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We deform monomial space curves in order to construct examples of set-theoretical complete intersection space curve singularities. As a by-product we describe an inverse to Herzog's construction of minimal generators of non-complete intersection numerical semigroups with three generators.

Introduction

It is a classical problem in algebraic geometry to determine the minimal number of equations that define a variety. A lower bound for this number is the codimension and it is reached in case of set-theoretic complete intersections. Let I be an ideal in a polynomial ring or a regular analytic algebra over a field K. Then I is called a set-theoretic complete intersection if √ I = √ I for some ideal I admitting height of I many generators. The subscheme or analytic subgerm X defined by I is also called a set-theoretic complete intersection in this case. It is hard to determine whether a given X is a set-theoretic complete intersection. We address this problem in the case I ∈ Spec K{x, y, z} of irreducible analytic space curve singularities X over an algebraically closed (complete non-discretely valued) field K.

Cowsik and Nori (see [START_REF] Cowsik | Affine curves in characteristic p are set theoretic complete intersections[END_REF]) showed that over a perfect field K of positive characteristic any algebroid curve and, if K is infinite, any affine curve is a set-theoretic complete intersection. To our knowledge there is no example of an algebroid curve that is not a set-theoretic complete intersection. Over an algebraically closed field K of characteristic zero, Moh (see [START_REF] Moh | A result on the set-theoretic complete intersection problem[END_REF]) showed that an irreducible algebroid curve

K[[ξ, η, ζ]] ⊂ K[[t]
] is a set-theoretic complete intersection if the valuations , m, n = υ(ξ), υ(η), υ(ζ) satisfy (0.1) gcd( , m) = 1, < m, ( -2)m < n.

We deform monomial space curves in order to find new examples of set-theoretic complete intersection space curve singularities. Our main result in Proposition 3.2 gives sufficient numerical conditions for the deformation to preserve both the value semigroup and the set-theoretic complete intersection property. As a consequence we obtain Corollary 0.1. Let C be the irreducible curve germ defined by O C = K t , t m + t p , t n + t q ⊂ K{t} where gcd( , m) = 1, p > m, q > n and there are a, b ≥ 2 such that = b + 2, m = 2a + 1, n = ab + b + 1.

Let γ be the conductor of the semigroup Γ = , m, n and set d 1 = (a + 1)(b + 2), δ = min {p -m, q -n}. In the setup of Corollary 0.1 Moh's third condition in (0.1) becomes ab < 1 and is trivially false. Corollary 0.1 thus yields an infinite list of new examples of non-monomial set-theoretic complete intersection curve germs.

Let us explain our approach and its context in more detail. Let Γ be a numerical semigroup. Delorme (see [START_REF] Delorme | Sous-monoïdes d'intersection complète de N[END_REF]) characterized the complete intersection property of Γ by a recursive condition. The complete intersection property holds equivalently for Γ and its associated monomial curve Spec(K[Γ]) (see [START_REF] Herzog | Generators and relations of abelian semigroups and semigroup rings[END_REF]Cor. 1.13]) and is preserved under flat deformations. For this reason we deform only non-complete intersection Γ. A curve singularity inherits the complete intersection property from its value semigroup since it is a flat deformation of the corresponding monomial curve (see Proposition 2.3). The converse fails as shown by a counter-example of Herzog and Kunz (see [START_REF] Herzog | Die Wertehalbgruppe eines lokalen Rings der Dimension 1[END_REF]).

In case Γ = , m, n , Herzog (see [START_REF] Herzog | Generators and relations of abelian semigroups and semigroup rings[END_REF]) described minimal relations of the generators , m, n. There are two cases (H1) and (H2) (see §1) with 3 and 2 minimal relations respectively. In the non-complete intersection case (H2) we describe an inverse to Herzog's construction (see Proposition 1.4). Bresinsky (see [Bre79b]) showed (for arbitrary K) by an explicit calculation based on Herzog's case (H2) that any monomial space curve is a complete intersection. Our results are obtained by lifting his equations to a (flat) deformation with constant value semigroup. In section §2 we construct such deformations (see Proposition 2.3) following an approach using Rees algebras described by Teissier (see [Zar06, Appendix, Ch. I, §1]). In §3 we prove Proposition 3.2 by lifting Bresinsky's equations under the given numerical conditions. In §4 we derive Corollary 0.1 and give some explicit examples (see Example 4.2).

It is worth mentioning that Bresinsky (see [Bre79b]) showed (for arbitrary K) that all monomial Gorenstein curves in 4-space are settheoretic complete intersections.

Ideals of monomial space curves

Let , m, n ∈ N generate a semigroup Γ = , m, n ⊂ N.

d = gcd( , m).
We assume that Γ is numerical, that is, gcd( , m, n) = 1.

Let K be a field and consider the map 

ϕ : K[x, y, z] → K[t], (x, y, z) → (t , t m , t n ) whose image K[Γ] = K[t , t m , t n ] is the semigroup ring of Γ. Pick a, b, c ∈ N minimal such that a = b 1 m + c 2 n, bm = a 2 + c 1 n, cn = a 1 + b 2 m for some a 1 , a 2 , b 2 , b 2 , c 1 , c 2 ∈ N.
/ ∈ {a 1 , a 2 , b 1 , b 2 , c 1 , c 2 }. Then (1.1) a = a 1 + a 2 , b = b 1 + b 2 , c = c 1 + c 2
and the unique minimal relations of , m, n read

a -b 1 m -c 2 n = 0, (1.2) -a 2 + bm -c 1 n = 0, (1.3) -a 1 -b 2 m + cn = 0. (1.4)
Their coefficients form the rows of the matrix

(1.5)   a -b 1 -c 2 -a 2 b -c 1 -a 1 -b 2 c   . Accordingly the ideal I = f 1 , f 2 , f 3 of maximal minors (1.6) f 1 = x a -y b 1 z c 2 , f 2 = y b -x a 2 z c 1 , f 3 = x a 1 y b 2 -z c of the matrix (1.7) M 0 = z c 1 x a 1 y b 1 y b 2 z c 2 x a 2 .
equals ker ϕ, and the rows of this matrix generate the module of relations between f 1 , f 2 , f 3 . Here K[Γ] is not a complete intersection.

(H2) 0 ∈ {a 1 , a 2 , b 1 , b 2 , c 1 , c 2 }. One of the relations (a, -b, 0), (a, 0, -c), or (0, b, -c) is minimal relation of , m, n and, up to a permutation of the variables, the minimal relations are a = bm, (1.8)

a 1 + b 2 m = cn.
(1.9) Their coefficients form the rows of the matrix

(1.10) a -b 0 -a 1 -b 2 c
.

It is unique up to adding multiples of the first row to the second. Overall there are 3 cases and an overlap case described equivalently by 3 matrices

(1.11) a -b 0 a 0 c , a -b 0 0 -b c , a 0 -c 0 b -c .
Here K[Γ] is a complete intersection. In the following we describe the image of Herzog's construction and give a left inverse: Proof. The first statement holds due to minimality. By Buchberger's criterion the generators 1.6 form a Gröbner basis with respect to the reverse lexicographical ordering on x, y, z. Let g denote a normal form of g = x ˜ -z ñ with respect to 1.6. Then g ∈ I if and only if g = 0. By (1.1) reductions by f 2 can be avoided in the calculation of g. If r 2 and r 1 many reductions by f 1 and f 3 respectively are applied then Proof.

(H1') Given a 1 , a 2 , b 1 , b 2 , c 1 , c 2 ∈ N \ {0}, define a, b, c by (1.1) and set = b 1 c 1 + b 1 c 2 + b 2 c 2 = b 1 c + b 2 c 2 = b 1 c 1 + bc 2 , (1.12) m = a 1 c 1 + a 2 c 1 + a 2 c 2 = ac 1 + a 2 c 2 = a 1 c 1 + a 2 c, (1.13) n = a 1 b 1 + a 1 b 2 + a 2 b 2 = a 1 b + a 2 b 2 = a 1 b 1 + ab 2 , (1.
g = x ñ-a 1 r 1 -ar 2 y b 1 r 2 -r 1 b 2 z r 1 c+r 2 c 2 -z ˜ . and g = 0 is equivalent to ˜ = r 1 c + r 2 c 2 , b 1 r 2 = r 1 b 2 , ñ = a 1 r 1 + ar 2 . Then r i = b i gcd(b 1 ,b 2 ) for i = 1,
(a) Consider ñ, ˜ ∈ N as in Lemma 1.2. Then x ñ -z ˜ ∈ I = ker ϕ means that (t ) ñ = (t n ) ˜ and hence ñ = ˜ n. So the pair ( , n) is pro- portional to ( ˜ , ñ) which in turn is propotional to ( , n ) by Lemma 1.2.
Then the two triples ( , m, n) and ( , m , n ) are proportional by symmetry. Since gcd( , m, n) = 1 by hypothesis ( , m , n ) = q •( , m, n) for some q ∈ N. By Lemma 1.2 q divides gcd(b 1 , b 2 ) and by symmetry also gcd(a 1 , a 2 ) and gcd(c 1 , c 2 ). By minimality of the relations 

(1.2)-(1.4) gcd(a 1 , a 2 , b 1 , b 2 , c 1 , c 2 ) =
( , m , n ) is in the corresponding subcase of (H2), gcd(a, b) = 1, (1.18) ∀q ∈ ∩[-b 2 /b, a 1 /a] ∩ N : gcd(-a 1 + qa, -b 2 -qb, c) = 1. (1.19) In this case, ( , m, n) = ( , m , n ).
Proof.

(a) By Lemma 1.3.(a) e = 1 is a necessary condition. Conversely let e = 1. By definition (1.5) is a matrix of relations of ( , m , n ). Assume that ( , m , n ) is in case (H2). By symmetry we may assume that ( , m , n ) admits a matrix of minimal relations 

In particular c ≥ d . Then b 1 ≥ b contradicts (1.12) since = b 1 c + b 2 c 2 ≥ b c + b 2 c 2 > b c ≥ b d = .
We may thus assume that b 1 < b . The difference of first rows of (1.20) and (1.5) is then a relation

a -a b 1 -b c 2 of ( , m , n ) with a -a < 0, b 1 -b < 0 and c 2 > 0. Then c 2 ≥ c ≥ d by choice of c . This contradicts (1.12) since = b 1 c 1 + bc 2 ≥ b 1 c 1 + b d > b d = .
We may thus assume that ( , m , n ) is in case (H1) with a matrix of unique minimal relations

(1.21)   a -b 1 -c 2 -a 2 b -c 1 -a 1 -b 2 c   of type (1.5) where a = a 1 + a 2 , b = b 1 + b 2 , c = c 1 + c 2 .
as in (1.1). Then (a, b, c) ≥ (a , b , c ) by choice of the latter and

= b 1 c + b 2 c 2 = b 1 c 1 + b c 2 by Lemma 1.3.(a). If (a i , b i , c i ) ≥ (a i , b i , c i ) for i = 1, 2, then = b 1 c + b 2 c 2 ≥ b 1 c + b 2 c 2 = implies c = c and hence (a, b, c) = (a , b , c ) by symmetry. By unique- ness of (1.21) then (a 1 , a 2 , b 1 , b 2 , c 1 , c 2 ) = (a 1 , a 2 , b 1 , b 2 , c 1 , c 2 )
and hence the claim. By symmetry it remains to exclude the case c 2 > c 2 . The difference of first rows of (1.21) and (1.5) is then a relation 

a -a b 1 -b 1 c 2 -c 2 of ( , m , n ) with a -a ≤ 0, c 2 -c 2 < 0 and hence b 1 -b 1 ≥ b by choice of the latter. This leads to the contradiction = b 2 c 2 + b 1 c > b 1 c ≥ b c + b 1 c > b 2 c 2 + b 1 c = .
= d = b , a = m d = a .
Writing the second row of (1.10) as a linear combination of (1.20) yields

-a 1 + qa -b 2 -qb c = p -a 1 -b 2 c .
with p ∈ N and q ∩ [-b 2 /b, a 1 /a] ∩ N and hence p = 1 by (1.19). The claim follows.

The following examples show some issues that prevent us from formulating stronger statement in Proposition 1.4.(b).

Example 1.5.

(a) Take (a, -b,

0) = (3, -2, 0) and (-a 1 , -b 2 , c) = (-1, -4, 4). Then ( , m , n ) = (4, 6, 7) which is in case (H2). The second minimal rela- tion is (-2, -1, 2) = 1 2 ((-a 1 , -b 2 , c) -(a, -b, 0)).
The same ( , m , n ) is obtained from (a, 0, -c) = (7, 0, -4) and (-a 2 , b, -c 1 ) = (-1, 3, -2). This latter satisfies (1.18) and (1.19) but (a, 0, -c) is not minimal.

(b) Take (a, -b, 0) = (4, -3, 0) and (-a 1 , -b 2 , c) = (-2, -1, 2). Then ( , m , n ) = (3, 4, 5) but (a, -b, 0) is not a minimal relation. In fact the corresponding complete intersection K[Γ] defined by the ideal x 3 -y 4 , z 2 -x 2 y is the union of two branches x = t 3 , y = t 4 , z = ±t 5 . 

Deformation with constant semigroup

Let O = (O, m) be a local K-algebra with O/m ∼ = K. Let F • = {F i | i ∈ Z}
A = i∈Z F i s -i ⊂ O[s ±1 ].

It is a finite type graded O[s]-algebra and flat (torsion free) K[s]-algebra with retraction

A A/A ∩ m[s ±1 ] ∼ = K[s].
For u ∈ O * there are isomorphisms

(2.1) A/(s -u)A ∼ = O, A/sA ∼ = gr F O.
Geometrically A defines a flat morphism with section

Spec(A) π / / A 1 K ι i i
with fibers over K-valued points 

π -1 (x) ∼ = Spec(O), ι(x) = m, 0 = x ∈ A 1 K , π -1 (0) ∼ = Spec(gr F O), ι(0) = gr F m.
F • = m • W O W , F • = F •,w = m • = υ -1 [•, ∞] O.
Setting t = t /s and identifying K ∼ = O W /m W this yields a finite extension of finite type graded O W -and flat (torsion free) K[s]-algebras

(2.2) A = i∈Z (F i ∩ O W )s -i ⊂ i∈Z F i s -i = O W [s, t] = B ⊂ O W [s ±1 ]
with retraction defined by K[s] ∼ = B/(B <0 + Bm W ). The stalk at w is

A = A w = i∈Z (F i ∩ O)s -i ⊂ i∈Z F i s -i = O[s, t] = B ⊂ O[s ±1 ].
At w = w ∈ W the filtration F w is trivial and the stalk becomes

A w = O W,w [s ± 1].
The graded sheaves gr F O W ⊂ gr F O W are thus supported at w and the isomorphism gr

F (O W ) w = gr F O ∼ = K[t ] ∼ = K[N] identifies (2.3) (gr F O W ) w = gr F O ∼ = K[Γ ], Γ = υ(O \ {0}) with the semigroup ring K[Γ ] of O,
The analytic spectrum Spec an W (-) → W applied to finite type O Walgebras represents the functor T → Hom O T (-T , O T ) from K-analytic spaces over W to sets (see [START_REF] Henri | Familles d'espaces complexes et fondements de la géométrie analytique[END_REF]Exp. 19]). Note that

Spec an W (K[s]) = Spec an {w} (K[s]) = L is the K-analytic line. The normalization of W is ν : W = Spec an W (O W ) → W and B = ν * B where B = O W [s, t]. Applying Spec an W to (2.2) yields a diagram of K-analytic spaces (see [Zar06, Appendix]) (2.4) X = Spec an W (A) π & & Spec an W (B) = Y ρ o o L ι 8 8
where π is flat with π • ρ • ι = id and

π -1 (x) ∼ = Spec an W (O W ) = W, ι(x) = w, 0 = x ∈ L, π -1 (0) ∼ = Spec an W (gr F O W ), ι(0) ↔ gr F m W .
Remark 2.1. Teissier defines X as the analytic spectrum of A over W × L (see [Zar06, Appendix, Ch. I, §1]). This requires to interpret the O W -algebra A as an O W ×L -algebra.

Remark 2.2. In order to describe (2.4) in explicit terms, embed

L ⊃ W ν / / W ⊂ L n
with coordinates t and x = x 1 , . . . , x n and

X = {(x, s) | (s 1 x 1 , . . . , s n x n ) ∈ W, s = 0} ⊂ L n × L, Y = (t, s) t = st ∈ W ∪ L × {0} ⊂ L × L.
This yields the maps X → W ← Y . The map ρ in (2.4) becomes ρ(t, s) = (x 1 (t )/s 1 , . . . , x n (t )/s n ) for s = 0 and the fiber π -1 (0) is the image of the map

ρ(t, 0) = ((ξ 1 (t), . . . , ξ n (t)), 0), ξ k (t) = lim s→0 x k (st)/s k = σ(x k )(t).
Taking germs in (2.4) this yields the following.

Proposition 2.3. There is a flat morphism with section

S = (X, ι(0)) π / / (L, 0) ι k k with fibers π -1 (x) ∼ = (W, w) = C, ι(x) = w, 0 = x ∈ L, π -1 (0) ∼ = Spec an (K[Γ ]) = C 0 , ι(0) ↔ K[Γ + ].
The structure morphism factorizes through a flat morphism

X = Spec an W (A) f 3 3 f / / (|W |, A) / / W and f # ι(0) : A → O X,ι(0) induces an isomorphism of completions (see [Car62, Exp. 19, §2, Prop. 4]) A ι(0) ∼ = O X,ι(0) .

This yields the finite extension of K-analytic domains

O S = O X,ι(0) ⊂ O Y,ι(0) .
We aim to describe O Y,ι(0) and K-analytic algebra generators of O S . In explicit terms O S is obtained from a presentation

I → O[x] → A → 0 mapping x = x 1 , . . . , x n to ι(0) = A ∩ m[s ±1 ] + As as (2.5) O S = O{x}/O{x}I = O{x} ⊗ O[x] A, O{x} = O ⊗K{x}.
The graded K-algebra A/sA is thus generated by ξ. Extend F • to the graded filtration F

• [s ±1 ] on O[s ±1 ]. For i ≥ j, (A/As) i = gr F i A i •s i-j ∼ = / / gr F i A j .
Thus finitely many monomials in ξ, s generate any A j /F i A j ∼ = F j /F i over K. With γ the conductor of Γ and i = γ + j, F γ ⊂ m ∩ O = m and hence F i = F γ F j ⊂ mF j . Therefore these monomials generate A j as O-module by Nakayama's lemma. It follows

A = O[ξ, s] as graded K-algebra. Using O = K ξ and ξ = ξs then O S = K ξ , ξ, s = K ξ, s (see (2.5)).
We now reverse the above construction to deform generators of a semigroup ring. Let Γ be a numerical semigroup with conductor γ generated by = 1 , . . . , n . Pick corresponding indeterminates x = x 1 , . . . , x n . The weighted degree deg(-) defined by deg(x) = makes K[x] a graded K-algebra and induces on K{x} a weighted order ord(-) and initial part inp(-) . The assignment x i → i defines a presentation of the semigroup ring of Γ (see (2.3))

K[x]/I ∼ = K[Γ] ⊂ K[t ] ⊂ K{t } = O.
The defining ideal I is generated by homogeneous binomials f = f 1 , . . . , f m of weighted degrees deg(f ) = d. Consider elements ξ = ξ 1 , . . . , ξ n defined by (2.7)

ξ j = t j + i≥ j +∆ j ξ j,i t i s i-j ∈ K[t, s] ⊂ O[t, s] = B with ∆ i ∈ N \ {0} ∪ {∞} minimal. Set δ = min {∆ }, ∆ = ∆ 1 , . . . , ∆ n .
With deg(t) = 1 = -deg(s) ξ defines a map of graded K-algebras K[x, s] → K[t, s] and a map of analytically graded K-analytic domains K{x, s} → K{t, s} (see [SW73] for analytic gradings).

Remark 2.6. Converse to (2.6), any homogeneous ξ ∈ K{t, s} of weighted degree can be written as ξ = ξ /s for some ξ ∈ K{t }. It follows that ξ(t, 1) = ξ (t) ∈ K{t}.

Consider the curve germ C with K-analytic ring 

(2.8) O = O C = K ξ , ξ = ξ(t,
O S = K ξ, s = K{x, s}/ F , F = f -f s.
Proof. First let Γ = Γ. Then Lemma 2.5 yields the first equality in (2.10). By flatness of π in Proposition 2.3, the relations f of ξ(t, 0) = t lift to relations F ∈ K{x, s} m of ξ. That is, F (x, 0) = f and F (ξ, s) = 0. Since f and ξ have homogeneous components of weighted degrees d and , F can be written as F = f -f s where f ∈ K{x, s} m has homogeneous components of weighted degrees d + 1. This proves in particular the last claim. Since f i (t ) = 0, any term in f i (ξ, s)s = f i (ξ) involves a term of the tail of ξ j for some j. Such a term is divisible by t d i +∆ j which yields the bound for ord(f i (x, 1)).

Conversely let f with homogeneous components satisfy (2.9). Suppose that there is a k ∈ Γ \ Γ. Take h ∈ K{x} of maximal weighted order k such that υ(h(ξ )) = k . In particular, k < k and inp h(t

) = 0. Then inp h ∈ I = f and inp h = m i=1 q i f i for some q ∈ K[x] m . Set h = h - m i=1 q i F i (x, 1) = h -inp h + m i=1 q i f i (x, 1).
Then h (ξ ) = h(ξ ) by (2.9) and hence υ(h (ξ )) = k . With (2.9) and homogeneity of f it follows that ord(h ) > k contradicting the maximality of k.

Remark 2.8. The proof of Proposition 2.7 shows in fact that the condition Γ = Γ is equivalent to the flatness of a homogeneous deformation of the parametrization as in (2.7). These Γ-constant deformations are a particular case of δ-constant deformations of germs of complex analytic curves (see [Tei77, §3, Cor. 1]).

The following numerical condition yields the hypothesis of Proposition 2.7. Lemma 2.9.

If min {d} + δ ≥ γ then Γ = Γ. Proof. Any k ∈ Γ is of the form k = υ(p(ξ )) for some p ∈ K{x} with p 0 = inp(p) ∈ K[x]. If p 0 (t ) = 0, then k ∈ Γ. Otherwise, p 0 ∈ f and hence k ≥ min {d} + min { }.
The second claim follows.

Set-theoretic complete intersections

We return to the special case Γ = , m, n of §1. Recall Bresinsky's method to show that Spec(K[Γ]) is a set-theoretic complete intersection (see [Bre79a]). Starting from the defining equations (1.6) in case (H1) he computes

f c 1 = (x a -y b 1 z c 2 ) c = x a g 1 ± y b 1 c z c 2 c = x a g 1 ± y b 1 c z (c 2 -1)c (x a 1 y b 2 -f 3 ) = x a 1 g 2 ∓ y b 1 c z (c 2 -1)c f 3 ≡ x a 1 g 2 mod f 3
where g 1 ∈ x, z and

g 2 = x a-a 1 g 1 ± y b 1 c+b 2 z (c 2 -1)c .
He shows that, if c 2 ≥ 2, then further reducing g 2 by f 3 yields

g 2 = x a-a 1 g 1 ± y b 1 c+b 2 z (c 2 -2)c (x a 1 y b 2 -f 3 ) ≡ x a-a 1 g 1 ± x a 1 y b 1 c+2b 2 z (c 2 -2)c mod f 3 ≡ x a 1 g1 + y b 1 c+2b 2 z (c 2 -2)c mod f 3 ≡ x a 1 g 3 mod f 3 for some g1 ∈ K[x, y, z]. Iterating c 2 many times yields a relation (3.1) f c 1 = qf 3 + x k g, k = a 1 c 2
, where g ≡ y mod x, z with from (1.12). One computes that

x a 1 f 2 = y b 1 f 3 -z c 1 f 1 , z c 2 f 2 = x a 2 f 3 -y b 2 f 1 . Bresinsky concludes that (3.2) Z(x, z) ⊂ Z(g, f 3 ) ⊂ Z(f 1 , f 3 ) = Z(f 1 , f 2 , f 3 ) ∪ Z(x, z) making Spec(K[Γ]) = Z(g, f 3 ) a set-theoretic complete intersection.
As a particular case of (2.7) consider three elements 

ξ = t + i≥ +∆ ξ i s i-t i , (3.3) η = t m + i≥m+∆m η i s i-m t i , ζ = t n + i≥n+∆n ζ i s i-n t i ∈ K[t, s].
(3.5) F c 1 = qF 3 + x k G, G(x, y, z, 0) = g, then C = S ∩ Z(s -1) = Z(G, F 3 , s -1)
is a set-theoretic complete intersection.

Proof. Consider a matrix of indeterminates

M = Z 1 X 1 Y 1 Y 2 Z 2 X 2
and the system of equations defined by its maximal minors

F 1 = X 1 X 2 -Y 1 Z 2 , F 2 = Y 1 Y 2 -X 2 Z 1 , F 3 = X 1 Y 2 -Z 1 Z 2 .
By Schap's theorem (see [START_REF] Schaps | Deformations of Cohen-Macaulay schemes of codimension 2 and non-singular deformations of space curves[END_REF]) there is a solution with coefficients in K{x, y, z} [[s]] that satisfies M (x, y, z, 0) = M 0 . Grauert's approximation theorem (see [Gra72]) coefficients can be taken in K{x, y, z, s}.

Using the fact that M is a matrix of relations, we imitate in Bresinsky's argument in (3.2),

Z(G, F 3 ) ⊂ Z(F 1 , F 3 ) = Z(F 1 , F 2 , F 3 ) ∪ Z(X 1 , Z 2 ).
The K-analytic germs Z(G, F 3 ) and Z(G, X 1 , Z 2 ) are deformations of the complete intersections Z(g, f 3 ) and Z(g, x a 1 , z c 2 ), and are thus of pure dimensions 2 and 1 respectively. It follows that Z(G, F 3 ) does not contain any component of Z(X 1 , Z 2 ) and must hence equal Z(F 1 , F 2 , F 3 ) = S. The claim follows.

Proposition 3.2. Set δ = min(∆ , ∆m, ∆n) and k = a 1 c 2 . Then the curve germ C defined by (3.3) is a set-theoretic complete intersection if

min(d 1 , d 2 , d 3 ) + δ ≥ γ, min(d 1 , d 3 ) + δ ≥ γ + k ,
or, equivalently,

min(d 1 , d 2 + k , d 3 ) + δ ≥ γ + k .
Proof. By Lemma 2.9 the first inequality yields the assumption Γ = Γ on (3.3). The conductor of ξ k O equals γ + k and contains (F if i )(ξ , η , ζ ), i = 1, 3, by the second inequality. This makes F i -f i , i = 1, 3, divisible by x k . Substituting into (3.1) yields (3.5) and by Lemma 3.1 the claim.

Remark 3.3. We can permute the roles of the f i in Bresinsky's method.

If the role of (f 1 , f 3 ) is played by (f 1 , f 2 ), we obtain a formula similar to (3.1), f b 1 = qf 2 + x k g with k = a 2 b 1 . Instead of x k , there is a power of y if we use instead (f 2 , f 1 ) or (f 2 , f 3 ) and a power of z if we use (f 3 , f 1 ) or (f 3 , f 1 ). The calculations are the same. In the examples we favor powers of x in order to minimize the conductor γ + k . We assume that a, b ≥ 2 and b + 2 < 2a + 1 so that < m < n. The maximal minors (1.6) of M 0 are then

Series of examples

f 1 = x a+1 -yz, f 2 = y b+1 -x a z, f 3 = z 2 -xy b
with respective weighted degrees

d 1 = (a + 1)(b + 2), d 2 = (2a + 1)(b + 1), d 3 = 2ab + 2b + 2
where d 1 < d 3 < d 2 . In Bresinsky's method (3.1) with k = 1 reads f 2 1 -y 2 f 3 = xg, g = x 2a+1 -2x a yz + y b+2 . We reduce the inequality in Proposition 3.2 to a condition on d 1 .

Lemma 4.1. The conductor of ξO is bounded by

γ + ≤ d 2 - m < d 3 .
In particular, d 2 ≥ γ + 2 and d 3 > γ + .

Proof. The subsemigroup Γ 1 = , m ⊂ Γ has conductor

γ 1 = ( -1)(m -1) = 2a(b + 1) = n + (a -1) + 1 ≥ γ.
To obtain a sharper upper bound for γ we think of Γ as obtained from Γ 1 by filling gaps of Γ

1 . Since 2n ≥ γ 1 , Γ \ Γ 1 = (n + Γ 1 ) \ Γ 1 .
The smallest elements of Γ 1 are i where i = 0, . . . , m . By symmetry of Γ 1 (see [Kun70]) the largest elements of N \ Γ 1 are

γ 1 -1 -i = n + (a -1 -i) , i = 0, . . . , m ,
and contained in n + Γ 1 since the minimal coefficient a -1 -i is nonnegative by

a -1 - m ≥ a -1 - m = (a -1)b -3 b + 2 > -1.
They are thus the largest elements of Γ \ Γ 1 . Their minimum attained at i = m then bounds

γ ≤ γ 1 -1 - m .
Substituting γ 1 + -1 = d 2 yields the first particular inequality. The second one follows from

d 2 -d 3 = 2a -b -1 = m -< m .
Proof of Corollary 0.1.

(a) This follows from Lemma 2.9. (b) By Lemma 4.1, the inequality in Proposition 3.2 simplifies to d 1 + δ ≥ γ + . The claim follows.

(c) Suppose that d 1 + q -n ≥ γ + for some q > n and a, b ≥ 3. Set p = γ -1 -. Then n > m + and Γ ∩ (m + , m + 2 ) can include at most n and some multiple of . Since ≥ 4 it follows that (m + , m + 2 ) contains a gap of Γ and hence γ -1 > + m and p > m. Moreover (a -1)b ≥ 4 is equivalent to Example 4.2. We discuss a list of special cases of Corollary 0.1.

d 1 + p -m ≥ γ + .
(a) a = b = 2. The monomial curve C 0 defined by (x, y, z) = (t 4 , t 5 , t 7 ) has conductor γ = 7. Its only admissible deformation is (x, y, z) = (t 4 , t 5 + st 6 , t 7 ). However this deformation is trivial and our method does not yield a new example. To see this, we adapt a method of Zariski (see [Zar06, Ch. III, (2.5), (2.6)]). Consider the change of coordinates x = x + 4s 5 y = t 4 + 4s 5 t 5 + 4s 2 5 t 6

and the change of parameters of the form τ = t+O(t 2 ) such that x = τ 4 . Then τ = t + s 5 t 2 + O(t 3 ) and hence y = τ 5 + O(t 7 ) and z = τ 7 + O(t 8 ). Since O(t 7 ) lies in the conductor, it follows that C ∼ = C 0 . In all other cases, Corollary 0.1 yields an infinite list of new examples. (b) a = 3, b = 2. Consider the monomial curve C 0 defined by (x, y, z) = (t 4 , t 7 , t 9 ). By Zariski's method from (a) we reduce to considering the deformation (x, y, z) = (t 4 , t 7 , t 9 + st 10 ). (c) a = b = 3. The monomial curve C 0 defined by (x, y, z) = (t 5 , t 7 , t 13 ) has conductor γ = 17. We want to satisfy p ≥ γ+ -d 1 +m = 9. The most general deformation of y thus reads y = t 7 + s 1 t 9 + s 2 t 11 + s 3 t 16 .

The parameter s 1 can be again eliminated by Zariski's method as in (a). This leaves us with the deformation (x, y, z) = (t 5 , t 7 + s 2 t 11 + s 3 t 16 , t 13 + s 4 t 16 , t 13 ) which is non-trivial due to part (c) of Corollary 0.1 with p = 11.

(d) a = 8, b = 3. The monomial curve C 0 defined by (x, y, z) = (t 5 , t 17 , t 28 ) has conductor γ = 47. The condition in part (b) of Corollary 0.1 requires p ≥ γ -d 1 + m = 19. In fact, the deformation (x, y, z) = (t 5 , t 17 + st 18 , t 28 ) is not flat since C has value semigroup Γ = Γ ∪ {46}. However C is isomorphic to the general fiber of the flat deformation in 4-space (x, y, z, w) = (t 5 , t 17 + st 18 , t 28 , t 46 ).

  (a) If d 1 + δ ≥ γ, then Γ is the value semigroup of C. (b) If d 1 + δ ≥ γ + , then C is a set-theoretic complete intersection. (c) If a, b ≥ 3 and d 1 + q -n ≥ γ + , then C defined by p := γ -1 -> mis a non-monomial set-theoretic complete intersection.

  14) and e = gcd( , m , n ). Note that , m , n are the submaximal minors of the matrix in (1.5). (H2') Given a, b, c ∈ N \ {0} and a 1 , b 2 ∈ N, define , m , n , d by = bd , (1.15) m = ad , (1.16) n d = a 1 b + ab 2 c , gcd(n , d ) = 1. (1.17) Remark 1.1. In the overlap case (1.11) the formulas (1.15)-(1.16) yield ( , m , n ) = (bc, ac, ab). Lemma 1.2. In case (H1), let ñ ∈ N be minimal with x ñ -z ˜ ∈ I for some ˜ ∈ N. Then gcd( ˜ , ñ) = 1 and (ñ, ˜ ) • gcd(b 1 , b 2 ) = (n , ).

  2 and the claim follows. Lemma 1.3. (a) In case (H1), equations (1.12)-(1.14) recover , m, n. (b) In case (H2), equations (1.15)-(1.17) recover , m, n, d.

  1 and hence q = 1. The claim follows. (b) By the minimal relation (1.8) gcd(a, b) = 1 and hence ( , m) = d • (b, a). Substitution into equation (1.9) and comparison with (1.17) gives n d = a 1 b+ab 2 c = n d with gcd(n, d) = gcd( , m, n) = 1 by hypothesis. We deduce that (n, d) = (n , d ) and then ( , m) = ( , m ). Proposition 1.4. (a) In case (H1'), a 1 , a 2 , b 1 , b 2 , c 1 , c 2 arise through (H1) from some numerical semigroup Γ = , m, n if and only if e = 1. In this case, ( , m, n) = ( , m , n ). (b) In case (H2'), a, b, c, a 1 , b 2 arise through (H2) from some from some numerical semigroup Γ = , m, n if and only if

  -b 2 c of type (1.10). By choice of a , b , c it follows that a > a , b > b , c ≥ c . By Lemma 1.3.(b) d is the denominator of a 1 b +a b 2 c and = b d .

  (b) By Lemma 1.3.(b) the conditions are necessary. Conversely assume that the conditions hold true. By definition (1.10) is a matrix of relations of ( , m , n ). By hypothesis (1.20) is a matrix of minimal relations of ( , m , n ). By (1.18) gcd( , m ) = d and hence by Lemma 1.3.(b) b

  be a decreasing filtration by ideals such that F i = O for all i ≤ 0 and F 1 ⊂ m. Consider the Rees ring

Let

  K be an algebraically closed complete non-discretely valued field. Let C be an irreducible K-analytic curve germ. Its ring O = O C is a one-dimensional K-analytic domain. Denote by Γ its value semigroup. Pick a representative W such that C = (W, w). We allow to shrink W suitably without explicit mention. Let O W be the normalization of O W . Then O W,w = (O, m) ∼ = (K{t }, t ) υ / / N ∪ {∞} is a discrete valuation ring. Denote by m W and m W the ideal sheaves corresponding to m and m. There are decreasing filtrations by ideal (sheaves)

  Consider the curve germ C in (2.8) with K-analytic ring(3.4) O = O C = K{ξ , η , ζ }, (ξ , η , ζ ) = (ξ, η, ζ)(t,1), and value semigroup Γ ⊃ Γ. We aim to describe situations where C is a set-theoretic complete intersection under the hypothesis that Γ = Γ. By Proposition 2.7, (ξ, η, ζ) then generate the flat deformation of C 0 = Spec an (K[Γ]) in Proposition 2.3. Let F 1 , F 2 , F 3 be the defining equations from Proposition 2.7. Lemma 3.1. If g in (3.1) deforms to G ∈ K{x, y, z, s} such that

  Redefining a, b suitably, we specialize to the case where the matrix in (1.7) is of the formM 0 = z xy y b z x a . By Proposition 1.4.(a) these define Spec(K[ , m, n ]) if and only if = b+2, m = 2a+1, n = ab+b+1(= (a+1) -m), gcd( , m) = 1.

  By (b), C is a set-theoretic complete intersection.It remains to show that C ∼ = C 0 . This follows from the fact thatΩ 1 C 0 → K{t}dt has valuations Γ \ {0} whereas the 1-form ω = mydx -xdy = (m -p)t p+ -1 dt ∈ Ω 1 C → K{t}dt has valuation p + = γ -1 ∈ Γ.

  While part (c) of Corollary 0.1 does not apply, C ∼ = C 0 remains valid. To see assume that C 0 ∼ = C induced by an automorphism ϕ of C{t}. Then ϕ(x) ∈ O C shows that ϕ has no quadratic term. This however contradicts ϕ(z) ∈ O C .

  The deformation (2.7) satisfies Γ = Γ if and only if there is a f ∈ K{x, s} m with homogeneous components such that

	and ord(f i (x, 1)) ≥ d i + min {∆ }. The flat deformation in Proposi-
	tion 2.3 is then defined by	
	(2.10)	
		1),
	and value semigroup Γ ⊃ Γ.
	We now describe when (2.7) generate the flat deformation in Propo-
	sition 2.3.	
	Proposition 2.7. (2.9)	f (ξ) = f (ξ, s)s

Any O W -module M gives rise to an O X -module

With M = M w , its stalk at ι(0) becomes

Lemma 2.4. Spec an W (B) = Spec an W (B) and hence O Y,ι(0) = K{s, t}. Proof. By finiteness of ν (see [START_REF] Henri | Familles d'espaces complexes et fondements de la géométrie analytique[END_REF]Exp. 19, §3, Prop. 9]),

By the universal property of Spec an it follows that (see [Con06, Thm. 2.2.5.(2)]) Proof. By choice of F • there is a cartesian square

By hypothesis and (2.3) the symbols σ(ξ ) generate the graded Kalgebra gr F O. Then σ(ξ ) = σ(ξ ) generate gr F m/ gr F m 2 = gr F (m/m 2 ) and hence ξ generate m/m 2 over K. Then m = ξ O by Nakayama's lemma and hence O = K ξ by the analytic inverse function theorem.

Under the graded isomorphism (2.1) with ξ as in (2.6) (A/As)