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Texture Based Approach to Puzzle Assembly Mahmut ¥amil SaÏiroÏlu, Aytül Erçil, Can Özmen, Selim Balc¬soy

TEXTURE BASED APPROACH TO PUZZLE ASSEMBLY

Abstract : The puzzle assembly problem has many
application areas such as restoration and reconstruction of
archeological findings, repairing of broken objects, solving
jigsaw type puzzles, molecular docking problem, etc.. This
paper presents a new approach to the puzzle assembly
problem that is based on using textural features and
geometrical constraints. The texture of a band outside the
border of pieces
is predicted by inpainting and texture synthesis methods. The
confidence of this process is also defined. Feature values are
derived from these original and predicted images of pieces. A
combination of the feature and confidence values is used to
generate an affinity measure of corresponding pieces. The
optimization of total affinity gives the best assembly of the
puzzle.
Experimental results are presented as real and artificial data.
An application, V-Stitch is also developed, with the purpose of
providing a real-time virtual reality software system with an
intuitive interface for using semi-automatic algorithms
developed for the arrangement of archeological sherds.

Keywords : archeological reconstruction — partial
matching — puzzle problem — inpainting — texture
synthesis.

1 Introduction
In archaeological sites, we may encounter a large number of
irregular fragments resulting from one or several broken
objects. The reconstruction of the original object is a tedious
and laborious task. In this paper, we consider the complex
problem of automatically assembling 2D/3D objects, from
their fragments, using input from multiple cameras or a 3-D
scanning system with synchronized texture facility.
Previous works on the assembly problem have focused mainly
on the geometrical properties of the pieces. The puzzle pieces
are represented by their boundary curves. As the fractions of
boundaries are adjacent and thus similar, a pairwise affinity

measure is computed by partial curve matching. Some
approaches especially related to standard toy-store jigsaw
puzzle solvers use feature based matching methods. The
problem of jigsaw puzzle solving is a reduced and restricted
version of the general assembly problem. Its computerized
solution was first introduced by Freeman [1], who successfully
solved a 9-piece jigsaw puzzle. Other works [2, 3, 4, 5] also use
feature based matching approaches. These methods are
relatively fast so that they manage to assemble even if the
number of puzzle pieces becomes large. The main drawback
of this approach is that they cannot provide detailed matching
of boundaries and overlapping regions. Research involving
classical jigsaw puzzles has so far ignored texture or color
information in the assembly problem. There are a few
approaches, which use only the color values of pixels on the
boundary contour [4].
More general partial curve matching algorithms that solve the
global 2D and 3D assembly problems based on geometrical
properties were presented in [6, 7, 8]. The problem of 3D curves
is addressed by [9]. The accuracy of the matching technique
depends on the perfect extraction of the trace of a curve and
the computation of the curvature and torsion. It is potentially
a non-robust process and has only been tested on artificial
data. Another research paper [10] matches 2D and 3D break
curves by combining a coarse-scale representation of curves,
refined iteratively via a fine-scale elastic matching. The works
that achieved, a global assembly of pieces based on curve
matching have not attempted to combine the geometrical
methods with textural information.
There is great scientific interest in the archaeological
community in reconstructing objects from fragments. An
automatic tool that assists archeologists in reconstructing
monuments or smaller fragments would be highly beneficial.
Such a tool would lead to avoiding unnecessary manual
experimentation with fragile and often heavy fragments, and
reduce the assembly time. Currently, the Digital Michelangelo
team is tackling the problem of assembling the Forma Urbis 
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Romae [11]. It is a marble map of ancient Rome that has more
than a thousand fragments. Their investigation is based on
broken surface border curves, possibly texture patterns, and
additional features of the fragments. The University of Athens
has developed “The Virtual Archaeologist” [12] system,
relying on the broken surface morphology to determine
correct matches between fragments. This method detects
candidate fractured faces, matches fragments one by one and
assembles fragments into complete or partially complete
entities. The Shape Lab at Brown University presents an
approach to the automatic estimation of mathematical models
of axially symmetric pots made on a wheel [13]. This technique
is based on matching break-curves, estimated axis and profile
curves, a number of features of groups of break-curves.
Finally, the assembly problem is solved by a maximum
likelihood performance-based search. At the Technical
University of Vienna, a fully automated approach to pottery
reconstruction based on the of fragments profile, is given.[14]

Neglecting continuity of color and texture for adjacent
fragments is a waste of valuable information in many cases.
The pictorial information on a fragment consists of various
components, and different specifications of surface image of
pieces are dominant according to the implementation field. In
the classical jigsaw puzzles, the essentials of assembly depend
on the alignments of object edges (e.g. picture of a house), the
similarity of colors (e.g. cloud drawing) and the continuity of
textural properties (e.g. grass of a garden) for the adjacent
pieces. In the archeological field, the pictorial features may
include highly directional marble veining, the pattern of
surface incisions, painting on the outer and inner surfaces,
carvings and horizontal circles due to finger smoothing while
the pot is spinning on the wheel.
In archeology, erosion, impact damages or undesired events
cause fragments to vanish or deteriorate. This reality increases
the necessity of pictorial information to solve the
reconstruction of all types of puzzles, because the geometrical
approaches relying on exact matching of break curves are not
applicable to the assembly of the pieces, if the border of
fragments have disappeared. The texture prediction method
can manage to estimate possible adjacent fragments, even if
there is a gap caused by erosion between two neighboring
pieces.
In this paper, we shall design a texture prediction algorithm,
which predicts the pixel values in a band outside the border of
the pieces with a confidence measure. Features obtained from
the predicted texture outside a piece are correlated with
original pictorial specifications of possible neighboring pairs.
An affinity measure of corresponding pieces that utilizes all
kind of image information, such as continuity of edges,
textural patterns, and color similarities is defined and the
assembly problem is stated as the optimization of this affinity
measure.
The rest of this paper is organized as follows: Section 2
outlines the method used in solving the assembly problem,
Section 3 presents image inpainting and texture synthesis
methods that are used in predicting the expanded part of the

pieces. The cost function/affinity measure used in the
assembly process is explained in Section 4. Experimental
results are given in Section 5. The final Section 6 presents a
Virtual Reality application for a natural interaction of users
with the system.

2 Automated puzzle assembly method
Our proposed approach is based on defining a performance
measure that represents the appropriateness of the assembly
based on textural features and geometrical shape, and to find
best transformations of pieces that maximize the matching of
textures of fragments while the geometrical constraints are
being satisfied. After the collection of visual data, the first step
is the prediction of the pixel values in a band around the
border of the piece; this step is applied to all pieces separately.
The prediction algorithm automatically fills in this extension
region using information in the central part. The main idea in
extending the picture/texture on the fragment outwards is that
the correlation between the features of the predicted region
and its true neighboring piece is significantly higher than
alternative pairings. We use the mixture of inpainting and
texture synthesis methods for prediction. Image inpainting is
the process of filling in missing data in a designated part of an
image or a video from the surrounding area, and texture
synthesis is to create a new image with the same seed texture
but of different shape to a sample region. While extending the
fragment image, we introduce confidence of extension as a
new parameter in the prediction phase of the assembly
problem. This parameter represents the reliability of extended
values and will be used by later processes. The confidence
depends on the structure of the texture such as continuity of
edges, roughness of texture and distance to the border of the
original fragment. We then derive feature values from both the
original fragment and the extended region. The proposed
approach does not bound the number of features or does not
restrict the type of image features. Any textural feature
believed to improve the success of assembly can be easily
inserted into the process. The next step is to determine a
similarity or a cost function between two textural regions. The
final goal of the proposed approach is to establish an affinity
measure of corresponding pieces by the combination of the
feature and confidence values. The matching of pieces and
achievement of the assembly is established by optimizing this
affinity measure. To improve the assembly, we have to be able
to sense whether a particular arrangement of pieces improves
the puzzle or not; this is done using a total affinity measure
defined as the sum of affinity measures of all points in the
space. The space may be 2D such as for the broken marble
problem or 3D such as for the pot assembly problem. In this
paper, we shall present results on 2D examples. The extension
of the proposed method to 3D is computationally costlier, but
is theoretically possible.

3 Inpainting and texture synthesis for expanding the pieces
As mentioned in section 2, the first step in the assembly
process is the expansion of each piece into a band around the
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border of the piece by predicting the pictorial information on 
the surface outwards. Inpainting and texture synthesis are two
techniques that will be used to carry out this task.
Image inpainting refers to the process of filling-in the missing
areas. It is usually applied to the task of restoring photographs,
films or paintings, and the removal of occlusions, such as
subtitles, stamps and text. In [15, 16], a series of partial
differential equations is used to mathematically model this
process. These techniques determine how the linear structures
(called isophotes) propagate into the region to be inpainted.
Other inpainting approaches are the Total variational (TV) and
Curvature-drive diffusion models (CCD)[17]. TV uses an
Euler-lagrange equation to minimize total variation and
employs anisotropic diffusion. Such a method handles noise
well, but does not complete broken edges. CCD is based on
the TV algorithm and geometric information of isophotes. The
drawback of these methods is the blurring of the inpainted
image introduced by the diffusion process in the larger filling
regions.
Texture synthesis is an active research topic in computer
vision, which has broad applications such as foreground
removal, lossy image compression, and texture generation.
The problem of texture synthesis is to fill large image regions
with a sample texture. This method, which replicates
consistent textures, can be used in the extension of images, but
it has problems to fill in real image patterns. Linear structures
such as a drawing of a line or crossing regions of different
textures usually include high frequency components, which
prevent the generation of natural images by this approach.
To overcome the drawbacks of inpainting and texture
synthesis algorithms, the method presented in [BVSO03] first
decomposes the image into the sum of two components with
different basic characteristics and then reconstructs each one
of these components separately with inpainting and texture
synthesis. Another approach by Harrison [18] and Criminisi
[19] use exemplar-based synthesis for the object removal
process.
In this paper, we use the approach used by Criminisi to predict
the pixel values in a band around the border of the piece,
however, the implementation is slightly different.
The source region, Φi, is the acquired image of the ith piece. A
target band, Ωi, outwards from the ith piece is defined. This
target band represents the extension region of the ith piece. The
border between Φi and Ωi is indicated by δΩi. This border
evolves outward as the inpainting algorithm progresses. The
inpainting algorithm consists of three main steps. These steps
are iterated until the whole target region or band has been
filled. The first step is to compute the priority, P, which
determines the order in which they are filled. The priority
value is computed for the patches Ψp centered at the point
p∈Ωi. Conceptually, the priority depends on the continuation
of strong edges, D, and confidence of neighbor pixels, C:

P(p)=C(p).D(p)

where |Ψp| is the area of Ψp, np is unit vector orthogonal to the
front δΩ at the point p and ⊥ indicates the orthogonal operator.
This confidence value reflects the reliability of a region or a
pixel, and it effects the filling order during the inpainting
process. Initially, we set C=1 (%100 reliability) to pixels in the
original piece, and assign C=0 to the pixels in the target region
to be filled. The Data term D(p) is a function of the strength of
isophotes hitting the front δΩ. This term increases the priority
if an isophote flows into that patch which is important for the
assembly process since it causes the linear structures to be
synthesized or filled first. Therefore, the linear structures
orthogonal to the border of pieces are completed earlier and
these points or patches get higher confidence values.
When all priorities have been computed, the highest priority,
p’, is determined. The second step of the prediction process is
propagating the texture and structure information into the
target band. The color information is propagated via diffusion
in classical inpainting techniques. In our work, as in [CPT03],
propagation of the image texture occurs by the direct sampling
of the source region. The most similar patch for sampling is
given as :

where (Ψp’,Ψq) is the distance between the already filled
pixels of patches at the points p’ and q. The patch at the point
q’ is the most similar one and the values of each pixel to be
filled in the p’ patch {neighbor p’ | neighbor p’∈( Ψp’∩Ωi)}
are copied directly from the patch in the q’ point.

The last step for iterations is to update the confidence values.
After the patch Ψp’ has been filled with new values, the
confidence values affected by the filling of the new patch are
updated. This region is limited by the neighbors of the point
p’.

C(p) =C(p’) p         p ∈ Ψp’∩ Ωi 

As the filling proceeds, the confidence values decrease as the
pixels in the predicted region get farther from the original
boundary. This indicates that the color values of pixels far
from the border are less reliable than closer ones.

(1)

(2)

(3)

A

(4)

Fig. 1: (a) An archaeological sherd to be expanded 
(b) The expanded piece.

(a) (b)
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4 Combining puzzle pieces
While matching or calculating the similarity of possible two
neighboring pieces, pixel-by-pixel comparison of two pieces
is not meaningful. Thus, image features, (fi

k), are extracted
from the source and target regions for each piece after
predicting the target band. The selection of the features
depends on the structure of the image. Currently, only first and
second
moments (mean and variance) are used in the experiments. In
the case of using suitable texture features, serious
improvements can be obtained. The features are calculated in
a window whose size depends on the resolution of the pictures
on the pieces. The next step is the computation of confidence
values for the features. When a feature value is extracted by
using the pixels in a window, the confidence of this feature for
a point depends on the confidences of all pixels in the window.
The mean of all confidence of pixels in the window is assigned
as confidence of the feature, Ci’.

Let Dk(fi
k(Ti(x,y,θ)),fj

k(Tj(x,y,θ))) be the distance function
between the kth feature values of the i and j pieces. Ti(x,y,θ)
denotes the transform of the ith piece at the point (x,y,θ). In
our experiments, Euclidian distance is used for all features. If
distances specific to texture and features of pieces are
selected, the performance of assembly might improve. For the
simplicity of expressions, the Ti(x,y,θ) parameter for each
variable will not be shown.
We set a threshold, Thk, for the kth feature distance, so that the
more similar the pieces are, the larger the negative value the
similarity measures, Sk, will take or visa versa.

where nk is the number of features.           gives the total 

similarity between the ith and the jth pieces at the point (x,y,θ).

We can transform           into (6) by dividing all Sk into Thk

and normalizing the total constants to 1, so that both of them
give related responses for the same inputs. wk are the weight
values for the kth feature and are inversely proportional to
Thk.

where np is the number of pieces in the puzzle. Expression (7)
denotes that total similarity between the ith and the jth pieces
are weighted according to the jth confidence values, since low
confidence points are unreliable, even if two pieces are
similar.

After weighting the similarities, thesummation for all j pieces
where i is different than j shows how much the ith piece fits
the other pieces at Ti(x,y,θ).

This is the first part of the Cost or Affinity function and is
derived from the weighted mean of (7). It is the summation of
similarities for possible pairs. This value goes towards
negative if there exists a good match between the pictures on
the candidate pieces.

The second part of the function is for embedding the
geometrical constraints to Cost or Affinity. In reality, two
pieces cannot overlap at any point. The confidence values are
used to formulize overlapping operation. The L function will
be 1 only for pixels in the original part of the image, otherwise
it will be 0. Using a sufficiently large wc, the Cost increases
when the original parts of the ith and jth images overlap.

Total cost is the summation of similarity and geometrical
constraints terms for all points in space. The only parameter of
this performance measure that represents the exactutude of the
assembly of pieces based on textural features and geometrical
shape is the transformation of pieces, Ti.
Two types of optimization methods are used in the
experiments. The first one depends on the best replacement
strategy. Initially, the transformation of pieces are randomly
assigned. The algorithm progresses by finding the best
movement in each step. When the function is stuck into a local
minimum, two randomly selected pieces are exchanged.
All local minima are buffered to find the best assembly. The
algorithm is stopped if the function reaches the best value in
the local minima buffer more than n times.
The second method depends on the pairing of the pieces.
Initially, the algorithm searches for the best pair that gives the
minimum cost. Then, these paired pieces are merged to
produce a unique piece. The algorithm is stopped when all the
pieces in the puzzle are combined and become one piece. In
this method, the algorithm backtracks when the pairing cannot
improve the cost. To implement this method, the confidence

and feature values of the
new piece should be
defined after the
merging process.
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M is the set of pieces that will be merged. (11) gives the new
confidence value for overlapping points of pieces. It expresses
that new the confidence value is equal to 1 if one of the pieces
has a confidence of 1, otherwise it is the geometrical mean of
possible confidence values at that point. (12) gives the new kth

feature values by calculating the weighted mean of pieces in
the set M.

5 Experimental results
The behavior of the defined affinity measure is observed under
different scenarios. The first one is whether the edges continue
on the neighboring pieces or not. In the inpainting phase, the
edges obtain higher confidence values as was explained
earlier. The higher confidence values force the cost function to
locate the pieces properly. The second important criterion is
similarity of corresponding textures on the neighboring pieces.
The distance measure in the cost function attracts similar
textures together if the expanded regions of the pieces are
accurately inpainted.
In this paper, we present results from two different datasets.
The first dataset consists of 21 pieces of a ceramica tile. We
will give the details of the experiment with 4 pieces so that the
details of the images can be distinguished. The second dataset
(13 pieces) from the Stanford university website is part of the
Forma Urbis Romae dataset[L00] which is a marble map of
ancient Rome that has more than a thousand fragments.
In figure 2, the original images, confidence images and
expanded images of 4 pieces are placed, respectively. The cost
in the solution space is equal to zero for this placement,
because the expanded or original regions of the 4 pieces are
not overlapped anywhere. In figures 3 and 4, different
assembly stages and the corresponding cost values are shown.
Two neighboring pieces are placed closer with a shift in figure
3a, and their corrected placement is represented in figure 3b.
The main difference between the cost values of (a) and (b) is
that the edges don’t continue in (a) although the neighboring
textures are mostly similar. In figure 3c, the third piece is
placed in its right position, but the original (real) regions of the
fourth piece and the third piece are overlapped ; in other
words, the fourth piece violates the geometrical constraints.
For this situation, the second part of the cost function (m2)
becomes dominant and the cost increases seriously. In figure
3d, we see the forth piece is placed in the most appropriate
location.

Figure 4 shows the completed reconstruction with the
associated cost. Figure 5 shows the steps of assembling the 13
pieces from the Forma Urbis Romae dataset.

The optimization program developed is also tested against
erosion and missing pieces. Even if the edges of the pieces
were eroded or one of the puzzle pieces had disappeared, the
program was able to find the right assembly for the puzzles
under test.

(a) (b) (c)

Fig. 2: (a) A puzzle consisting of 4 pieces,
(b) confidence values of the predicted regions

(c) expanded versions of the pieces. (Fcost=0).

Fig. 3: (a), (b), (c) Total cost for different layouts
(d) Total cost for the completed puzzle.

Fig. 4: Total cost for the completed puzzle Fcost=-20,076.

Fig. 5: (a), (b), (c) Total cost for different layouts
(d) Total cost for the completed puzzle.



78

6 Virtual Reality System
Cultural heritage researchers would like to perform fitting
experiments with the scanned 3D objects. As expert users they
can intervene and suggest solutions where the automatic
techniques fail. On the other hand the user may select two
pieces and the system would compute their fitting likelihood.
The user can decide upon this information. We propose that
the combination of human expertise and pure software
solutions will lead to better results than manual or automatic
only solutions.
We developed an application, V-Stitch, with the purpose of
providing a real-time virtual reality software system with an
intuitive interface for using semi-automatic algorithms
developed for the arrangement of archeological sherds. The
system loads the 3D models of sherds together with a semantic
information file, which includes the fitting metric of two
sherds computed by the matching algorithm presented in
section 4. Thus the system provides pre-computed pair-wise
matches between sherds as suggestions to the user.
We considered several input and output technologies in order
to achieve optimum results in accordance with the constraints
inherent in the application domain. The considered input
devices are as follows :

We found that the Polhemus Fastrack tracker was unsuitable
for our application because of space constraints as well as the
sensitivity of the equipment to environmental conditions such
as the presence of conductive metals. The Intersense
IntertiaCube2 tracker was similarly found lacking in its
usability as a controller device because of its design. We
selected the 3Dconnexion SpaceBall® as the preferred input
device because of its suitability to manipulate 3D objects. Its
small space requirements and adjustable update rate also made
it a good choice for our application.

The considered output devices are as follows :

We decided that the 3D projector was inappropriate for our
purposes because of its high price and space constraints
although it has the higher resolution. The ARvison-3D head
mounted display was selected as the preferred output device
because of its small size and suitability for desktop use.
We were able to achieve a suitable frame-rate for real-time use
with our resulting application on a desktop computer with a
Intel Pentium 4 – 3 GHz processor and a ATI Radeon X800XT
graphics coprocessor.

7 Summary and conclusions
We have presented a method for the automated puzzle
assembly problem using surface texture and picture. The
approach is based on expanding the boundary of each piece
using inpainting and texture synthesis and minimizing a cost
function based on matching feature values obtained from these
predicted regions. Initial experiments show that this approach
is very promising for the automated puzzle assembly problem.
Future work will concentrate on optimizing the search for best
transformation and generalizing the presented algorithm to
solving 3D puzzles.
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