜̀ ∈ I = kerϕ

means that (t`)ñ = (tn)
˜̀

and hence `ñ = ˜̀n. So the pair (`, n) is pro-

portional to (˜̀, ñ) which in turn is propotional to (`′, n′) by Lemma 1.2.
Then the two triples (`,m, n) and (`′,m′, n′) are proportional by sym-
metry. Since gcd(`,m, n) = 1 by hypothesis (`′,m′, n′) = q ·(`,m, n) for
some q ∈ N. By Lemma 1.2 q divides gcd(b1, b2) and by symmetry also
gcd(a1, a2) and gcd(c1, c2). By minimality of the relations (1.2)-(1.4)
gcd(a1, a2, b1, b2, c1, c2) = 1 and hence q = 1. The claim follows.

(b) By the minimal relation (1.8) gcd(a, b) = 1 and hence (`,m) =
d · (b, a). Substitution into equation (1.9) and comparison with (1.17)
gives n

d
= a1b+ab2

c
= n′

d′
with gcd(n, d) = gcd(`,m, n) = 1 by hypothesis.

We deduce that (n, d) = (n′, d′) and then (`,m) = (`′,m′). �

Proposition 1.4.
(a) In case (H1’), a1, a2, b1, b2, c1, c2 arise through (H1) from some

numerical semigroup Γ = 〈`,m, n〉 if and only if e′ = 1. In this case,
(`,m, n) = (`′,m′, n′).

(b) In case (H2’), a, b, c, a1, b2 arise through (H2) from some from
some numerical semigroup Γ = 〈`,m, n〉 if and only if (`′,m′, n′) is in
the corresponding subcase of (H2),

gcd(a, b) = 1,(1.18)

∀q ∈ ∩[−b2/b, a1/a] ∩N : gcd(−a1 + qa,−b2 − qb, c) = 1.(1.19)

In this case, (`,m, n) = (`′,m′, n′).

Proof.
(a) By Lemma 1.3.(a) e′ = 1 is a necessary condition. Conversely

let e′ = 1. By definition (1.5) is a matrix of relations of (`′,m′, n′).
Assume that (`′,m′, n′) is in case (H2). By symmetry we may assume
that (`′,m′, n′) admits a matrix of minimal relations

(1.20)

(
a′ −b′ 0
−a′1 −b′2 c′

)
of type (1.10). By choice of a′, b′, c′ it follows that

a > a′, b > b′, c ≥ c′.
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By Lemma 1.3.(b) d′ is the denominator of
a′1b
′+a′b′2
c′

and

`′ = b′d′.

In particular c′ ≥ d′. Then b1 ≥ b′ contradicts (1.12) since

`′ = b1c+ b2c2 ≥ b′c′ + b2c2 > b′c′ ≥ b′d′ = `′.

We may thus assume that b1 < b′. The difference of first rows of (1.20)
and (1.5) is then a relation(

a′ − a b1 − b′ c2

)
of (`′,m′, n′) with a′− a < 0, b1− b′ < 0 and c2 > 0. Then c2 ≥ c′ ≥ d′

by choice of c′. This contradicts (1.12) since

`′ = b1c1 + bc2 ≥ b1c1 + b′d′ > b′d′ = `′.

We may thus assume that (`′,m′, n′) is in case (H1) with a matrix of
unique minimal relations

(1.21)

 a′ −b′1 −c′2
−a′2 b′ −c′1
−a′1 −b′2 c′


of type (1.5) where

a′ = a′1 + a′2, b′ = b′1 + b′2, c′ = c′1 + c′2.

as in (1.1). Then (a, b, c) ≥ (a′, b′, c′) by choice of the latter and

`′ = b′1c
′ + b′2c

′
2 = b′1c

′
1 + b′c′2

by Lemma 1.3.(a). If (ai, bi, ci) ≥ (a′i, b
′
i, c
′
i) for i = 1, 2, then

`′ = b1c+ b2c2 ≥ b′1c
′ + b′2c

′
2 = `′

implies c = c′ and hence (a, b, c) = (a′, b′, c′) by symmetry. By unique-
ness of (1.21) then (a1, a2, b1, b2, c1, c2) = (a′1, a

′
2, b
′
1, b
′
2, c
′
1, c
′
2) and hence

the claim. By symmetry it remains to exclude the case c′2 > c2. The
difference of first rows of (1.21) and (1.5) is then a relation(

a′ − a b1 − b′1 c2 − c′2
)

of (`′,m′, n′) with a′ − a ≤ 0, c2 − c′2 < 0 and hence b1 − b′1 ≥ b′ by
choice of the latter. This leads to the contradiction

`′ = b2c2 + b1c > b1c ≥ b′c′ + b′1c
′ > b′2c

′
2 + b′1c

′ = `′.

(b) By Lemma 1.3.(b) the conditions are necessary. Conversely as-
sume that the conditions hold true. By definition (1.10) is a matrix
of relations of (`′,m′, n′). By hypothesis (1.20) is a matrix of mini-
mal relations of (`′,m′, n′). By (1.18) gcd(`′,m′) = d′ and hence by
Lemma 1.3.(b)

b =
`′

d′
= b′, a =

m′

d′
= a′.
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Writing the second row of (1.10) as a linear combination of (1.20) yields(
−a1 + qa −b2 − qb c

)
= p

(
−a′1 −b′2 c′

)
.

with p ∈ N and q ∩ [−b2/b, a1/a] ∩N and hence p = 1 by (1.19). The
claim follows. �

The following examples show some issues that prevent us from for-
mulating stronger statement in Proposition 1.4.(b).

Example 1.5.
(a) Take (a,−b, 0) = (3,−2, 0) and (−a1,−b2, c) = (−1,−4, 4). Then

(`′,m′, n′) = (4, 6, 7) which is in case (H2). The second minimal rela-
tion is (−2,−1, 2) = 1

2
((−a1,−b2, c)− (a,−b, 0)). The same (`′,m′, n′)

is obtained from (a, 0,−c) = (7, 0,−4) and (−a2, b,−c1) = (−1, 3,−2).
This latter satisfies (1.18) and (1.19) but (a, 0,−c) is not minimal.

(b) Take (a,−b, 0) = (4,−3, 0) and (−a1,−b2, c) = (−2,−1, 2).
Then (`′,m′, n′) = (3, 4, 5) but (a,−b, 0) is not a minimal relation. In
fact the corresponding complete intersection K[Γ] defined by the ideal
〈x3 − y4, z2 − x2y〉 is the union of two branches x = t3, y = t4, z = ±t5.

2. Deformation with constant semigroup

Let O = (O,m) be a local K-algebra with O/m ∼= K. Let F• =
{Fi | i ∈ Z} be a decreasing filtration by ideals such that Fi = O for
all i ≤ 0 and F1 ⊂ m. Consider the Rees ring

A =
⊕
i∈Z

Fis
−i ⊂ O[s±1].

It is a finite type gradedO[s]-algebra and flat (torsion free)K[s]-algebra
with retraction

A� A/A ∩m[s±1] ∼= K[s].

For u ∈ O∗ there are isomorphisms

(2.1) A/(s− u)A ∼= O, A/sA ∼= grF O.

Geometrically A defines a flat morphism with section

Spec(A)
π
// A1
K

ι
ii

with fibers over K-valued points

π−1(x) ∼= Spec(O), ι(x) = m, 0 6= x ∈ A1
K,

π−1(0) ∼= Spec(grF O), ι(0) = grF m.

Let K be an algebraically closed complete non-discretely valued field.
Let C be an irreducible K-analytic curve germ. Its ring O = OC is a
one-dimensional K-analytic domain. Denote by Γ′ its value semigroup.
Pick a representative W such that C = (W,w). We allow to shrink
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W suitably without explicit mention. Let OW be the normalization of
OW . Then

OW,w = (O,m) ∼= (K{t′}, 〈t′〉) υ
// N ∪ {∞}

is a discrete valuation ring. Denote by mW and mW the ideal sheaves
corresponding to m and m. There are decreasing filtrations by ideal
(sheaves)

F• = m•W COW , F• = F•,w = m• = υ−1[•,∞]CO.

Setting t = t′/s and identifying K ∼= OW/mW this yields a finite ex-
tension of finite type graded OW - and flat (torsion free) K[s]-algebras

(2.2) A =
⊕
i∈Z

(Fi ∩ OW )s−i ⊂
⊕
i∈Z

Fis−i = OW [s, t] = B ⊂ OW [s±1]

with retraction defined by K[s] ∼= B/(B<0 + BmW ). The stalk at w is

A = Aw =
⊕
i∈Z

(Fi ∩ O)s−i ⊂
⊕
i∈Z

Fis
−i = O[s, t] = B ⊂ O[s±1].

At w 6= w′ ∈ W the filtration Fw′ is trivial and the stalk becomes
Aw′ = OW,w′ [s±1]. The graded sheaves grF OW ⊂ grF OW are thus
supported at w and the isomorphism

grF(OW )w = grF O ∼= K[t′] ∼= K[N]

identifies

(2.3) (grF OW )w = grF O ∼= K[Γ′], Γ′ = υ(O \ {0})
with the semigroup ring K[Γ′] of O,

The analytic spectrum Specan
W (−) → W applied to finite type OW -

algebras represents the functor T 7→ HomOT
(−T ,OT ) from K-analytic

spaces over W to sets (see [Car62, Exp. 19]). Note that

Specan
W (K[s]) = Specan

{w}(K[s]) = L

is the K-analytic line. The normalization of W is

ν : W = Specan
W (OW )→ W

and B = ν∗B where B = OW [s, t]. Applying Specan
W to (2.2) yields a

diagram of K-analytic spaces (see [Zar06, Appendix])

(2.4) X = Specan
W (A)

π

&&

Specan
W (B) = Y

ρ
oo

L

ι

88

where π is flat with π ◦ ρ ◦ ι = id and

π−1(x) ∼= Specan
W (OW ) = W, ι(x) = w, 0 6= x ∈ L,

π−1(0) ∼= Specan
W (grF OW ), ι(0)↔ grF mW .
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Remark 2.1. Teissier defines X as the analytic spectrum of A over
W × L (see [Zar06, Appendix, Ch. I, §1]). This requires to interpret
the OW -algebra A as an OW×L-algebra.

Remark 2.2. In order to describe (2.4) in explicit terms, embed

L ⊃ W
ν
// W ⊂ Ln

with coordinates t′ and x = x1, . . . , xn and

X = {(x, s) | (s`1x1, . . . , s`nxn) ∈ W, s 6= 0} ⊂ Ln × L,
Y =

{
(t, s)

∣∣ t′ = st ∈ W
}
∪ L× {0} ⊂ L× L.

This yields the maps X → W ← Y . The map ρ in (2.4) becomes

ρ(t, s) = (x1(t′)/s`1 , . . . , xn(t′)/s`n)

for s 6= 0 and the fiber π−1(0) is the image of the map

ρ(t, 0) = ((ξ1(t), . . . , ξn(t)), 0), ξk(t) = lim
s→0

xk(st)/s
`k = σ(xk)(t).

Taking germs in (2.4) this yields the following.

Proposition 2.3. There is a flat morphism with section

S = (X, ι(0))
π
// (L, 0)

ι
kk

with fibers

π−1(x) ∼= (W,w) = C, ι(x) = w, 0 6= x ∈ L,
π−1(0) ∼= Specan(K[Γ′]) = C0, ι(0)↔ K[Γ′+]. �

The structure morphism factorizes through a flat morphism

X = Specan
W (A)

f

33
f̂
// (|W |,A) // W

and f̂#
ι(0) : A → OX,ι(0) induces an isomorphism of completions (see

[Car62, Exp. 19, §2, Prop. 4])

Âι(0)
∼= ÔX,ι(0).

This yields the finite extension of K-analytic domains

OS = OX,ι(0) ⊂ OY,ι(0).

We aim to describe OY,ι(0) and K-analytic algebra generators of OS. In
explicit terms OS is obtained from a presentation

I → O[x]→ A→ 0

mapping x = x1, . . . , xn to ι(0) = A ∩m[s±1] + As as

(2.5) OS = O{x}/O{x}I = O{x} ⊗O[x] A, O{x} = O⊗̂K{x}.
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Any OW -module M gives rise to an OX-module

M̃ = OX ⊗f∗A f ∗M = f̂ ∗M.

With M =Mw, its stalk at ι(0) becomes

M̃ = OS ⊗AM.

Lemma 2.4. Specan
W (B) = Specan

W
(B) and hence OY,ι(0) = K{s, t}.

Proof. By finiteness of ν (see [Car62, Exp. 19, §3, Prop. 9]),

B = ν̃∗B = B̃ = OW ⊗ν∗OW
ν∗B.

By the universal property of Specan it follows that (see [Con06, Thm. 2.2.5.(2)])

Specan
W

(B) = Specan
W

(OW ⊗ν∗OW
ν∗B)

= Specan
W

(OW )×Specan
W

(ν∗OW ) Specan
W

(ν∗B)

= W ×W×WW (Specan
W (B)×W W )

= W ×W Specan
W (B)

= Specan
W (B). �

For ξ′ =
∑

i∈N ξit
′i ∈ K[t′] with ` = υ(ξ′) denote

(2.6) ξ = ξ′/s` =
∑
i≥`

ξit
isi−` ∈ F`s−` = B`.

Lemma 2.5. Consider ξ′ = ξ′1, . . . , ξ
′
n ∈ m ∩ K[t′], define ξ by (2.6)

and ` by `i = υ(ξ′i) for i = 1, . . . , n. If Γ′ = 〈`〉, then O = K
{
ξ′
}

and

OS = K
{
ξ, s
}

.

Proof. By choice of F• there is a cartesian square

B =O[t, s] �
�

// O[s±1]

A =
⊕

i∈Z(Fi ∩ O)s−i
?�

OO

� � // O[s±1]
?�

OO

of finite type graded O-algebras. Thus ξ ∈ A ∩m[s±1] if ξ′ ∈ m ∩ k[t′].
By hypothesis and (2.3) the symbols σ(ξ′) generate the graded K-

algebra grF O. Then σ(ξ′) = σ(ξ
′
) generate grF m/ grF m2 = grF (m/m2)

and hence ξ
′

generate m/m2 over K. Then m =
〈
ξ′
〉
O by Nakayama’s

lemma and hence O = K
{
ξ′
}

by the analytic inverse function theorem.
Under the graded isomorphism (2.1) with ξ as in (2.6)

(A/As)`
·s`
// grF` O,

ξ � // σ(ξ′).
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The graded K-algebra A/sA is thus generated by ξ. Extend F• to the

graded filtration F•[s
±1] on O[s±1]. For i ≥ j,

(A/As)i = grFi Ai
·si−j

∼=
// grFi Aj.

Thus finitely many monomials in ξ, s generate any Aj/FiAj ∼= Fj/Fi
over K. With γ′ the conductor of Γ′ and i = γ′ + j, Fγ′ ⊂ m ∩ O = m
and hence Fi = Fγ′Fj ⊂ mFj. Therefore these monomials generate Aj
as O-module by Nakayama’s lemma. It follows A = O[ξ, s] as graded

K-algebra. Using O = K
{
ξ′
}

and ξ′ = ξs` then OS = K
{
ξ′, ξ, s

}
=

K
{
ξ, s
}

(see (2.5)). �

We now reverse the above construction to deform generators of a
semigroup ring. Let Γ be a numerical semigroup with conductor γ
generated by ` = `1, . . . , `n. Pick corresponding indeterminates x =
x1, . . . , xn. The weighted degree deg(−) defined by deg(x) = ` makes
K[x] a graded K-algebra and induces on K{x} a weighted order ord(−)
and initial part inp(−) . The assignment xi 7→ `i defines a presentation
of the semigroup ring of Γ (see (2.3))

K[x]/I ∼= K[Γ] ⊂ K[t′] ⊂ K{t′} = O.
The defining ideal I is generated by homogeneous binomials f = f1, . . . , fm
of weighted degrees deg(f) = d. Consider elements ξ = ξ1, . . . , ξn de-
fined by

(2.7) ξj = t`j +
∑

i≥`j+∆`j

ξj,it
isi−`j ∈ K[t, s] ⊂ O[t, s] = B

with ∆`i ∈ N \ {0} ∪ {∞} minimal. Set

δ = min {∆`}, ∆` = ∆`1, . . . ,∆`n.

With deg(t) = 1 = − deg(s) ξ defines a map of graded K-algebras
K[x, s]→ K[t, s] and a map of analytically graded K-analytic domains
K{x, s} → K{t, s} (see [SW73] for analytic gradings).

Remark 2.6. Converse to (2.6), any homogeneous ξ ∈ K{t, s} of weighted
degree ` can be written as ξ = ξ′/s` for some ξ′ ∈ K{t′}. It follows
that ξ(t, 1) = ξ′(t) ∈ K{t}.

Consider the curve germ C with K-analytic ring

(2.8) O = OC = K
{
ξ′
}
, ξ′ = ξ(t, 1),

and value semigroup Γ′ ⊃ Γ.
We now describe when (2.7) generate the flat deformation in Propo-

sition 2.3.

Proposition 2.7. The deformation (2.7) satisfies Γ′ = Γ if and only
if there is a f ′ ∈ K{x, s}m with homogeneous components such that

(2.9) f(ξ) = f ′(ξ, s)s



12 M. GRANGER AND M. SCHULZE

and ord(f ′i(x, 1)) ≥ di + min {∆`}. The flat deformation in Proposi-
tion 2.3 is then defined by

(2.10) OS = K
{
ξ, s
}

= K{x, s}/〈F 〉, F = f − f ′s.

Proof. First let Γ′ = Γ. Then Lemma 2.5 yields the first equality in
(2.10). By flatness of π in Proposition 2.3, the relations f of ξ(t, 0) = t`

lift to relations F ∈ K{x, s}m of ξ. That is, F (x, 0) = f and F (ξ, s) =
0. Since f and ξ have homogeneous components of weighted degrees

d and `, F can be written as F = f − f ′s where f ′ ∈ K{x, s}m has
homogeneous components of weighted degrees d + 1. This proves in
particular the last claim. Since fi(t

`) = 0, any term in f ′i(ξ, s)s = fi(ξ)
involves a term of the tail of ξj for some j. Such a term is divisible by
tdi+∆`j which yields the bound for ord(f ′i(x, 1)).

Conversely let f ′ with homogeneous components satisfy (2.9). Sup-
pose that there is a k′ ∈ Γ′ \ Γ. Take h ∈ K{x} of maximal weighted
order k such that υ(h(ξ′)) = k′. In particular, k < k′ and inph(t`) = 0.

Then inph ∈ I =
〈
f
〉

and inph =
∑m

i=1 qifi for some q ∈ K[x]m. Set

h′ = h−
m∑
i=1

qiFi(x, 1) = h− inph+
m∑
i=1

qif
′
i(x, 1).

Then h′(ξ′) = h(ξ′) by (2.9) and hence υ(h′(ξ′)) = k′. With (2.9)

and homogeneity of f ′ it follows that ord(h′) > k contradicting the
maximality of k. �

Remark 2.8. The proof of Proposition 2.7 shows in fact that the condi-
tion Γ′ = Γ is equivalent to the flatness of a homogeneous deformation
of the parametrization as in (2.7). These Γ-constant deformations are a
particular case of δ-constant deformations of germs of complex analytic
curves (see [Tei77, §3, Cor. 1]).

The following numerical condition yields the hypothesis of Proposi-
tion 2.7.

Lemma 2.9. If min {d}+ δ ≥ γ then Γ′ = Γ.

Proof. Any k ∈ Γ′ is of the form k = υ(p(ξ′)) for some p ∈ K{x} with

p0 = inp(p) ∈ K[x]. If p0(t`) 6= 0, then k ∈ Γ. Otherwise, p0 ∈
〈
f
〉

and

hence k ≥ min {d}+ min {`′}. The second claim follows. �

3. Set-theoretic complete intersections

We return to the special case Γ = 〈`,m, n〉 of §1. Recall Bresinsky’s
method to show that Spec(K[Γ]) is a set-theoretic complete intersection
(see [Bre79a]). Starting from the defining equations (1.6) in case (H1)
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he computes

f c1 = (xa − yb1zc2)c = xag1 ± yb1czc2c

= xag1 ± yb1cz(c2−1)c(xa1yb2 − f3)

= xa1g2 ∓ yb1cz(c2−1)cf3

≡ xa1g2 mod 〈f3〉

where g1 ∈ 〈x, z〉 and

g2 = xa−a1g1 ± yb1c+b2z(c2−1)c.

He shows that, if c2 ≥ 2, then further reducing g2 by f3 yields

g2 = xa−a1g1 ± yb1c+b2z(c2−2)c(xa1yb2 − f3)

≡ xa−a1g1 ± xa1yb1c+2b2z(c2−2)c mod 〈f3〉
≡ xa1

(
g̃1 + yb1c+2b2z(c2−2)c

)
mod 〈f3〉

≡ xa1g3 mod 〈f3〉

for some g̃1 ∈ K[x, y, z]. Iterating c2 many times yields a relation

(3.1) f c1 = qf3 + xkg, k = a1c2,

where g ≡ y`
′

mod 〈x, z〉 with `′ from (1.12). One computes that

xa1f2 = yb1f3 − zc1f1, zc2f2 = xa2f3 − yb2f1.

Bresinsky concludes that

(3.2) Z(x, z) 6⊂ Z(g, f3) ⊂ Z(f1, f3) = Z(f1, f2, f3) ∪ Z(x, z)

making Spec(K[Γ]) = Z(g, f3) a set-theoretic complete intersection.
As a particular case of (2.7) consider three elements

ξ = t` +
∑

i≥`+∆`

ξis
i−`ti,(3.3)

η = tm +
∑

i≥m+∆m

ηis
i−mti,

ζ = tn +
∑

i≥n+∆n

ζis
i−nti ∈ K[t, s].

Consider the curve germ C in (2.8) with K-analytic ring

(3.4) O = OC = K{ξ′, η′, ζ ′}, (ξ′, η′, ζ ′) = (ξ, η, ζ)(t, 1),

and value semigroup Γ′ ⊃ Γ. We aim to describe situations where
C is a set-theoretic complete intersection under the hypothesis that
Γ′ = Γ. By Proposition 2.7, (ξ, η, ζ) then generate the flat deformation
of C0 = Specan(K[Γ]) in Proposition 2.3. Let F1, F2, F3 be the defining
equations from Proposition 2.7.
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Lemma 3.1. If g in (3.1) deforms to G ∈ K{x, y, z, s} such that

(3.5) F c
1 = qF3 + xkG, G(x, y, z, 0) = g,

then

C = S ∩ Z(s− 1) = Z(G,F3, s− 1)

is a set-theoretic complete intersection.

Proof. Consider a matrix of indeterminates

M =

(
Z1 X1 Y1

Y2 Z2 X2

)
and the system of equations defined by its maximal minors

F1 = X1X2 − Y1Z2,

F2 = Y1Y2 −X2Z1,

F3 = X1Y2 − Z1Z2.

By Schap’s theorem (see [Sch77]) there is a solution with coefficients
in K{x, y, z}[[s]] that satisfies M(x, y, z, 0) = M0. Grauert’s approxi-
mation theorem (see [Gra72]) coefficients can be taken in K{x, y, z, s}.
Using the fact that M is a matrix of relations, we imitate in Bresinsky’s
argument in (3.2),

Z(G,F3) ⊂ Z(F1, F3) = Z(F1, F2, F3) ∪ Z(X1, Z2).

The K-analytic germs Z(G,F3) and Z(G,X1, Z2) are deformations of
the complete intersections Z(g, f3) and Z(g, xa1 , zc2), and are thus
of pure dimensions 2 and 1 respectively. It follows that Z(G,F3)
does not contain any component of Z(X1, Z2) and must hence equal
Z(F1, F2, F3) = S. The claim follows. �

Proposition 3.2. Set δ = min(∆`,∆m,∆n) and k = a1c2. Then the
curve germ C defined by (3.3) is a set-theoretic complete intersection
if

min(d1, d2, d3) + δ ≥ γ,

min(d1, d3) + δ ≥ γ + k`,

or, equivalently,

min(d1, d2 + k`, d3) + δ ≥ γ + k`.

Proof. By Lemma 2.9 the first inequality yields the assumption Γ′ = Γ
on (3.3). The conductor of ξkO equals γ + k` and contains (Fi −
fi)(ξ

′, η′, ζ ′), i = 1, 3, by the second inequality. This makes Fi − fi,
i = 1, 3, divisible by xk. Substituting into (3.1) yields (3.5) and by
Lemma 3.1 the claim. �
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Remark 3.3. We can permute the roles of the fi in Bresinsky’s method.
If the role of (f1, f3) is played by (f1, f2), we obtain a formula similar
to (3.1), f b1 = qf2 + xkg with k = a2b1. Instead of xk, there is a power
of y if we use instead (f2, f1) or (f2, f3) and a power of z if we use
(f3, f1) or (f3, f1). The calculations are the same. In the examples we
favor powers of x in order to minimize the conductor γ + k`.

4. Series of examples

Redefining a, b suitably, we specialize to the case where the matrix
in (1.7) is of the form

M0 =

(
z x y
yb z xa

)
.

By Proposition 1.4.(a) these define Spec(K[〈`,m, n〉]) if and only if

` = b+2, m = 2a+1, n = ab+b+1(= (a+1)`−m), gcd(`,m) = 1.

We assume that a, b ≥ 2 and b + 2 < 2a + 1 so that ` < m < n. The
maximal minors (1.6) of M0 are then

f1 = xa+1 − yz, f2 = yb+1 − xaz, f3 = z2 − xyb

with respective weighted degrees

d1 = (a+ 1)(b+ 2), d2 = (2a+ 1)(b+ 1), d3 = 2ab+ 2b+ 2

where d1 < d3 < d2. In Bresinsky’s method (3.1) with k = 1 reads

f 2
1 − y2f3 = xg, g = x2a+1 − 2xayz + yb+2.

We reduce the inequality in Proposition 3.2 to a condition on d1.

Lemma 4.1. The conductor of ξO is bounded by

γ + ` ≤ d2 −
⌊m
`

⌋
` < d3.

In particular, d2 ≥ γ + 2` and d3 > γ + `.

Proof. The subsemigroup Γ1 = 〈`,m〉 ⊂ Γ has conductor

γ1 = (`− 1)(m− 1) = 2a(b+ 1) = n+ (a− 1)`+ 1 ≥ γ.

To obtain a sharper upper bound for γ we think of Γ as obtained from
Γ1 by filling gaps of Γ1. Since 2n ≥ γ1,

Γ \ Γ1 = (n+ Γ1) \ Γ1.

The smallest elements of Γ1 are i` where i = 0, . . . ,
⌊
m
`

⌋
. By symmetry

of Γ1 (see [Kun70]) the largest elements of N \ Γ1 are

γ1 − 1− i` = n+ (a− 1− i)`, i = 0, . . . ,
⌊m
`

⌋
,



16 M. GRANGER AND M. SCHULZE

and contained in n+ Γ1 since the minimal coefficient a− 1− i is non-
negative by

a− 1−
⌊m
`

⌋
≥ a− 1− m

`
=

(a− 1)b− 3

b+ 2
> −1.

They are thus the largest elements of Γ \ Γ1. Their minimum attained
at i =

⌊
m
`

⌋
then bounds

γ ≤ γ1 − 1−
⌊m
`

⌋
`.

Substituting γ1 + `− 1 = d2 yields the first particular inequality. The
second one follows from

d2 − d3 = 2a− b− 1 = m− ` <
⌊m
`

⌋
`. �

Proof of Corollary 0.1.
(a) This follows from Lemma 2.9.
(b) By Lemma 4.1, the inequality in Proposition 3.2 simplifies to

d1 + δ ≥ γ + `. The claim follows.
(c) Suppose that

d1 + q − n ≥ γ + `

for some q > n and a, b ≥ 3. Set p = γ − 1 − `. Then n > m + ` and
Γ∩ (m+ `,m+2`) can include at most n and some multiple of `. Since
` ≥ 4 it follows that (m + `,m + 2`) contains a gap of Γ and hence
γ − 1 > `+m and p > m. Moreover (a− 1)b ≥ 4 is equivalent to

d1 + p−m ≥ γ + `.

By (b), C is a set-theoretic complete intersection.
It remains to show that C 6∼= C0. This follows from the fact that

Ω1
C0
→ K{t}dt has valuations Γ \ {0} whereas the 1-form

ω = mydx− `xdy = `(m− p)tp+`−1dt ∈ Ω1
C → K{t}dt

has valuation p+ ` = γ − 1 6∈ Γ.
�

Example 4.2. We discuss a list of special cases of Corollary 0.1.
(a) a = b = 2. The monomial curve C0 defined by (x, y, z) =

(t4, t5, t7) has conductor γ = 7. Its only admissible deformation is

(x, y, z) = (t4, t5 + st6, t7).

However this deformation is trivial and our method does not yield a
new example. To see this, we adapt a method of Zariski (see [Zar06,
Ch. III, (2.5), (2.6)]). Consider the change of coordinates

x̃ = x+
4s

5
y = t4 +

4s

5
t5 +

4s2

5
t6

and the change of parameters of the form τ = t+O(t2) such that x̃ = τ 4.
Then τ = t+ s

5
t2 +O(t3) and hence y = τ 5 +O(t7) and z = τ 7 +O(t8).

Since O(t7) lies in the conductor, it follows that C ∼= C0.



SET-THEORETIC COMPLETE INTERSECTION CURVES 17

In all other cases, Corollary 0.1 yields an infinite list of new examples.
(b) a = 3, b = 2. Consider the monomial curve C0 defined by

(x, y, z) = (t4, t7, t9). By Zariski’s method from (a) we reduce to con-
sidering the deformation

(x, y, z) = (t4, t7, t9 + st10).

While part (c) of Corollary 0.1 does not apply, C 6∼= C0 remains valid.
To see assume that C0

∼= C induced by an automorphism ϕ of C{t}.
Then ϕ(x) ∈ OC shows that ϕ has no quadratic term. This however
contradicts ϕ(z) ∈ OC .

(c) a = b = 3. The monomial curve C0 defined by (x, y, z) =
(t5, t7, t13) has conductor γ = 17. We want to satisfy p ≥ γ+`−d1+m =
9. The most general deformation of y thus reads

y = t7 + s1t
9 + s2t

11 + s3t
16.

The parameter s1 can be again eliminated by Zariski’s method as in
(a). This leaves us with the deformation

(x, y, z) = (t5, t7 + s2t
11 + s3t

16, t13 + s4t
16, t13)

which is non-trivial due to part (c) of Corollary 0.1 with p = 11.
(d) a = 8, b = 3. The monomial curve C0 defined by (x, y, z) =

(t5, t17, t28) has conductor γ = 47. The condition in part (b) of Corol-
lary 0.1 requires p ≥ γ − d1 +m = 19. In fact, the deformation

(x, y, z) = (t5, t17 + st18, t28)

is not flat since C has value semigroup Γ′ = Γ ∪ {46}. However C is
isomorphic to the general fiber of the flat deformation in 4-space

(x, y, z, w) = (t5, t17 + st18, t28, t46).
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