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Abstract 22 

 23 

A detailed analysis is carried out to assess the HadGEM3-A global atmospheric model skill in simulating 24 

extreme temperatures, precipitation and storm surges in Europe in the view of their attribution to 25 

human influence. The analysis is performed based on an ensemble of 15 atmospheric simulations 26 

forced with observed Sea Surface Temperature of the 54 year period 1960–2013. These simulations, 27 

together with dual simulations without human influence in the forcing, are intended to be used in 28 

weather and climate event attribution. The analysis investigates the main processes leading to extreme 29 

events, including atmospheric circulation patterns, their links with temperature extremes, land-30 

atmosphere and troposphere-stratosphere interactions. It also compares observed and simulated 31 

variability, trends and generalized extreme value theory parameters for temperature and precipitation. 32 

One of the most striking findings is the ability of the model to capture North-Atlantic atmospheric 33 

weather regimes as obtained from a cluster analysis of sea level pressure fields. The model also 34 

reproduces the main observed weather patterns responsible for temperature and precipitation 35 

extreme events. However, biases are found in many physical processes. Slightly excessive drying may 36 

be the cause of an overestimated summer interannual variability and too intense heat waves, especially 37 

in central/northern Europe. However, this does not seem to hinder proper simulation of summer 38 

temperature trends. Cold extremes appear well simulated, as well as the underlying blocking frequency 39 

and stratosphere-troposphere interactions . Extreme precipitation amounts are overestimated and too 40 

variable. The atmospheric conditions leading to storm surges were also examined in the Baltics region. 41 

There, simulated weather conditions appear not to be leading to strong enough storm surges, but 42 

winds were found in very good agreement with reanalyses. The performance in reproducing 43 

atmospheric weather patterns indicates that biases mainly originate from local and regional physical 44 

processes. This makes local bias adjustment meaningful for climate change attribution. 45 

 46 

  47 



1. Introduction 48 

 49 

In recent years attribution of changing likelihood of weather events has motivated an outstanding 50 

effort of the climate science community (Stott et al., 2016). While detecting trends in odds of extreme 51 

events (eg. as characterized by the exceedance of a threshold) can draw solely on observational data, 52 

formal attribution to human activities requires comparing statistics in a “current climate” world and in 53 

a world where human activities have not occurred. This requires model simulations with different sets 54 

of assumptions concerning external forcing. This also requires that the models used are able to 55 

simulate the changes in likelihood of extremes by comparing with observations, which is often difficult 56 

in practice due to the short length and lack of homogeneity of observational data sets. A simplification 57 

is often made with the assumption that the anthropogenic effect is included in surface variables such 58 

as SST, sea ice (Pall et al., 2011) or soil moisture (Hauser et al., 2016), and in atmospheric composition, 59 

and that extreme events respond to this influence through processes linking surface and atmosphere. 60 

In contrast, attribution of observed trends to causes relies on analysis of the observed change with the 61 

help of climate models, hence is more directly anchored to the observed change (see NAS report, 2016; 62 

Hegerl and Zwiers, 2011). In practice, anthropogenic forcing influence on temperature-related variables 63 

is such that changes are found with a high consistency using both approaches for trends in mean and 64 

extremes (Bindoff et al., 2013). 65 

Attribution makes one unavoidable assumption: that dynamical and physical processes are correctly 66 

represented in the climate model used for attribution. If all processes are well accounted for, 67 

sensitivities to forcing changes should be realistic. Attribution of weather events therefore requires a 68 

careful evaluation of processes involved in the build-up of the events. Evaluation also requires 69 

examination of extreme events statistics, and if possible their change with increasing greenhouse gases 70 

and other human-driven changes (Bellprat and Doblas-Reyes, 2016; Lott and Stott, 2016; Sippel et al., 71 

2016). 72 



This study examines how the newly upgraded Hadley Centre Global Environmental Model version 3-73 

Atmosphere (HadGEM3-A) atmospheric model performs in view of event attribution in Europe, with a 74 

focus on processes leading to extreme events. The earlier, lower resolution, version of the model was 75 

employed in several attribution studies of extreme events including consecutive cold winters in the UK, 76 

the Moscow heatwave in July 2010 (Christidis et al., 2013a), the severe East African drought of 2011 77 

(Lott et al., 2013), the Eastern Australia floods of 2011 (Christidis et al., 2013b) and the cold spring of 78 

2013 in the UK (Christidis et al., 2014). These analyses quantified the effect of anthropogenic influence 79 

on the likelihood of the events as well as the associated uncertainty from limited number of available 80 

simulations. Moreover, simple evaluation assessments were carried out to demonstrate that the model 81 

was fit for purpose and able to realistically represent the type of extremes under consideration in the 82 

region of interest. Angelil et al. (2016) compared the simulated extreme events with reanalyses 83 

datasets at relatively high resolution and found mismatches among all sets (models and reanalyses and 84 

among reanalyses themselves). This highlights observational difficulties when comparing sub-regional 85 

trends using reanalyses, and emphasizes the need to not only evaluate statistical properties but also 86 

physical mechanisms involved in the trends. 87 

Here, the new ensemble of simulations is evaluated through comparison with available observations. 88 

These simulations are now used in several attribution studies (e.g. Eden et al, 2016; van Oldenborgh et 89 

al., 2017, in preparation; Philip et al., 2017, Hauser et al, 2017, Klehmet et al, 2017, in preparation, 90 

Eden et al, 2017, Christiansen et al, 2017, in preparation, Wilcox et al., 2017), where evaluation is 91 

carried out for the local case study. However, an overall evaluation of the model for Europe is necessary 92 

in order to assess confidence in attribution results derived from this model. 93 

This article addresses three main questions: (i) are the simulations correctly representing the statistics 94 

of events for the historical period 1960-2013? (ii) Are the simulations correctly representing long-term 95 

changes in extreme events and dynamics along the reference period? (iii) Are the simulations  correctly 96 

representing the key processes driving to extreme events? 97 



The first and last issues are covered in detail in this document. The second one is a more difficult 98 

question to address with 54-year long simulations. Trends, especially in extremes, have regional 99 

patterns of response to human activities that are fairly uncertain due to long-term atmospheric 100 

variability. Hence a single-realization observation is not expected to agree completely with model 101 

simulations. 102 

A last issue concerning the model ensemble is also whether the overall ensemble also captures the 103 

natural variability well. This will however not be considered here to keep focus on processes. This 104 

question was addressed in a theoretical framework to show that the consistency of the ensemble 105 

spread can be measured by the notion of reliability (Bellprat and Doblas-Reyes, 2016; Lott and Stott, 106 

2016). Ensemble reliability measures whether the probability to exceed a threshold (e.g. an extreme 107 

event or a large model quantile) agrees with the frequencies of the same threshold in an observed 108 

record. Correct reliability is therefore a necessary condition for the ensemble probabilities used in 109 

event attribution studies not to be biased.  A bias in ensemble reliability systematically affects the 110 

fraction of attributable risk (Bellprat and Doblas-Reyes, 2016). 111 

We focus here on a few types of events and processes to give an overview of the performance of the 112 

HadGEM3-A system in Europe. The evaluation does not pretend to be exhaustive, as event-specific 113 

evaluation will always be necessary. The selected events types are: heat waves, cold spells, droughts, 114 

heavy precipitation events, and wind events leading to storm surges. These generally have a daily to 115 

seasonal time scale. They were selected because the underlying weather variables have long 116 

observational records. 117 

In Section 2, we briefly describe the simulations. A more detailed description is given in a separate 118 

article (Ciavarella et al., 2017, in preparation). We also describe the data sets used. Section 3 is devoted 119 

to an overall assessment of the main biases in mean state, variability and extremes, as well as a 120 

comparison between simulated and observed trends. In Section 4, an extreme value analysis is carried 121 

out in order to investigate distribution tails. Section 5 is dedicated to an analysis of a few key processes 122 



driving the extreme events. A final conclusion and discussion follow (Section 6) where tentative 123 

conclusions for attribution are given. 124 

2. Simulations and observations 125 

2.1 The HadGEM3-A simulations 126 

The simulations used in this work were generated by the Hadley Centre event attribution system 127 

(Christidis et al., 2013a) that has facilitated numerous studies of different types of high-impact extreme 128 

events. A typical attribution study involves pairs of large ensemble experiments with and without 129 

anthropogenic forcings, from which the changing likelihood of extreme events under climate change 130 

can be determined (Stott et al., 2016). The Hadley Centre system is built on the HadGEM3-A model 131 

that was recently upgraded within the EUropean CLimate Event Interpretation and Attribution 132 

(EUCLEIA) project (http://eucleia.eu/) and now features one of the highest resolution global models 133 

used in global event attribution research. The model runs at N216 horizontal resolution, equivalent to 134 

about 60 km at mid-latitudes, and comprises 85 vertical levels. The upgraded model also benefits from 135 

a new atmospheric science package with an improved dynamical core, which leads to better numerical 136 

stability (Williams et al., 2015). 137 

An ensemble of 15 atmospheric simulations of the historical climate during the period 1960-2013 was 138 

produced with the new model and is the basis of the evaluation assessments discussed in this paper. A 139 

second ensemble of model runs without the effect of anthropogenic forcings was also generated and 140 

employed in attribution analyses (Christidis et al., 2016; Burke et al., 2016; Wilcox et al., 2017), but is 141 

not used here. The historical forcings in the model simulations include anthropogenic greenhouse gas, 142 

aerosols, tropospheric and stratospheric ozone emissions, changing land use, as well as natural changes 143 

in the solar output and volcanic aerosols (Jones et al., 2011). Ensemble members are generated by 144 

implementing random parameter perturbations as well as a stochastic kinetic energy backscatter 145 

scheme that accounts for energy sources on sub-grid scales (Christidis et al., 2013a). Monthly 146 

observations of the sea surface temperature (SST) and sea-ice from the Hadley Centre Sea Ice and Sea 147 

http://eucleia.eu/


Surface Temperature (HadISST) v1 dataset (Rayner et al., 2003) provide boundary conditions for the 148 

simulations of the historical climate. Building on the multi-decadal simulations, an operational 149 

attribution system is currently being developed by firstly extending the model runs and increasing the 150 

ensemble size and then by continuing to extend the simulations on a seasonal timescale in a similar 151 

fashion to seasonal forecasting systems. 152 

2.2 Observations 153 

In this paper we use a number of observational data sets for the model simulations evaluation. In 154 

general, the NCEP/NCAR 20th Century reanalysis 20CR re-analyses of sea level pressure have been used 155 

for characterizing atmospheric circulations. Surface temperatures and precipitation are either taken 156 

from CRUTS3.2 or from E-OBS data sets. Specific data sets have been used to study the land-157 

atmosphere interactions, described in Table 1. 158 

3. Model climatology, trends and variability 159 

3.1 Mean states and trends 160 

In this section we review the main statistics of the model climate and compare it to observations. The 161 

mean state, time evolution, and interannual variability of metrics of mean and daily extremes in the 162 

15-member HadGEM3-A N216 ensemble are compared to a variety of observational datasets (primarily 163 

CRUTS3.23 and E-OBS) for the June to August (JJA) and December to February (DJF) seasonal means. 164 

Spatial patterns have been considered over the European domain, and time series have been 165 

considered over three regions: Europe (35–70°N, 10°W–40°E); Northern Europe (50–60°N,10°W–166 

25°E); and Southern Europe (35–45°N, 10°W–25°E). Where regional means are considered, they only 167 

include model grid cells with a land fraction over 75%, as observations are only available over land. 168 

In general, HadGEM3-A represents the spatial pattern of mean near-surface temperature well, but does 169 

not reproduce the regional pattern of the trends. In summer, the model underestimates warming in 170 

southern Europe (in line with coupled models, van Oldenborgh et al, 2009; Kirtman and Power, 2013, 171 



Box 11.2), and overestimates it in northern and eastern Europe (Figure 1a-b,e-f). Such trend 172 

discrepancies are not due to atmospheric internal long-term variability as they are found in most 173 

members (Figure 1f). However, when averaging over Europe, the model trend of 0.36±0.05K/decade is 174 

compatible with the linear trends from CRUTS3.24 (0.33±0.08/decade), E-OBS v14.0 175 

(0.35±0.08K/decade), and CRUTEM4.5 (0.32±0.08/decade). In the above numbers, the 95% confidence 176 

interval is provided. The histogram of the rank of the observations in the ensemble also shows an 177 

overall reliability of simulated temperatures at the continental scale (Figure 1i, see van Oldenborgh et 178 

al., 2013 for the reliability rank histograms calculations). When averaged over Northern Europe, the 179 

model slightly overestimates the positive trend in near-surface temperature (0.36±0.05K/decade 180 

compared to 0.28-0.31K/decade in observations), and underestimates the positive trend when 181 

averaged over Southern Europe (0.36±0.06K/decade compared to 0.41-0.44K/decade in observations). 182 

Similar findings are obtained for the trends in daily minimal and maximal temperatures (Tmin and Tmax), 183 

yearly maximum of daily maxima and minima (TXx and TNx) (not shown). Least squares linear trends, 184 

as calculated above, were taken for the period 1960-2013, and should be interpreted with a degree of 185 

caution, due to the nonlinear nature of the time series evolution (see also Figure 3). 186 

HadGEM3-A also represents the spatial pattern of mean summer precipitation, and trend patterns 187 

match the observed dipole, with some discrepancies (Figure 1c-d,g-h), and a general underestimation 188 

of precipitation trend in the ensemble members (Figure 1h). Positive precipitation trends over 189 

Scandinavia and negative trends over France and Eastern Europe are found. However, the model fails 190 

to capture the observed increase in precipitation over the UK and drying over Spain, and does not 191 

simulate drying over the full longitudinal extent of the Alps, as is seen in observations. The imbalance 192 

toward systematic trend underestimation is also shown in the rank histograms when considering the 193 

whole continent (Fig. 1j). The simulated trend over southern Europe is -0.023±0.021mm/day/decade, 194 

while it is -0.042 and -0.034mm/day/decade in EOBS v14 and CRUTS3.23 respectively. In Northern 195 

Europe, trends are found in observations (0.052 and 0.046 mm/day/decade) however they are not 196 

significant. HadGEM3-A also shows no significant trend here (see also van Haren et al., 2013). 197 



In the winter season (Figure 2), mean states are again well simulated, but regional trend patterns are 198 

not well reproduced either. Over Scandinavia, the pattern of the near-surface temperature mean state 199 

is also well-represented by the model, but the model is too cold (Figure 2a-b). Observed temperature 200 

trends show significant warming over most of Europe at the 5% or 10% level, with the greatest warming 201 

over Scandinavia and the Baltics, but HadGEM3-A generally underestimates the magnitude and 202 

significance of the trends (Fig. 2e-f). However these trends discrepancies can be due to long-term 203 

atmospheric variability, as seen from Fig.2f and the rank histogram of Figure 2i, and no major 204 

incompatibility with the observation is found. HadGEM3-A simulates the pattern of the mean states 205 

and interannual variability in Tmin, Tmax, TNx, and TXx well, but it does not reproduce the observed 206 

trends (not shown). 207 

The pattern of the wintertime precipitation mean state is strongly tied to orography in both the model 208 

and observations. However, the model overestimates precipitation over the Pyrenees, Massif Central, 209 

Alps, and Greece, and underestimates it over the UK and Ireland (Figure 2c-d). Observed trends in 210 

precipitation have a strong dipole pattern, with drying in southern Europe, and increasing precipitation 211 

in the north resembling trends associated with a tendency towards positive NAO (see Deser et al., 212 

2016). There is a hint of this pattern in the ensemble mean model trend, but the magnitude is much 213 

weaker than observed (Figure 3), and the ensemble fails to capture the main contrasts (Figure 2h and 214 

2j). Patterns in the mean state and interannual variability in extreme precipitation values are well 215 

represented in HadGEM3-A. Trends in these quantities are noisy in both the model output and 216 

observations (not shown). 217 

3.2 Variability 218 

In general the interannual variability is reasonably well simulated, as seen in Figure 3 from time series 219 

of individual members and superimposed observations. The model overestimates variability in 220 

seasonal mean daily mean and maximal temperatures (Figure 3), for European average, but simulates 221 



the variability in daily minimal temperatures fairly well (not shown). The overestimation in daily 222 

maxima is more marked in Northern Europe than in Southern Europe. 223 

In winter, HadGEM3-A reproduces the inter-annual standard deviation of near-surface temperature 224 

over Europe as a whole, but shows a larger standard deviation in Southern Europe (Figure 3), and 225 

appears to underestimate it in Northern Europe. Interannual variability in Tmax and Tmin is well 226 

represented by HadGEM3-A in Europe, despite underestimates in the north, as for near-surface 227 

temperature. In southern Europe, the model overestimates variability in Tmax (not shown), but 228 

underestimates it in Tmin (Fig. 3). Variability in TNx and TXx is underestimated in all regions (not shown; 229 

see also Section 4). Variability in seasonal precipitation amount, as well as in heavy precipitations (over 230 

10 mm or 20 mm per day) is well represented by HadGEM3-A in general in both seasons (not shown). 231 

However, it should be kept in mind that the model resolution does not allow a proper representation 232 

of convective precipitation events.  233 

3.3 In summary 234 

HadGEM3-A generally shows reasonable performance in reproducing the observed mean-state, 235 

variability, and trends in daily means and extremes when considering Europe as a whole. However 236 

observed regional patterns of trends are not always well reproduced. For instance, the model fails to 237 

reproduce the observed JJA and DJF drying in southern Europe. In JJA, the model also locates the 238 

maximum in near-surface temperature trends too far east, so that the amplitude of warming over 239 

southern Europe is underestimated. In winter, temperature variability is high making trends from 240 

simulations and observations almost compatible despite a general tendency for the model to 241 

underestimate warming. The model ensemble fails to reproduce positive trends in temperature 242 

extremes (Tmin, Tmax, TNx, and TXx) throughout Europe, and also underestimates interannual variability 243 

in TNx and TXx in winter. The amplitude of the dipole in precipitation trends in DJF is substantially 244 

underestimated by HadGEM3-A in DJF, and to a lesser extent in JJA. 245 



The correct simulation of trends in summer implies that their attribution should not be hindered by 246 

model’s climatological biases in this season. For temperature this means a realistic mean response to 247 

external forcing and a potential for attributing temperature-related events. The differences in regional 248 

patterns of trends are partly due to the relatively short length of observational data sets combined with 249 

a chaotic atmosphere and weak SST dependence. It is also probably due to uncertainties in underlying 250 

processes (see Section 5). In winter the too weak warming trend may potentially lead to 251 

underestimation of likelihood reduction in winter cold spells. However, this discrepancy may also result 252 

from the large interannual and variability in winter temperatures. Some of the 15 members do show 253 

trends as observed in daily mean winter temperatures. 254 

4. Extreme value analysis 255 

A specific focus is given now on extremes of temperature and precipitation. The evaluation of the 256 

model’s representation of extremes was undertaken using extreme value analysis, based on annual 257 

maxima of the historical runs in precipitation (rx1day) and maximum (TXx) and minimum daily 258 

temperature (TNn) discussed above. These were fitted to a stationary generalized extreme value (GEV) 259 

distribution (Coles, 2001). The three parameters of the GEV distribution, namely the location 260 

parameter μ (representing the mean values), scale parameter σ (representing the typical range of 261 

values) and shape parameter ξ (describing whether the distribution is heavy tailed or not), were 262 

evaluated alongside distributions fitted to the same extremes from E-OBS. Non-parametric 263 

bootstrapping (1000 replications) was used to estimate the uncertainty margins. Comparisons are 264 

made using the 0.5º regular grid E-OBS product, which represents the resolution closest to that of the 265 

model. 266 

For extreme maximum daily temperature (TXx), the location parameter is significantly under-estimated 267 

in Northern Europe and over-estimated in much of Southern and Eastern Europe. As illustrated in 268 

Figure 4, the model exhibits warm biases in hot events across Central, Eastern and, to a lesser extent, 269 

Southern Europe, explaining the bias in the location parameter. The scale parameter is overestimated 270 



somewhat across most of the continent, but underestimated in Britain, and the shape parameter is 271 

overestimated somewhat over most of Northern Europe, indicating too heavy tail potentially related 272 

to unrealistically high drying in summer in this model (see Section 5). 273 

For extreme minimum daily temperature (TNn), regions of complex topography (including the Alps and 274 

the western coastline of Scandinavia) are characterized by a clear under-estimation of the location 275 

parameter. The cold bias to the south of the Alps is also apparent in the analysis of cold events in Figure 276 

4, with similar spatial features evident in multiple ensemble members. The scale parameter is 277 

reasonably well represented, but the shape parameter is much too large in Eastern Europe, where the 278 

model simulates too extreme very cold events. By contrast, the shape parameter is too small in much 279 

of Western Europe. 280 

For extreme precipitation the broad coastal and topographical precipitation features are well-281 

reproduced by the model, but both the location and scale parameters are consistently larger than those 282 

of observed extremes (Figure 5): the model generates too much rain in extremes with too much 283 

variability. This is particularly the case in Mediterranean coastal regions and immediately south of the 284 

Alps. This is the opposite of what one would intuitively expect: given the model’s coarse resolution, 285 

extremes in the simulated precipitation field should typically be smaller in magnitude than those 286 

events occupying the same point of likelihood in the observed distribution. 287 

5. Process analysis 288 

 289 

The ability of a model to simulate physical and dynamical processes leading to extremes is key for its 290 

capacity to simulate their changes under human activities influence. Extreme events generally result 291 

from an ensemble of processes involving atmospheric dynamics, large-scale drivers, as well as regional 292 

to local-scale processes which interact with one another. Here, we evaluate whether the model 293 

captures the most important processes leading to extreme events. For the five types of events under 294 

study (heat and cold waves, heavy precipitation events, drought and storm surges) we examine in 295 



particular the role of large-scale circulation and a few key regional-to-local scale processes, such as 296 

interaction with land surface. 297 

In general, extreme weather events occur under specific types of weather patterns: heat waves, 298 

droughts and cold spells relate to long persisting anticyclones sitting over a large area. In Europe, heavy 299 

precipitation is associated either with summer convective episodes coming after a long warm period 300 

with the arrival of frontal systems with cold air aloft destabilizing the troposphere, or in long-lasting 301 

wintertime cyclonic episodes bringing in recurring storms. In each case typical atmospheric circulation 302 

patterns are found. Then, extreme events also result from amplifying processes, which may dominate 303 

in some cases, such as land-atmosphere interactions in particular in the case of heat waves and 304 

droughts (Seneviratne et al. 2010), and also cold spells through the effect of snow cover (Orsolini et al. 305 

2013). Stratosphere-troposphere interactions have also been shown to be important in the build-up of 306 

cold spells (Baldwin and Dunkerton, 1999). Here we evaluate these processes in HadGEM3-A 307 

simulations. 308 

 309 

5.1. Atmospheric weather patterns 310 

 311 

One way to evaluate whether the model correctly simulates the atmospheric circulation variability is 312 

through the analysis of weather regimes. Weather regimes are usually defined as large typical clusters 313 

of atmospheric flows that are observed. The concept of weather regimes is based on dynamical systems 314 

theory analysis of atmospheric variability: certain phase-space areas may include slow-down of 315 

trajectories, due to the vicinity of stationary solutions (Legras and Ghil, 1985), or quasi-stationary 316 

solutions (Vautard and Legras 1988). Since then, a number of studies (e.g. Michelangeli et al., 1995; 317 

Cassou et al. 2005) have characterized weather regimes using cluster analysis. Over the North-East 318 

Atlantic and Europe, such an analysis usually finds four stable clusters from observations or reanalysis 319 

of sea-level pressure or geopotential height.  320 



Here, we compare clusters obtained by a k-means algorithm applied to the NCEP/NCAR reanalysis and 321 

the HadGEM3-A simulations carried out over the same period (1960-2013). The same North-Atlantic 322 

domain is used both for model and observations [-80°W-50°E, 22.5°N-70°N]. A separate analysis is 323 

done for winter (DJF) and summer (JJA) seasons using sea-level pressure fields.  324 

The centroids of the obtained clusters for the NCEP/NCAR reanalysis and the HadGEM3-A model 15 325 

member ensemble, are shown for winter in Figure 6a-h and for summer in figure 6i-p. The HadGEM3-326 

A model weather regimes centroids are quite similar to the observed ones with slight shifts. For 327 

instance, the “blocking” (BLO) regime is well represented in winter and summer but the “Atlantic ridge” 328 

(AR) regime has differences that can be seen mainly in winter. However, this should not be a major 329 

issue for European extremes of temperature and rain as this latter regime is generally not associated 330 

with extremes. Cold spells are usually characterized in winter by either the negative North Atlantic 331 

oscillation (NAO-) regime, as was the case for the winter of 2009-2010 (Cattiaux et al., 2010), or by the 332 

BLO regime. Mild winters with persistent rainfalls over Western Europe are characterized by the “Zonal 333 

flow” (ZO) regime as shown by Schaller et al. (2016). 334 

Another important aspect for extremes is the frequency of occurrence of regimes. One expects that to 335 

correctly simulate the statistics of extreme events, a model must simulate correct frequencies in the 336 

weather regimes. In order to compare similar clusters statistics, we used the NCEP/NCAR cluster 337 

centroids SLP anomalies as reference and counted the number of SLP fields for which each centroid is 338 

nearest, both for NCEP/NCAR and HadGEM3-A fields for a best comparison. HadGEM3-A weather 339 

regime frequencies are well represented with respect to ones in NCEP/NCAR. BLO and NAO- regimes 340 

are well represented in both seasons while ZO (winter) and AL (summer) have slight differences to 341 

NCEP/NCAR (lower and higher frequencies of occurrence respectively). 342 

Table 2 shows the frequencies of nearest neighbors calculated in this way. It is quite remarkable how 343 

well the frequencies match between observations and the model. We conclude that the HadGEM3-A 344 



model simulates quite well the main weather patterns of the North East Atlantic with mean frequencies 345 

that reproduce faithfully the observations. 346 

5.2. Atmospheric circulations associated with hot and cold events 347 

 348 

The previous analysis was made for weather patterns independently of extreme events. We now turn 349 

to the evaluation of the capability of HadGEM3-A in representing the specific weather patterns 350 

associated with hot and cold events in Central Europe (defined here as the average over 2°-15°E and 351 

47°N-54°N). This analysis builds on Krueger et al. (2015) and is based on a composite analysis of 352 

temperatures and circulation states (characterized by the geopotential heights at 500 hPa) for hot and 353 

cold events. We show here results for hot extremes and cold events are shown in the supplement. The 354 

temperature data was deseasonalized (using a 10-day filter for calculating the climatology); prior to 355 

detecting hot and cold extremes the linear long-term trends over the analysis period were removed 356 

from each gridpoint.  357 

Hot and cold events with a time scale of five days were obtained as consecutive values above the 95th 358 

and below the 5th daily temperature percentile for summer (JJA) and winter (DJF), respectively. These 359 

moderate extremes should occur under broadly similar circulation conditions to stronger extremes, but 360 

are well sampled (Krueger et al., 2015) and have been found useful (Alexander, 2016). Composites of 361 

all such events were calculated for the 1960-2013 period which yields 143 heat waves and 137 cold 362 

spells from the 20CR v2c in comparison to a range of 149-154 hot spells and 147-150 cold spells for the 363 

model ensemble, respectively (note that the reanalysis shows slightly, but significantly, fewer hot and 364 

cold spells). The associated circulation patterns are calculated as the composites of the 500 hhPa 365 

geopotential height found for each occurrence of a cold- or hot temperature event, following Krueger 366 

et al. (2015). In contrast to Krueger et al. (2015), the composite analysis was performed for land-only 367 

temperatures. The analysis for the model was performed for each of the 15 ensemble members 368 

separately, with resulting composites then averaged to provide an ensemble mean value.  369 



Figure 7 shows the temperature composites of hot events, and Figure 8 the circulation associated with 370 

it. The differences between circulation composites are relatively large in both summer and winter even 371 

though these are aggregated over events occurring over 54 years in each case. Larger differences 372 

between the ensemble members are found for summer. For the circulation associated with extreme 373 

hot events, there is high variability across the ensemble members while for the ensemble mean the 374 

geopotential pattern resembles a classic omega blocking in 20CR with the eastern, negative center of 375 

the blocking suppressed or moved in the average circulation of HadGEM3-A. The location of low 376 

pressure anomalies and their magnitude varies across ensemble members for this 54 year average. The 377 

spatial extent and intensity of heat waves varies across ensemble members consistent with the subtle 378 

variations in circulation (for example, compare middle of the second to bottom left panel for figures 7 379 

and 8). The observations lie within that large variability.   380 

Results for cold events are similar (Supplementary Figure 1 and 2), with a strong pressure gradient 381 

between a high and low in NW and SE Europe, respectively, causing cold spells, whose average intensity 382 

and extent varies depending on the tilt of the pressure gradient, again exemplifying the important role 383 

of atmospheric variability even on the long timescales averaged across here.  384 

5.3 Land-atmosphere interactions 385 

 386 

Land-atmosphere interactions are major processes in the development of many extremes and must 387 

therefore be well represented in view of attribution studies. This is particularly important for heat 388 

waves, which are expected to become more frequent with greenhouse gases increase (Seneviratne et 389 

al. 2012), with potential severe impacts on society and economy (Rosenzweig et al. 2001, Corti et al. 390 

2009, Blauhut et al. 2015, Zhao et al., 2016). The uncertainty of projections of future temperatures and 391 

associated hot extremes is especially large in regions where a shift of the evapotranspiration regime is 392 

expected, i.e. where evapotranspiration is radiation-limited in today’s climate but will become soil-393 

moisture-limited in future climate. This is due to a large uncertainty in the representation of the land-394 

atmosphere coupling across state-of-the-art Earth System Models (ESMs) in present and future climate 395 



(Seneviratne et al. 2016), and resulting fluxes (Stegehuis et al., 2013). This problem needs to be 396 

addressed by validating and evaluating the involved modelled processes in present climate conditions 397 

against observations. Thanks to recent advances in the development of reference datasets for land key 398 

variables such as soil moisture (Orth and Seneviratne 2015) and evapotranspiration (Mueller et al. 399 

2013), a comprehensive evaluation of the modelled land-atmosphere coupling became feasible. 400 

We assess and evaluate the land-atmosphere coupling in the HadGEM3-A model in Europe by 401 

considering all parts of the overall coupling separately (see Figure 9 of Seneviratne et al. 2010). In 402 

particular we focus on (i) the coupling between soil moisture and evapotranspiration, (ii) the coupling 403 

between evapotranspiration and temperature (extremes), and (iii) the (resulting) coupling between 404 

precipitation and temperature (extremes). In terms of temperature we will focus on monthly mean 405 

temperature, and to represent hot extremes we use TXx. 406 

The relationship between the variables involved in each part modelled by HadGEM3-A is compared 407 

with the corresponding observed interplay using state-of-the-art reference datasets of the 408 

corresponding variables (Table 1). Here we focus on the time period 1960-2013, however, due to 409 

limited availability of the reference datasets, the evaluation of evapotranspiration-related couplings is 410 

constrained to 1989-2005, and the evaluation of soil moisture-related couplings is restricted to 1984-411 

2013. Note furthermore the different spatial resolutions between the employed reference datasets 412 

(see Table 1), and of the HadGEM3-A output data. Model output has been masked whenever the 413 

reference data was not available to ensure the same spatial and temporal basis of the analyses. 414 

In order to focus on the highest coupling strengths, we perform all computations with monthly data 415 

using only the hottest month of each year. In the case of soil moisture and precipitation we use the 416 

previous month to capture their influence on subsequent temperature or evapotranspiration. For the 417 

estimation of the considered coupling strengths we consider 3 European subregions, (i) Northern 418 

Europe (NEU), (ii) Central Europe (CEU), and (iii) the Mediterranean (MED) as defined in Seneviratne et 419 

al. (2012). For the Mediterranean region, however, we focus on latitudes between 35°N-45°N instead 420 



of 30°N-45°N as in Seneviratne et al (2012) due to limited spatial availability of the reference datasets 421 

(region hence denoted as MED*). Coupling strengths are expressed as monthly correlations. 422 

Furthermore, we compare modelled versus reference distributions of the considered variables in the 423 

considered months. 424 

Soil moisture - Evapotranspiration Coupling: The HadGEM3-A coupling between preceding soil 425 

moisture and evapotranspiration in the hottest month is compared with reference data in Figure 9. 426 

Apart from the apparent bias in evapotranspiration in NEU and CEU, HadGEM3-A captures the 427 

observed coupling well. Overall strength and the spatial pattern of the correlation between soil 428 

moisture and evapotranspiration are also well represented. With few exceptions the HadGEM3-A 429 

ensemble captures the observed coupling strength in all European regions. Only over the Iberian 430 

Peninsula (underestimation) and in Ireland (no coupling) the model results do not agree with the 431 

correlations across the reference datasets. Note the large spread of correlations between the individual 432 

ensemble members suggesting strong variability of the modelled coupling. 433 

Evapotranspiration - Temperature Coupling: The HadGEM3-A coupling between evapotranspiration 434 

and temperature in the hottest month is compared with reference data in Figures 10 and 11. While the 435 

overall strength and the north-south gradient in the correlation are represented in the model, its 436 

simulated spatial coupling pattern agrees only partially with the reference datasets. The transition zone 437 

with zero coupling strength between the positive coupling in NEU and the negative coupling in MED* 438 

is too wide in the model, and it is shifted northward as compared to the reference datasets. This 439 

contributes to the overestimation of hot temperature extremes by the HadGEM3-A model found in 440 

Section 4. The underestimation of the evapotranspiration-temperature coupling between 50°N-65N° 441 

also explains why the observed correlation is not contained in the HadGEM3-A ensemble in large parts 442 

of this region. This occurs even though the spread of correlations between the ensemble members of 443 

HadGEM3-A is large, as for the previous coupling (Figure 9 of Seneviratne et al., 2010). Results also 444 

show a Northward extension of coupling region, potentially creating too warm hot periods, in 445 



agreement with the extreme value analysis of Section 4.  We find comparable results for mean and 446 

extreme temperatures indicating almost no change of this coupling in heat waves. 447 

We find a large spread of coupling strengths between the ensemble member simulations (not shown) 448 

indicating large variability of the coupling. It remains unclear if this is a model-specific feature. This 449 

could be tested by comparing the temporal variability of the coupling strength in the reference data 450 

and in the model output using temporal subsets of the available data. However, this is beyond the 451 

scope of this article. We note, however, that this variability could help to explain the offset in the spatial 452 

patterns of coupling strengths between the reference datasets and the model. 453 

Spring preconditioning of heat waves: We next investigate to what extent spring preconditioning of 454 

soil matters for individual heat wave metrics (see e.g. Vautard et al., 2007; Hirschi et al., 2011). A metric 455 

of European heat waves that targets impacts is used, based on maximum and minimum temperatures 456 

exceeding the 90th percentile threshold for at least 3 days and 2 nights (Pezza et al., 2012; Cowan et al. 457 

2017). This approach should be considered analogous to approaches using Excess Heat Factor (e.g. 458 

Perkins et al., 2012) or hottest daily maximum temperature of the year (Hauser et al., 2016) and hence 459 

relates to the index considered above. We tested the sensitivity of summer heat waves to preceeding 460 

wet and dry springs for different European sub-regions in E-OBS v14.0, and whether the HadGEM3-A 461 

can capture this sensitivity. Heat wave composites were calculated over summers following the top 462 

20% driest and wettest springs (i.e. for E-OBS this is equivalent to the 14 driest and 14 wettest springs, 463 

for  HadGEM3-A  this corresponds to the 11 driest and 11 wettest springs per ensemble member) based 464 

on 3-month Standardized Precipitation Index (SPI;  McKee et al., 1993) for spring ending in May, 465 

averaged over each region of interest (bounded regions in Figure 12). A non-parametric two-sample 466 

Wilcoxon sign-ranked test (Hollander and Wolfe, 1999) us used in order to determine if the summer 467 

heat wave metrics are distinguishably different between dry and wet spring cases at the 95% 468 

confidence level (e.g. Cowan et al., 2017).  469 



 Figure 12 shows the composite patterns following the wet and dry springs for the heat wave duration 470 

(HWD), which describes the longest seasonal heat wave. The model composites are based on 11 springs 471 

each from the 15 historical ensemble members (165 springs in total). The patterns from E-OBS show 472 

that dry springs across southern Europe are systemically followed by longer summer heat waves 473 

compared to wet springs (Figure 12, left panels), with many Mediterranean regions exceeding 5.5 days 474 

on average. This is consistent with the results for coupling strength shown above (Figure 10). Further 475 

north into central and eastern continental Europe, this observed tendency becomes much weaker and 476 

less significant. Across southern England and northern France, despite the lack of significance there is 477 

a small increase in HWD following dry springs compared to wet springs. For western Scandinavia, longer 478 

summer heat waves tend to emerge following wetter springs, consistent with a positive 479 

evapotranspiration temperature coupling, which suggests that antecedent soil moisture conditions, 480 

based on the SPI, are not a significant predictor of summer-time heat wave activity.  481 

In general, HadGEM3-A shows a smaller effect of dry springs on HWDs across the western 482 

Mediterranean, however, it captures the significant differences compared to the wet spring composites 483 

(Figure 12; right panels). The model also appears to overestimate the dry-spring HWDs over the far 484 

eastern Mediterranean including Romania. Further north, the model simulates a much weaker spring 485 

SPI - summer HWD relationship, with strong positive biases over most of Scandinavia (compared to E-486 

OBS). Across southeastern England and northern France, the model suggests that spring drying has 487 

significant control over heat wave activity (also seen in the simulated heat wave amplitude; not shown); 488 

this signal is more pronounced in the model if upper layer soil moisture? is used instead of the SPI (not 489 

shown).  Despite model biases, the patterns across southern Europe imply that dry springs and winters 490 

do exert a strong influence on summer heat wave activity, confirming earlier observational studies 491 

(Quesada et al., 2012, Vautard et al., 2007) and consistent with results for coupling strength shown 492 

above (Figure 10). For central Europe, Scandinavia and the Baltic states, there is only a weak association 493 

to spring conditions in both model and observations, although the model captures the strong spring 494 

pre-conditioning across Eastern Europe. This is in agreement with a northward shift of the negative 495 



coupling region as found above (Figure 10), and as such, the model appears to have a stronger response 496 

to dry spring anomalies in Eastern Europe compared with observations. The results for both E-OBS and 497 

HadGEM3-A are affected by sampling uncertainty, particularly for observations, and the fact that the 498 

SPI is averaged over large domains with many different climates; thus care must be taken in interpreting 499 

the spring-summer coupling. Furthermore, the SPI may not fully represent variations in the simulated 500 

upper soil moisture over northern latitudes (e.g. Scandinavia), given low correlations (~0.1) in the 501 

model, compared to 0.93 over western Mediterranean.   502 

5.4 Stratosphere-troposphere interactions 503 

 504 

A key process in cold spells development is the interaction between stratosphere and troposphere, 505 

which must also be well represented in view of cold spell events attribution. In the extra-tropical NH 506 

winter there is a tendency for anomalies to propagate from the stratosphere to the troposphere where 507 

they disturb the NAO and the weather related to this dominating mode of variability. In particular, weak 508 

stratospheric vortex events are followed by an increased probability of cold temperatures and cold 509 

extremes in Europe. Although this coupling between the stratosphere and the troposphere on intra-510 

seasonal time-scales has been known for more than a decade (Baldwin and Dunkerton, 1999; 511 

Christiansen, 2001) there still remain unanswered questions about how to represent the stratospheric 512 

variability in order to optimally catch the coupling. Here, we evaluate the HadGEM3-A model's ability 513 

to reproduce the observed connection between the stratosphere and the troposphere. 514 

The downward propagation from the stratosphere to the troposphere can be demonstrated by lagged 515 

correlations between zonal mean wind at 60°N, 10 hPa (a measure of the stratospheric vortex) and the 516 

zonal mean wind at other vertical levels at 60°N. 517 

Unfortunately, only monthly averaged stratospheric model data have been saved in the model 518 

experiments while daily should be used. To partly overcome this we have interpolated the monthly 519 

averages to daily values. To evaluate the soundness of this approach we compare them with 520 

observations sub-sampled to monthly values and then interpolated back to daily values. In daily 521 



observations the downward propagation is clearly seen with maximum correlations at the surface 522 

lagging those in the stratosphere with about 2 weeks. In the model there is a similar connection 523 

between the stratosphere and the troposphere but it appears less lagged. This is at least partly due to 524 

the smoothing effect of dealing with monthly data (as seen in the top left panel of Fig. 13). 525 

The fact that the stratosphere is leading the troposphere also in the model is more clearly seen in Fig. 526 

13 which shows the correlations between the stratospheric vortex (zonal mean wind at 60°N 10 hPa) 527 

and the NAO. The effect of a weak NAO on European temperatures are well known (Hurrel et al., 2003), 528 

thus Figure 14d shows the model skill to simulate a key connection between stratosphere and the 529 

circulation pattern present during cold spells occurrences. 530 

Finally, Figure 14 shows the correlation between the anomaly of the stratospheric vortex, defined as 531 

above, and surface temperatures, for observations and five model ensemble members. For the 532 

observations we find a pattern that is consistent with the impact of the NAO: positive correlations in 533 

the middle and Northern Europe and negative correlations in Southern Europe (although these 534 

correlations are not statistically significant).  For the model we find that the ensemble members agree 535 

on the general pattern, as revealed by ensemble mean correlations although there are considerable 536 

differences between ensemble members. 537 

5.5 Processes involved in storm surges 538 

 539 

Storm surges can occur in numerous places in Europe and driving processes are essentially the 540 

interaction between winds, low pressure systems, seas dynamics, and waves. It would be a tremendous 541 

task, well beyond the scope of this article, to assess the model’s capacity to simulate weather 542 

conditions conducive to storm surges everywhere in Europe. Only a case study is developed here as an 543 

example, in the Baltic sea, a region that is known for witnessing severe surges due to the geometry of 544 

the sea and weather conditions. These occur in particular when strong winds develop after the passage 545 

of cyclones over the Baltic Sea, potentially inducing extreme variations in sea level resulting in storm 546 



surges e.g. along the German Coast in the southwestern Baltic Sea region (Sztobryn et al., 2005; 547 

Hünicke et al., 2015). During strong onshore winds, the sea level rises due to wind set-up. 548 

In this section we assess the ability of using HadGEM3-A as atmospheric forcing data to drive the 549 

regional ocean model TRIM-NP (Kapitza, 2008) for calculating water level of the Baltic Sea in 12.8km 550 

spatial resolution. Results are summarized here as a parallel study assesses the attribution of these 551 

events to climate change (Klehmet et al., 2017, in preparation). Dynamical downscaling of HadGEM3-552 

A data has been done with 7 ensemble members only (due to computing costs) for 1971-2010. To 553 

obtain a gridded reference data for the evaluation, one model reconstruction of water level of TRIM-554 

NP has been performed using the CoastDat2 data (Geyer, 2014) as atmospheric forcing. CoastDat2 is a 555 

regional atmospheric hindcast simulation for the European continent for 1948 to 2012 obtained with 556 

the regional climate model COSMO-CLM (Rockel et al., 2008) using the global reanalysis data of NCEP-557 

R1 (Kalnay et al., 1996; Kistler et al., 2001) as forcing data. We then first directly compare the outputs 558 

of HadGEM3A-TRIM-data with those of CoastDat-TRIM.  559 

Maximal November water level anomalies for selected grid boxes representing locations co-located to 560 

cities along the German coast (here : Warnemünde, Travemünde) for 1971-2010 relative to the 1971-561 

2010 mean of the HadGEM3A-TRIM-data underestimate extreme water levels as compared with 562 

CoastDat-TRIM (Figure 15). The high water levels of both storm surge events in 1995 and 2006 shown 563 

by CoastDat-TRIM, used as reference data, are not found in the time series of historical HadGEM3A-564 

TRIM ensemble simulations that represent actual climate with anthropogenic forcing. 565 

However, extreme winds in the area are properly reproduced by the model. We compared the 566 

simulated distribution of three simple wind indicators with ERA-Interim surface winds: the wind speed 567 

itself, the wind speed conditional on winds in the North-East Quadrant, and the North-Easterly 568 

component of the daily wind field calculated as NEW = -U –V, U and V being respectively the zonal and 569 

meridional wind components. All indices were averaged over the area (10°E-18°E; 54°N-56°N), which 570 

encompasses the South-Western Baltic Sea. Distributions are fairly well represented as shown in Figure 571 



16, despite a minor wind underestimation by HadGEM3-A relative to ERA-Interim. This 572 

underestimation is quite homogeneous irrespective of the wind speed, and reaches about 6% in the 573 

extreme values, but cannot explain the too low water levels of storm surges in Figure 15. However, 574 

ERA-Interim winds may themselves have biases and one should be prudent in the interpretation of 575 

these results. Comparisons with winds over sea remains difficult as observation data are largely 576 

missing. Therefore, at least for this Baltic Sea, we could not find any major HadGEM3-A simulation bias 577 

hindering the attribution of storm surges. 578 

6. Conclusion and discussion 579 

 580 

In view of attribution of change of likelihood of extreme events to human activity, we have presented 581 

a number of comparisons between an ensemble of 15 atmospheric simulations from the HadGEM3-A 582 

model and various observations over Europe. We have presented an analysis of model mean and 583 

extreme statistics, and an assessment of its capacity to simulate key processes involved in a few 584 

extreme events development. Results presented here show that HadGEM3-A simulates the 585 

atmospheric mean, variability and extremes in Europe fairly realistically. As for any climate model, 586 

some biases are found but (i) the major regional patterns of the climatology of the main variables is 587 

well simulated and (ii) dynamical weather patterns are faithfully simulated by the model. This provides 588 

confidence in use for attribution. Concerning extreme values, too strong heat extremes and heavy 589 

precipitation are found, but the parameters of distributions do not exhibit qualitatively different 590 

behavior than in observations. However, simulations do not well capture the observed patterns and 591 

amplitudes of trends in temperature and precipitation, which is partly due to a trend in circulation that 592 

is different from the observed one and from other climate models. While for temperature our trend 593 

analysis shows that these discrepancies can be due to internal atmospheric variability (especially in 594 

winter), precipitation trends have slight, but systematic, biases across the ensemble, which remain 595 

unexplained. 596 



We then have examined some key atmospheric processes but found no major deficiencies. The 597 

variability of circulation types is well simulated, both in terms of spatial patterns and occurrence 598 

frequencies. Physical processes behind these statistics consistently demonstrate the ability of the 599 

model to simulate extreme events. Here are the main consequences that could be drawn for each of 600 

the five types of extremes that we considered in this study. 601 

Heat Waves 602 

Simulated weather patterns associated with hot events compare favorably with those shown in the 603 

reanalysis, however, with significant internal variability in the representation of events between model 604 

ensemble members. However, heat build-up is also amplified by land-atmosphere feedbacks. We 605 

found that HadGEM3-A captures land-atmosphere interactions in present-day climate reasonably well. 606 

We assessed the different parts of this coupling and find that especially the soil moisture-607 

evapotranspiration coupling is well represented, while the evapotranspiration-temperature coupling is 608 

underestimated in regions between 50°N-65N°. The overall coupling is investigated by correlating 609 

preceding precipitation with temperature in the hottest month where the correlations of the model 610 

output and between the reference datasets are similar, but the spatial patterns are not entirely 611 

captured. Consistently, observed heat wave metrics following wet springs are significantly different 612 

from those following dry springs, particularly in Southern Europe and this process is reasonably well 613 

captured in the model. 614 

Too strong drying is taking place in the model with exaggerated evapotranspiration, in central and 615 

northern Europe in the hottest month, a probable reason for too many and strong heat waves. 616 

Simulated summer temperatures actually exhibit a too large interannual variability in these regions. 617 

Whether all these phenomena are linked remains to be confirmed with further analyses, however, our 618 

results are suggestive of a bias towards a too fast transition towards a soil-moisture limited regime in 619 

Central/ Northern areas as found in many other models (Fischer et al., 2012, Bellprat et al., 2014). This 620 

may explain the biases found in the shape and location parameters for hot extremes. The role of spring 621 



preconditioning on heat wave metrics appears reasonably simulated, although findings are consistent 622 

with the biases discussed above. 623 

The consequences for attribution of these results remain difficult to evaluate. The overestimated 624 

interannual variability, together with evapotranspiration overestimation in large parts of Europe 625 

suggests that heat waves responses to atmospheric composition changes may be too large. However, 626 

observed trends in summer temperatures themselves do not show evidence of such oversensitivity. 627 

This indicates that biases may not have a major influence on the skill of the model to simulate the 628 

overall change in odds of heat waves or that some of the model errors compensate for current climate. 629 

Droughts 630 

Droughts have not been investigated in detail. However, several remarks can be made. The above 631 

results for temperatures and evapotranspiration should in principle translate in the model simulating 632 

too strong summer droughts. In addition, interannual precipitation variability appears to be slightly 633 

overestimated in summer, potentially leading to both drier and wetter summers. However a deeper 634 

investigation is required to better understand biases of the model and whether these biases are 635 

hindering attribution of drought in Europe. It should be noted that climate models have large 636 

differences in trends in droughts in Central Europe. 637 

Cold spells 638 

The circulation associated with cold events in Central Europe is well captured by the model and 639 

individual model ensemble members again show long-term variations in the extent and intensity of 640 

average cold spells linked to atmospheric internal variability. Extreme value analysis of extreme cold 641 

winter temperatures show a fairly good agreement between simulated and observed values. However, 642 

the simulations are not free of biases in the frequency of cold spells. Weather regimes such as blocking 643 

or negative NAO, which usually drive cold spells in Europe, are well simulated, although their trend 644 

does not necessary match that in the model. Interactions and lagged correlations between the 645 

stratospheric vortex and tropospheric NAO and European temperatures are similar in model and 646 



observations. Therefore, we did not find any major process hindering the representation of cold spells.  647 

However, the trends in circulation and temperature are not well-simulated. Due to high natural 648 

variability it cannot be assessed how this translates to trends in cold extremes. 649 

Extreme precipitation 650 

Extreme daily precipitation are in large parts of Europe due to convective phenomena and thus local 651 

by nature. Global climate models usually have difficulties in simulating such phenomena given their 652 

coarse spatial resolution. HadGEM3-A has a wet bias in these extremes, associated with a too-large 653 

variability, especially around the Mediterranean sea. In this area we expect daily precipitation patterns 654 

to have a smaller scale than the model resolution calling for prudence in attribution interpretation from 655 

this model. However, it is noteworthy that the spatial pattern of extreme precipitation distributions is 656 

quite similar to observed. Also, despite the biases, the simulations exhibit GEV parameters that are 657 

quite consistent with observations, which could make the simulations eligible for attribution of 658 

precipitation extremes once the bias has been corrected. 659 

Storm surges 660 

Results for storm surges indicate an underestimation of the events amplitude when a regional ocean 661 

model is driven by HadGEM3-A as compared to a regional atmospheric hindcast obtained by 662 

downscaling the NCEP-R1 reanalysis. Comparisons of simulated winds with ERA-Interim reanalysis 663 

show a good performance of the model for strong winds or strong North-Easterlies in the South-664 

Western Baltic Sea region where storm surges occur in Northern Germany, indicating that winds in the 665 

investigated domain are actually not the main factor of underestimation. Thus HadGEM3-A model 666 

simulations can a priori be used for storm surge attribution. 667 

 668 

 669 

Acknowledgements 670 

 671 



This study was part of the European CLimate and weather Events: Interpretation and Attribution 672 

(EUCLEIA) FP7 SPACE project, Grant Agreement n° 607085, and concerned principally its Work Package 673 

6 (Evaluation and diagnostics). NC and AC, FL and PS were also supported by the Joint BEIS/Defra Met 674 

Office Hadley Centre Climate Programme (GA01101). 675 

References 676 

 677 

Alexander L. (2016) Global observed long-term changes in temperature and precipitation extremes: A 678 

review of progress and limitations in IPCC assessments and beyond. Weather and Climate Extremes 679 

Volume 11, March 2016, Pages 4–16. 680 

Angélil, O., Perkins-Kirkpatrick, S., Alexander, L. V., et al. Comparing regional precipitation and 681 

temperature extremes in climate model and reanalysis products. Weather and Climate Extremes, 2016, 682 

vol. 13, p. 35-43. 683 

Attribution of Extreme Weather Events in the Context of Climate Change (National Academies, 2016). 684 

https://www.nap.edu/catalog/21852/attribution-of-extreme-weather-events-in-the-context-of-685 

climate-change 686 

Baldwin, M. P., & Dunkerton, T. J. (1999) Propagation of the Arctic Oscillation from the stratosphere to 687 

the troposphere. Journal of Geophysical Research: Atmospheres, 104(D24), 30937-30946. 688 

Bellprat, O., Kotlarski, S., Lüthi, D., & Schär, C. (2014) Physical constraints for temperature biases in 689 

climate models. Geophysical Research Letters, 40(15), 4042-4047. 690 

Bellprat, O., and F. Doblas-Reyes, (2016) Attribution of extreme weather and climate events 691 

overestimated by unreliable climate simulations. Geophys. Res. Lett., doi: 10.1002/2015GL067189. 692 

Bindoff NL, Stott PA, AchutaRao KM, Allen MR, Gillett N, Gutzler D, Hansingo K, Hegerl G, et al. (2013). 693 

Chapter 10 - Detection and attribution of climate change: From global to regional. In: Climate Change 694 

2013: The Physical Science Basis. IPCC Working Group I Contribution to AR5. Cambridge: Cambridge 695 

University Press. 696 

Blauhut, V., Gudmundsson L. & Stahl, K. (2015) Towards pan-European drought risk maps: quantifying 697 

the link between drought indices and reported drought impacts. Environ. Res. Lett. 10, 014008. 698 

Burke, C., P.A. Stott, Y. Sun, A. Ciavarella (2016) Wettest May in South-Eastern China for 40 years, In 699 

"Explaining Extremes of 2015 from a Climate Perspective", Bull. Amer. Meteor. Soc. Sup. 700 

Cassou, C., Terray, L. & Phillips, A. S. (2015) Tropical Atlantic influence on European heat waves. J. Clim. 701 

18, 2805_2811. 702 

Cattiaux, J., R. Vautard,, C. Cassou, P. Yiou, V. Masson-Delmotte and F. Codron (2010) Winter 2010 in 703 

Europe : a cold extreme in a warming climate. Geophys. Res. Lett., 37, L20704, 704 

doi:10.1029/2010GL044613. 705 

Christiansen, B. (2001) Downward propagation of zonal mean zonal wind anomalies from the 706 

stratosphere to the troposphere: Model and reanalysis. Journal of Geophysical Research: Atmospheres, 707 

106(D21), 27307-27322. 708 



Christidis, N., P.A. Stott, A. Scaife, A. Arribas, G.S. Jones, D. Copsey, J.R. Knight, W.J. Tennant (2013a) A 709 

new HadGEM3-A based system for attribution of weather and climate-related extreme events, J. 710 

Climate, 26, 2756-2783 711 

Christidis, N., P.A. Stott, D.J. Karoly, A. Ciavarella (2013b) An attribution study of the heavy rainfall over 712 

eastern Australia in March 2012, In "Explaining Extremes of 2012 from a Climate Perspective", Bull. 713 

Amer. Meteor. Soc. Supp. 714 

Christidis, N., P.A. Stott, A. Ciavarella (2014) The effect of anthropogenic climate change on the cold 715 

spring of 2013 in the UK. In "Explaining Extremes of 2013 from a Climate Perspective". Bull. Amer. 716 

Meteor. Soc., 95(9), S79–S82 717 

Christidis, N., M. McCarthy, A. Ciavarella, P.A. Stott (2016) Human contribution to the record sunshine 718 

of 2014/15 in the United Kingdom, In "Explaining Extremes of 2015 from a Climate Perspective", Bull. 719 

Amer. Meteor. Soc., supp. 720 

Coles, S., Bawa, J., Trenner, L., & Dorazio, P. (2001) An introduction to statistical modeling of extreme 721 

values (Vol. 208). London: Springer. 722 

Corti, T., Muccione, V., Köllner-Heck, P., Bresch, D. & Seneviratne, S. I. (2009) Simulating past droughts 723 

and associated building damages in France. Hydrol. Earth Syst. Sci. 13, 1739–1747. 724 

Cowan, T., A. Purich, S. Perkins, A. Pezza, G. Boschat, and K. Sadler (2014) More Frequent, Longer, and 725 

Hotter Heat Waves for Australia in the Twenty-First Century. Journal of Climate, 27, 5851–5871, doi: 726 

10.1175/JCLI-D-14-00092.1.  727 

Cowan, T., G. Hegerl, I. Colfescu, A. Purich and G. Boshcat (2017) Factors contributing to record-break-728 
ing heat waves over the Great Plains during the 1930s Dust Bowl, Journal of Climate, doi: 10.1175/JCLI-729 
D-16-0436.1 (in press). 730 
 731 
Deser, C., J. W. Hurrell and A. S. Phillips (2016) The Role of the North Atlantic Oscillation in European 732 
Climate Projections. Clim. Dyn., doi: 10.1007/s00382-016-3502-z 733 
 734 
Eden, J.M., Bellprat, O., Kew, S., Lenderink, G., Manola, I., Omrani, H. and Oldenborgh, G.J. van. (2017) 735 
Extreme precipitation in the Netherlands: an event attribution case study, Clim. Dynam. (submitted). 736 
 737 
Eden, J.M., Wolter, K., Otto, F.E.L. and Oldenborgh, G.J. van. (2016) Multi-method attribution analysis 738 
of extreme precipitation in Boulder, Colorado, Env. Res. Lett., 11, 124009. DOI:10.1088/1748-739 
9326/11/12/124009. 740 
 741 
Fischer, E. M., Rajczak, J., & Schär, C. (2012) Changes in European summer temperature variability 742 
revisited. Geophysical Research Letters, 39(19). 743 
 744 
Geyer, B. (2014) High-resolution atmospheric reconstruction for Europe 1948–2012: coastDat2, Earth 745 

Syst. Sci. Data, 6, 147-164 746 

van Haren, R., van Oldenborgh, G. J., Lenderink, G., Collins, M., & Hazeleger, W. (2013) SST and 747 

circulation trend biases cause an underestimation of European precipitation trends. Climate dynamics, 748 

40(1-2), 1-20. 749 

Hauser, M., R. Orth, and S. I. Seneviratne (2016) Role of soil moisture versus recent climate change for 750 
the 2010 heat wave in Russia, Geophysical Research Letters, 43, 2819–2826, 751 
doi:10.1002/2016GL068036. 752 

http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-14-00092.1
http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-14-00092.1


Hauser, M., L. Gudmundsson, R. Orth, A. Jézéquel, K. Haustein, R. Vautard, G. J. van Oldenborgh and 753 
S. I. Seneviratne, 2017. Methods and model dependency of extreme event attribution : the 2015 754 
European drought. Earth’s Future, submitted. 755 
 756 
Haylock, M.R., N. Hofstra, A.M.G. Klein Tank, E.J. Klok, P.D. Jones, M. New. (2008) A European daily high-757 

resolution gridded dataset of surface temperature and precipitation. J. Geophys. Res. 113, D20119. 758 

Hegerl, G., & Zwiers, F. (2011) Use of models in detection and attribution of climate change. Wiley 759 

Interdisciplinary Reviews: Climate Change, 2(4), 570-591. 760 

Hirschi, M., Seneviratne, S. I., Alexandrov, V., Boberg, F., Boroneant, C., Christensen, O. B., Formayer, H., 761 

Orlowsky, B., Stepanek, P. (2011) Observational evidence for soil-moisture impact on hot extremes in 762 

southeastern Europe. Nature Geoscience, 4(1), 17-21. 763 

Hollander, M., and D. A. Wolfe (1999) Nonparametric Statistical Methods. John Wiley and Sons, 787 pp. 764 

Hünicke B., Zorita E. et al., 2015: The BACC II Author Team, Second Assessment of Climate Change for 765 

the Baltic Sea Basin, Regional Climate Studies, DOI 10.1007/978-3-319-16006-1_9. 766 

Hurrell, J. W., Kushnir, Y., Ottersen, G., & Visbeck, M. (2003) An overview of the North Atlantic oscillation 767 

(pp. 1-35). American Geophysical Union. 768 

Jones, C.D., J.K. Hughes, N. Bellouin, S.C. Hardiman, G.S Jones, J. Knight, S. Liddicoat, F.M. O'Connor, 769 

R.J. Andres, C. Bell, K.-O. Boo, A. Bozzo, N. Butchart, P. Cadule, K.D. Corbin, M. Doutriaux-Boucher, P. 770 

Friedlingstein, J. Gornall,  L.Gray, P.R. Halloran, G.Hurtt, W.J. Ingram, J.-F. Lamarque, R.M. Law, M. 771 

Meinshausen, S. Osprey, E.J. Palin, L. Parsons Chin, T. Raddatz, M.G. Sanderson, A.A. Sellar, A. Schurer, 772 

P. Valdes, N. Wood,  S. Woodward, M. Yoshioka, M.Zerroukat (2011) The HadGEM2-ES implementation 773 

of CMIP5 centennial simulations, Geosci. Model Dev., 4, 543–570 774 

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., 775 

Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, 776 

J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D. (1996) The NCEP/NCAR 40-year reanalysis 777 

project, B. Am. Meteorol. Soc., 77, 437–471. 778 

Kapitza, H. (2008) Mops -a morphodynamical prediction system on cluster computers. In: High 779 

performance computing for computational science - VECPAR 2008, J. M. Laginha, M. Palma, P.R. 780 

Amestoy, M. Dayde, M. Mattoso, J. Lopez (Eds.), pp. 63-68. Lecture Notes in Computer Science, Springer 781 

Verlag. 782 

Kirtman, B., S.B. Power, J.A. Adedoyin, G.J. Boer, R. Bojariu, I. Camilloni, F.J. Doblas-Reyes, A.M. Fiore, 783 

M. Kimoto, G.A. Meehl, M. Prather, A. Sarr, C. Schär, R. Sutton, G.J. van Oldenborgh, G. Vecchi and H.J. 784 

Wang (2013) Near-term Climate Change: Projections and Predictability. In: Climate Change 2013: The 785 

Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the 786 

Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. 787 

Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, 788 

United Kingdom and New York, NY, USA, pp. 953–1028, doi:10.1017/CBO9781107415324.023. 789 

Kistler, R., Kalnay, E., Collins,W., Saha, S., White, G.,Woollen, J., Chelliah, M., Ebisuzaki,W., Kanamitsu, 790 

M., Kousky, V., van den Dool, H., Jenne, R., and Fiorino, M. (2001) The NCEP-NCAR 50-year reanalysis: 791 

Monthly means CD-ROM and documentation, B. Am. Meteorol. Soc., 82, 247–267. 792 

Krueger, O., Hegerl, G. C., & Tett, S. F. (2015) Evaluation of mechanisms of hot and cold days in climate 793 

models over Central Europe. Environmental Research Letters, 10(1), 014002. 794 



Legras, B., and M. Ghil, (1985) Persistent anomalies, blocking and variations in atmospheric 795 

predictability, J. Atmos. Sci., 42, 433-471. 796 

Lott, F., N. Christidis, P.A. Stott (2013) Can the 2011 East African drought be attributed to human-797 

induced climate change? Geophys. Res. Lett., 40, 1177-1181 798 

Lott, F. C., & Stott, P. A. (2016). Evaluating Simulated Fraction of Attributable Risk Using Climate 799 

Observations. Journal of Climate, 29(12), 4565-4575. 800 

McKee, T. B., N. J. Doesken, and J. Kleist (1993) The relationship of drought frequency and duration to 801 

time scales. In Proceedings of the 8th Conference on Applied Climatology, American Meteorological 802 

Society, Boston, MA, Vol. 17, 179–183. 803 

Michelangeli, P.A., Vautard, R., Legras, B., (1995) Weather regimes: recurrence and quasi-stationarity, 804 

J. Atmos. Sci., 52, 1237-1256. 805 

Mueller, B., Hirschi, M., Jimenez, C., Ciais, P., Dirmeyer, P. A., Dolman, A. J., Fisher, J. B., Jung, M., Ludwig, 806 

F., Maignan, F., Miralles, D., McCabe, M. F., Reichstein, M., Sheffield, J., Wang, K. C., Wood, E. F., Y. 807 

Zhang, Y. & Seneviratne, S. I. (2013) Benchmark products for land evapotranspiration: LandFlux-EVAL 808 

multi-dataset synthesis. Hydrol. Earth Syst. Sci. 17, 3707-3720. 809 

van Oldenborgh, G. J., Drijfhout, S., Ulden, A. V., Haarsma, R., Sterl, A., Severijns, C., W. Hazeleger & 810 

Dijkstra, H. (2009) Western Europe is warming much faster than expected. Climate of the Past, 5(1), 1-811 

12. 812 

van Oldenborgh, G. J., Reyes, F. D., Drijfhout, S. S., & Hawkins, E. (2013). Reliability of regional climate 813 

model trends. Environmental Research Letters, 8(1), 014055. 814 

Orsolini, Y. J., R. Senan, G. Balsamo, F. J. Doblas-Reyes, F. Vitart, A. Weisheimer, A. Carrasco, and R. E. 815 

Benestad, (2013) Impact of snow initialization on sub-seasonal forecasts. Clim. Dyn., 41, 1969–1982, 816 

doi:10.1007/s00382-013-1782-0. 817 

Orth, R. & Seneviratne, S. I. (2015) Introduction of a simple-model-based land surface dataset for 818 

Europe. Env. Res. Lett. 10, 044,012. 819 

Pall, P., Aina, T., Stone, D. A., Stott, P. A., Nozawa, T., Hilberts, A. G. J., Lohmann, D., Allen, M. R. (2011) 820 

Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000. Nature, 821 

470(7334), 382-385. 822 

Perkins, S. E., L. V. Alexander, and J. R. Nairn (2012) Increasing frequency, intensity and duration of 823 
observed global heatwaves and warm spells. Geophysical Research Letters, 39, L20714, doi: 824 
10.1029/2012GL053361. 825 
 826 
Pezza, A. B., P. van Rensch, and W. Cai (2012) Severe heat waves in Southern Australia: synoptic 827 

climatology and large scale connections. Climate Dynamics, 38, 209–224, doi:10.1007/s00382-011-828 

1016-2. 829 

Philip, S., S. F. Kew, G. J. van Oldenborgh, E. Aalbers, R. Vautard, F. Otto, K. Haustein, F. Habets, R. Singh 830 

and H. Cullen (2017) Validation of a rapid attribution of the May/June 2016 flood-inducing precipitation 831 

in France to climate change, Climate Dynamics, submitted. 832 

Quesada, B., Vautard, R., Yiou, P., Hirschi, M. & Seneviratne, S. I. (2012) Asymmetric European summer 833 
heat predictability from wet and dry southern winters and springs. Nature Clim. Change 2, 736–741. 834 
 835 



Rayner, N.A., D.E. Parker, E.B. Horton, C.K. Folland, L.V. Alexander, D.P. Rowell, E.C. Kent, A. Kaplan 836 

(2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the 837 

late nineteenth century, J. Geophys. Res., 108, doi:10.1029/2002JD002670 838 

Reichstein, M. et al. (2013) Climate extremes and the carbon cycle. Nature 500, 287–295. 839 

Rockel, B., A. Will, und A. Hense (2008) The Regional Climate Model COSMO-CLM (CCLM), Editorial, 840 

Meteorol. Z., Volume 12, Number 4, 347-348. 841 

Rosenzweig, C., Iglesias, A. & Yang X (2001) Climate change and extreme weather events; implications 842 

for food production, plant diseases, and pests. Global Change & Hum. Health 2, 90–104. 843 

Schaller, N., A. L. Kay, R. Lamb, N. R. Massey, G.-J. van Oldenborgh, F. E. L. Otto, S. N. Sparrow, R. Vautard, 844 

P. Yiou, A. Bowery, S. M. Crooks, C. Huntingford, W. Ingram, R. Jones, T. Legg, J. Miller, J. Skeggs, D. 845 

Wallom, S. Wilson & M. R. Allen (2015) Human influence on climate in the 2014 Southern England 846 

winter floods and their impacts. Nature climate change, doi:10.1038/nclimate2927. 847 

Seneviratne, S.I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B., Lehner, I., Orlowsky, B. &. Teuling, A. J., 848 

(2010) Investigating soil moisture-climate interactions in a changing climate: A review. Earth-Science 849 

Reviews, 99, 3-4, 125-161. 850 

Seneviratne, S. I. et al. (2012) Managing the Risks of Extreme Events and Disasters to Advance Climate 851 

Change Adaptation 109–230 (Cambridge Univ. Press, 2012). 852 

Seneviratne, S.I., Donat, M., Pitman, A. J., Knutti, R. & Wilby, R. L. (2016) Allowable CO2 emissions based 853 

on regional and impact-related climate targets. Nature 529, 477-483. 854 

Sippel, S., F. E. L. Otto, M. Forkel, M. R. Allen, B. P. Guillod, M. Heimann, M. Reichstein, S. I. 855 

Seneviratne, K. Thonicke, and M. D. Mahecha (2016) A novel bias correction methodology for climate 856 

impact simulations, Earth Syst. Dyn., 7, 71–88, doi:10.5194/esd-7-71-2016. 857 

Stegehuis, A., R. Vautard, P. Ciais, R Teuling, M. Jung, and P. Yiou, 2013: Summer temperatures in 858 

Europe and land heat fluxes in observation-based data and regional climate model simulations. 859 

Climate Dynamics, 41, 455-477. 860 

Stott, P.A., N. Christidis, F. Otto, Y. Sun, J.-P. Vanderlinden, G.-J. van Oldenborgh, R. Vautard, H. von 861 

Storch, P. Walton, P. Yiou, F.W. Zwiers (2016) Attribution of extreme weather and climate-related events, 862 

WIREs Clim. Change, 7, 23-41. 863 

Sztobryn M., Stigge H-J, Wiebliński D, Weidig B, Stanislawczyk, I, Kańska A, Krzysztofik B, Kowalska B, 864 

Letkiewicz B, Mykita M, (2005) Storm Surges in the Southern Baltic Sea (Western and Central Parts), 865 

Berichte des Bundesamtes für Seeschifffahrt und Hydrographie Nr. 39. 866 

University of East Anglia Climatic Research Unit; Harris, I.C.; Jones, P.D. (2015) CRU TS3.23: Climatic 867 

Research Unit (CRU) Time-Series (TS) Version 3.23 of High Resolution Gridded Data of Month-by-month 868 

Variation in Climate (Jan. 1901- Dec. 2014). Centre for Environmental Data Analysis, 09 November 2015. 869 

doi:10.5285/4c7fdfa6-f176-4c58-acee-683d5e9d2ed5. http://dx.doi.org/10.5285/4c7fdfa6-f176-870 

4c58-acee-683d5e9d2ed5 871 

Vautard, R., and B. Legras (1988) On the source of midlatitude low-frequency variability. Part II: 872 

Nonlinear equilibration of weather regimes. J. Atmos. Sci., 45, 2845-2867. 873 

Vautard, R., P. Yiou, F. D’Andrea, N. de Noblet, N. Viovy, C. Cassou, J. Polcher, P. Ciais, M. Kageyama, and 874 

Y. Fan (2007) Summertime European heat and drought waves induced by wintertime Mediterranean 875 

rainfall deficit, Geophys. Res. Lett., 34, L07711, doi:10.1029/2006GL028001 876 

http://dx.doi.org/10.5285/4c7fdfa6-f176-4c58-acee-683d5e9d2ed5
http://dx.doi.org/10.5285/4c7fdfa6-f176-4c58-acee-683d5e9d2ed5


Wilcox, L.J., P. Yiou, M. Hauser, F. C. Lott, G. J. van Oldenborgh, I. Colfescu, B. Dong, G. Hegerl, L. Shaffrey, 877 

and R. Sutton (2017) Multiple perspectives on the attribution of the extreme European summer of 878 

2012 to climate change, Climate Dynamics, First Online, doi:10.1007/s00382-017-3822-7 879 

Williams, K.D., C.M. Harris, A. Bodas-Salcedo, J. Camp, R.E. Comer, D. Copsey, D. Fereday, T. Graham, R. 880 

Hill, T. Hinton, P. Hyder, S. Ineson, G. Masato, S.F. Milton, M.J. Roberts, D.P. Rowell, C. Sanchez, A. Shelly, 881 

B. Sinha, D.N. Walters, A. West, T. Woollings, P.K. Xavier (2015) The Met Office Global Coupled model 882 

2.0 (GC2) configuration, Geosci. Model Dev., 8, 1509-1524. 883 

Zhao Y., B. Sultan, R. Vautard, P. Braconnot, H.J. Wang and A. Ducharne (2016) Potential escalation of 884 

heat-related working costs with climate and socio-economic changes in China. Proc. Nat. Acad. Sci., 885 

113, 4640-4645.  886 



Figure Captions 887 

 888 

Figure 1: JJA mean near-surface temperature: (a) mean state (1960-2013) from CRUTS3.23; (b) mean 889 

state (1960-2013) from HadGEM3-A; (e) linear trends (1960-2013) from CRUTS3.23; (f) the number of 890 

HadGEM3-A ensemble members simulating a trend smaller than observed; (i) rank histogram over all 891 

land grid points counting the probability of the observations falling in each bin between the ranked 892 

simulated values. (c), (d), (g), (h), (j) are the equivalent plots for precipitation. Hatching in panels (e) 893 

and (g) indicates where trends are significant at the 10% level (p<0.1); cross-hatching indicates 894 

significance at the 5% level (p<0.05). 895 

Figure 2: Same as Figure 1 but for the winter season (DJF). 896 

Figure 3: Left, middle and right panels: Evolution of seasonal mean daily mean temperatures in Europe, 897 

Southern Europe and Northern Europe; First row: JJA daily mean temperatures; Second row: JJA daily 898 

max temperatures; Third row: DJF daily mean temperatures; Fourth row: daily min temperatures. 899 

Figure 4: Three left columns: parameters of the GEV distribution fitted to observations (left panels) and 900 

the model simulations (center panels for the distribution of annual maxima in daily temperature (TXx). 901 

μ refers to the location parameter which is related to the mean value, σ the scale parameter, related to 902 

the range, and ζ the shape parameter, diagnosing if the distribution is heavy-tailed (large value of ζ). 903 

The differences between the parameters of the observed and simulated GEV fits are shown in the right 904 

column of panels. For μ and ξ the difference is expressed in absolute terms; σ the difference is 905 

expressed as a ratio. Stippling indicates areas where the observed-simulated difference is larger than 906 

the 95% confidence intervals. Three right columns: same as left columns for the GEV distributions of 907 

the minimal temperatures Tnn. 908 

Figure 5: As Figure 4 but for the distribution of annual maxima in daily precipitation. The fourth row of 909 

panel shows the ratio of the scale parameter σ and location parameter μ, with the difference again 910 

expressed as a ratio. 911 



Figure 6: Centroids of the four weather regimes sea-level pressure anomalies as obtained from the 912 

NCEP/NCAR re-analyses (a-d for winter, i-l for summer) and HadGEM3-A (Ensemble of 15 members, e-913 

h for winter, m-p for summer). First column: Atlantic Ridge (AR) regime, second column: Blocking (BLO) 914 

regime, third column: Negative NAO (NAO-) regime and fourth column: Zonal (ZO) regime for winter 915 

(d, h) and Atlantic Low (AL) regime for summer (l, p). 916 

Figure 7: JJA Composites of the standardized near-surface temperature for hot summer events over 917 

Central Europe  in Had-GEM3-N216 historical forcing ensemble members 1-15 ( lines 1-3), ensemble 918 

mean (line 4, left) and and 20CR ensemble mean ( line 4, right). The composites have been derived 919 

from all cases where the area-averaged and 5-day averaged temperature over Central Europe is larger 920 

than its 95th seasonal percentile in JJA. 921 

Figure 8: as figure 7, but showing composites of the standardized near-surface geopotential height at 922 

500mb during hot summer events from Figure 7 over Central Europe. 923 

Figure 9: Relationship between July evapotranspiration and June soil moisture averaged across 924 

European subregions (left panels), in observations (gray) and HadGEM3-A (black). The considered time 925 

period is 1989-2005.Correlation between July evapotranspiration and June soil moisture (right panels) 926 

in observations (top) and HadGEM3-A ensemble median (middle). Bottom plot indicates whether or 927 

not HadGEM3-A ensemble captures observed coupling strength. Considered time period is 1989-2005. 928 

Figure 10: Relationship between temperature and evapotranspiration in July averaged across European 929 

subregions, in observations (gray) and HadGEM3-A ensemble median (black). The considered time 930 

period is 1989-2005. The range of correlations across HadGEM3-A ensemble members is shown in red 931 

if the observed correlation is not contained. 932 

Figure 11: Correlation between temperature and evapotranspiration in July in observations (top) and 933 

HadGEM3-A ensemble median (middle). Bottom plot indicates whether or not HadGEM3-A ensemble 934 

captures observed coupling strength. Considered time period is 1989-2005. 935 



Figure 12: Composite of average duration (HWD) of the longest summer heat wave following the (top) 936 

20% driest, and (bottom) 20% wettest springs for (left) E-OBS (1950-2015) and for (right) fifteen 937 

HadGEM3-A historical members (1960-2013), based on Standardised Precipitation Index (SPI) averaged 938 

over each bounded region (i.e. each regions’ HWD pattern is composited based on its own wet and dry 939 

spring ranking). Stippling indicates points that show a statistically significant difference at the 95% level 940 

between dry and wet spring composites, based on a two sample Wilcoxon signed-rank test (Hollander 941 

and Wolfe 1999). Significant differences are only marked on the dry-spring composite maps. HWD 942 

values for regions without heat waves are set to zero. Each composite consists of 14 and 165 springs 943 

for E-OBS and HadGEM3-A (i.e. 11 springs × 15 ensemble members), respectively. 944 

Figure 13: Correlations of winter zonal mean zonal wind anomalies at 60N with that at 10 hPa as 945 

function of pressure and time lag. Positive lags mean that the stratosphere leads.  Light and dark 946 

shading identify regions where the correlations are significantly different from zero at the 5% and 1% 947 

levels as estimated with a Monte-Carlo method that takes serial correlations into account. Top left: 948 

NCEP daily. Top right: NCEP monthly.  Bottom left: A typical member from HadGEM3-A ensemble. 949 

Bottom right: correlations between the stratospheric vortex (zonal mean wind at 60 N, 10 hPa) and the 950 

NAO as function of lag (positive lags mean that the stratosphere leads).  Annual cycle has been 951 

removed. Winter (DJF). NCEP (green), a typical HadGEM-3A ensemble member (blue), NCEP 952 

interpolated from monthly values (green, dashed). The NAO is calculated as the leading principal 953 

component of sea-level pressure. 954 

Figure 14: Correlations between the stratospheric vortex and surface temperatures.  Annual cycle has 955 

been removed. Winter months (DJF). Large dots indicate correlations that have been estimated to be 956 

significantly different from zero (5 % level) as estimated with a Monte-Carlo method that takes serial 957 

correlations into account.  Upper left panel: Observations (E-Obs for surface temperature, NCEP for 958 

stratospheric vortex).  Other panels: Different members from HadGEM-3A ensemble. 959 



Figure 15. November anomalies of maximum water level [m] for 1971-2010 based on reconstructed 960 

model data (Coastdat-TRIM) and historical HadGEM3-A-TRIM (hist) ensemble members 1-7. Selected 961 

grid boxes represent locations co-located with German cities of Travemünde (left) and Warnemünde 962 

(right). 963 

Figure 16: Quantile-quantile plots of the distributions of the three ERA-Interim vs. HadGEM3-A derived 964 

indices of wind in the South-West Baltic sea (see main text for definitions of the indicators). All wind 965 

values or wind speeds are expressed as ms-1. 966 
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 1029 

 Dataset Time period Spatial Resolution 

Temperature E-OBS v14.0 (Haylock et al. 2008) 

CRUTS 3.23 (UEA 2015) 

20CR reanalysis temperature data, 

averaged from 6hrly values 

1960-2013 0.5°x0.5° 

Precipitation E-OBS v14.0 

(Haylock et al. 2008) 

1960-2013 0.5°x0.5° 

Sea level pressure NCAR/NCEP reanalyses 

NOAA 20CR reanalysis, version 2c 

1948-2014 2.5°x2.5° 

2°x2° 

10-m winds ERA-Interim reanalysis 1979-2013 0.7°x0.7° 

Soil Moisture SWBM Dataset (Orth and 

Seneviratne 2015) 

1984-2013 0.5°x0.5° 

Evapotranspiration LandFLux-EVAL Dataset (Mueller et 

al. 2013) 

1989-2005 1°x1° 

 1030 

Table 1: Overview of employed reference datasets 1031 

 1032 

Regime Winter: 
AR 

Winter: 
BLO 

Winter: 
NAO- 

Winter: 
ZO 

Summer: 
AL 

Summer: 
BLO 

Summer: 
NAO- 

Summer: 
AR 

NCEP/NCAR 24.4% 27.2% 21.0% 27.4% 22.6% 30.1% 21.2% 28.6% 

HadGEM3-A 
(15 members) 

23.8% 27.0% 22.5% 26.6% 18.5% 28.4% 24.6% 26.2% 

 1033 

Table 2: Weather regime occupancies (or frequencies) for each cluster, clusters being referenced from 1034 
the NCEP/NCAR reanalyses, for each season. 1035 
 1036 

  1037 



 1038 

Supplementary Figure 1: DJF Composites of the standardized near-surface temperature for cold winter 1039 

events over Central Europe in Had-GEM3-N216 historical forcing ensemble members 1-15 (lines 1-3), 1040 

ensemble mean (line 4, left) and and 20CR ensemble mean (line 4, right). The composites have been 1041 

derived from all cases where the area-averaged temperature over Central Europe is smaller than its 1042 

5th seasonal percentile in DJF.  1043 
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 1045 

 1046 

Supplementary Figure 2: DJF Composites of the standardized geopotential height at 500mb for cold 1047 

winter events over Central Europe in Had-GEM3-N216 ensemble members 1-15 (lines 1-3), ensemble 1048 

mean (line 4, left) and and 20CR ensemble ( line 4, right). The composites have been derived from all 1049 

cases where the area-averaged temperature over Central Europe is lower than the 5th seasonal 1050 

percentile in DJF of the associated temperature. 1051 
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