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Abstract. A tabu random walk on a graph is a partially self-avoiding random walk which uses a bounded memory
to avoid cycles. This memory is called a tabu list and contains vertices already visited by the walker. The size of the
tabu list being bounded, the way vertices are inserted and removed from the list, called here an update rule, has an
important impact on the performance of the walk, namely the mean hitting time between two given vertices.
We define a large class of tabu random walks, characterized by their update rules. We enunciate a necessary and
sufficient condition on these update rules that ensures the finiteness of the mean hitting time of their associated walk
on every finite and connected graph. According to the memory allocated to the tabu list, we characterize the update
rules which yield smallest mean hitting times on a large class of graphs. Finally, we compare the performances of
three collections of classical update rules according to the size of their associated tabu list.

Keywords: Random walk, tabu list, mean hitting time.

1 Introduction

A random walk is a mathematical formalization of a route taken by a walker through a topology of loca-
tions: at each step, the next destination is randomly chosen. Random walks are commonly used to model
phenomena from many fields like physics or economics. Random walks are inherently distributed algo-
rithms which do not need any knowledge except the list of next possible destinations. Random walks are
probabilistic algorithms and this is one of their main advantages. Indeed, since they are non-deterministic
(and thus non-predictable), they can be used to build resilient algorithms in a fault prone environment or
facing intruders [1,2]. Even if there is a change in the environment, e.g., in the topology, or a problem due
to an intruder or a failure, then a resilient algorithm still ensures a certain quality of service.

The main drawback of random walks is the large number of steps generally needed to reach one vertex
starting from another one, namely the hitting time. This is mainly due to the fact that the walker may come
back to previously visited vertices, forming loops. We study partially self-avoiding random walks on finite
graphs. They are variants of the simple random walk, for which at each step the walker chooses its next
destination uniformly at random among all its neighbors.

We add a bounded memory to the walker in order to reduce the number of loops. This memory is called
a tabu list and contains a part of already visited vertices. We say that a tabu list is of length m, if the list can
contain at most m elements. The walker avoids every vertex contained in its tabu list unless it has no choice.
One can expect that the tabu list helps to reduce the mean hitting time of the walk.

As the size of the tabu list is bounded, when the list is full, one element has to be removed before any
new insertion. We call update rule the algorithm which drives the policy of insertion and removal in the list.
For example, in the FIFOm update rule, the tabu list is of length m, the current position of the walker is
always inserted, and when the list is full, the oldest element is firstly removed to make room for the current
position. In particular, FIFO1 yields a non-backtracking random walk: the walker never backtracks to the
last visited vertex unless it is the only neighbor of the vertex currently visited.
? This work is partially supported by Project ANR Aresa2 and Project Terra.
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Contribution. A tabu random walk is characterized by its update rule. We define a large class of update
rules and analytically study their associated tabu random walks. We compare all these tabu random walks
w.r.t. the mean hitting time between every two given vertices. Mainly, we try to figure out how to handle the
memory of the tabu list and what is the best way to do so. The panel of answers we propose here allows to
help the choice of an update rule. More precisely, our contribution is threefold:

1. We provide a necessary and sufficient condition on our update rules that ensures the finiteness of the
mean hitting time on every graph.

2. We partially answer to the question “What is the best update rule?” by exhibiting a large collection of
graphs indexed by a positive integer m, called m-free graphs, in which FIFOm is the optimal (w.r.t. the
mean hitting time) update rule, provided that the length of the tabu list is at most m. In particular, the
1-free class contains all graphs. Therefore, FIFO1 is the optimal policy on every graph if the tabu list
contains at most one element.

3. We compare the performances of three collections of classical update rules, i.e., FIFOm, RANDm,
and LRUm, according to the length m of the tabu list. Our results show that no general answer can be
given. For some classes of topologies, the mean hitting time decreases when the size of the memory
increases. But, counter-intuitively, there exist cases where having more memory is a penalty: We exhibit
topologies where the mean hitting time increases when the length of the tabu list increases.
A important (perhaps surprising) consequence of our results is that for every update rule FIFOm with
m > 2, there exists a graph and two vertices x, y such that the mean hitting time from x to y using
FIFOm is strictly greater than that of the simple random walk. By contrast, FIFO1 always yields
smaller mean hitting times than the simple random walk.

Related Work. For a general account on simple random walks, we refer to the survey [3] and the forthcoming
book [4].

Random walks with memories have received much less attention. Most analytical results deal with infi-
nite graphs, which are irrelevant for our purposes. For example, there are results on self-avoiding random
walks for infinite graphs, see the survey [5].

On finite graphs, [6] and [7] study random walks that attach memories on the vertices of the graph.
Nevertheless, no theoretical analysis of these solutions are yet available.

In [8], the authors study non-backtracking random walk on finite and infinite connected graphs with min-
imum degree two. In particular, they show that for each finite graph, except cycles, FIFO1 is irreducible.
Consequently, the mean hitting time of FIFO1 on these graphs is also finite. Our first result is more general
than this latter assertion because it deals with all finite connected graphs and a class of update rules that
includes FIFO1.

Outline. The description of a random walk equipped with a tabu list is given in Section 2. Section 3, 4 and
5 describe the three main contributions of this paper. Section 6 gives concluding remarks and perspectives.

Due to the lack of space, definitions are intuitively described and only sketches of proof are provided.
All formal definitions and proofs are given in the technical report [9] online at the following address:

http://www-verimag.imag.fr/˜gerbaud/docs/rwtl.pdf

2 Tabu Random Walks and Update Rules

In our framework, the walker evolves on a simple, undirected and connected graph. Besides, we assume that
the vertex set is finite and contains at least two vertices.
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2.1 Tabu Random Walks

A tabu random walk on a simple graph is a partially self-avoiding random walk, where the walker is endowed
with a finite memory and can jump from a node to another, provided that they are neighbors. The memory
of the walker, called tabu list, contains a part of the vertices already visited by the walker. At step n, the
position of the walker is represented by the random variable Xn and the current tabu list by the random
variable Tn. We will denote by T i

n the i-th element of Tn. The successive ordered pairs (Xn, Tn)n>0 is a
Markov chain, called tabu chain. The tabu random walk is the sequence (Xn)n>0 of the successive positions
of the walker.

At each step, the walker avoids to revisit vertices which are present in the current tabu list, unless he is
forced to. More precisely, for every non-negative integer n, the next visited vertex Xn+1 is uniform on the
set formed by the neighbors of the current vertex Xn which are not in the tabu list Tn. If this is not possible
because all neighbors of Xn are already in the tabu list Tn, then the next visited vertex Xn+1 is uniform on
the neighborhood of the current vertex Xn. Afterward, the next tabu list Tn+1 is obtained using an update
rule.

2.2 Update Rules

The policy to insert or remove occurrences of vertices in the tabu list is called the update rule and denoted
by Rm, where m is a parameter that gives the maximum number of elements m in the tabu list, that is its
length. By extension, m also called the length of the update rule. When the dependence on the update rule
Rm needs to be emphasized, we will denote (Xn(Rm), Tn(Rm))n>0 the associated tabu chain.

Every update rule works as follows:

(1) First, concatenate the current vertex Xn and the current tabu list Tn, the concatenation being noted
Xn · Tn.

(2) Then, possibly remove an element of Xn · Tn.

Note that according to (2), for some policies, the first element of the concatenation Xn ·Tn might be directly
discarded, which means that the current vertex Xn is actually not inserted in the tabu list, i.e., Tn = Tn+1.

The formal definitions of a tabu random walk and of an update rule are given in [9]. Below, we describe
the construction of the tabu list according to a given update rule Rm. A tabu list is said to be full if its length
is m. At step n, if the current tabu list Tn is not full then all elements of Tn distinct from the current vertex
Xn are kept, and one of the three disjoint cases occurs:

1. Xn is not inserted and all its occurrences in Tn are kept: Tn+1 = Tn.
2. Xn is inserted and all its occurrences in Tn are kept: Tn+1 = Xn · Tn.
3. Xn is inserted and one of its occurrences in Tn is removed: there exists a random integer Cn+1 in
{i ∈ {2, . . . , |Tn| + 1} : T i−1

n = Xn} such that Tn+1 = Xn · T 1
n · · ·T

Cn+1−2
n · TCn+1

n · · ·T |Tn|
n .

Besides, the law of the random variable Cn+1, conditionally on (Xn, Tn), is fixed by the update rule.

If the tabu list Tn is full, then either case 1 occurs or one element is removed from Tn before Xn is
inserted. Formally, there exists a random integer Cn+1 in {1, . . . ,m+ 1} such that

Tn+1 =

{
Tn if Cn+1 = 1 ,

Xn · T 1
n · · ·T

Cn+1−2
n · TCn+1

n · · ·Tm
n if Cn+1 ∈ {2, . . . ,m+ 1} .
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Similarly, the law of the random variable Cn+1, conditionally on (Xn, Tn), is fixed by the update rule. Note
that when the tabu list is full, case 2 is forbidden in order to ensure that the length of Tn+1 still remains less
than or equal to m: Xn cannot be inserted in Tn without removing any element of Tn.

We highlight the fact that the law of the new tabu list only depends on the occurrences of the current
vertex in the current tabu list: given these occurrences, the labels of the vertices does not matter. In other
words, we exclude from our study the update rules that explicitly use the value of the labels, e.g., a rule
which has a special case for a vertex with label “1”.

An update rule is trivial if the current vertex is never inserted in the tabu list when the tabu list contains
no element. For example, the unique update rule with zero length is trivial. For every trivial update rule,
if the tabu list is initially empty, then it remains empty forever and the walker performs a simple random
walk: at each step, the next visited vertex is chosen uniformly at random among the neighbors of the current
vertex.

2.3 Examples of Update Rules

For every non-negative integer m, we describe three update rules FIFOm, LRUm and RANDm of length
m by giving for every non-negative integer n, the law of the next tabu list Tn+1 conditionally on (Xn, Tn):1

FIFOm: The current vertex Xn is inserted at the beginning (left) of the current tabu list Tn. If Tn was
already full, then its rightmost element is firstly removed.

LRUm: All occurrences of the current vertex Xn in Tn are removed. If Tn is still full afterward, then its
rightmost element is removed. Then, Xn is inserted at the beginning (left) of Tn.

RANDm: If the current vertex Xn has an occurrence in Tn, then Tn+1 = Tn. Otherwise, if Tn is full, then
Tn+1 is formed by removing one of the m + 1 elements of Xn · Tn uniformly at random. If Tn is not
full, then Tn+1 = Xn · Tn.

Remark that FIFO0, LRU0 and RAND0 denote the unique trivial update rule with length 0. Note
also that when m equals 1 or 2, the update rules FIFOm and LRUm coincide and are both distinct from
RANDm. However, for every integer m > 3, FIFOm, LRUm and RANDm are distinct.

In general, a random walk equipped with a tabu list is not a Markovian process. However, when using
FIFOm (for some positive integer m), the next visited vertex only depends on the current one and on the
m previous steps: this is called a Markov chain with internal states; refer to [10, p. 177].

3 Finite Mean Hitting Times

For every update rule Rm of length m, the hitting time Hy(Rm) of every vertex y is the random num-
ber of steps needed by a walker to reach y. It is defined as the first instant when the tabu random walk
(Xn(Rm))n>0 reaches y: Hy(Rm) = inf{n > 0 : Xn(Rm) = y}. The mean hitting time E(x,ε)Hy(Rm) is
the mean hitting time of y when the walker starts at x with an empty tabu list ε. Our goal is to characterize
the class of update rules that have finite mean hitting times, for all graphs and all vertices x and y.

Definition 1 We define the two following conditions:

(C1) For every tabu list t and every position of the walker x, if t is not full and does not contain x, then
applying the update rule on x and t results in inserting x in t with a positive probability.

1 These rules match the requirements given in Subsection 2.2, see [9] for their formal definition.
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(C2) For every tabu list t and every position of the walker x, if t is full and does not contain x, then applying
the update rule on x and t results in removing rightmost element from t with a positive probability.

The conjunction of (C1) and (C2) is a necessary and sufficient condition that ensures the finiteness

Fig. 1. The flower F1.

of all mean hitting times for every associated tabu random walk on ev-
ery graph. The update rules FIFOm, LRUm and RANDm satisfy both
(C1) and (C2). On the contrary, an update rule of length 1 that keeps the
unique element of the tabu list until the corresponding vertex is visited
again does not satisfy (C2). Using such an update rule may lead to an
infinite mean hitting time. Indeed, on the flower graph F1 given in Fig-
ure 1,2 if the walker starts at vertex 1 with the empty tabu list and does
not hit vertex 0 at his first step, then its tabu list is 1 forever. Thus, the
walker never comes back to vertex 1 and, consequently, the walker will
never reach vertex 0. Hence, the mean hitting time to reach 0 from 1 is
infinite.

Theorem 2 Let Rm be an update rule of length m. The mean hitting time E(x,ε)Hy(Rm) is finite on all
graphs, for all vertices x and y, if and only if Rm is either trivial or satisfies (C1) and (C2).

Proof Outline. (⇒) We proceed by establishing the contrapositive. Consider a non trivial update rule that
either does not satisfy (C1) or does not satisfy (C2). Consider the graph with vertex set {0, . . . ,m + 2}
such that the vertices 1, . . . ,m + 2 form a clique and the vertex 0 has the vertex 1 as unique neighbor. We
assume that the walker starts at vertex 1 and does not hit the vertex 0 at its first step. Since the update rule
is not trivial, the vertex 1 is inserted in the tabu list with positive probability. Assume that this latter event
is realized. Then, the walker needs to return to the vertex 1 before hitting the vertex 0. Since all neighbors
of the vertex 1 distinct from 0 have degree m + 1, the removal of the vertex 1 is needed in order to hit the
vertex 0. We now show that the vertex 1 stays forever in the tabu list.

– First, note that with m = 1, (C1) is satisfied, since the update rule is not trivial and when the tabu list is
not full, it is empty. So, we need only to consider the case where m > 1 and that (C1) is not satisfied.
In this case, we can show that with positive probability, the walker can reach a position with a non-full
tabu list from which the tabu list will remain almost surely constant: this tabu list will never be full.
Consequently, in this scenario, we cannot remove any element in the tabu list, because the only way to
do so requires the tabu list to be full.

– Assume that (C1) is satisfied, but not (C2). Similarly, we can show that with positive probability, the
walker can reach the position m+ 1 with the full tabu list m,m− 1, . . . 1 (the rightmost element is 1).
From this configuration, since (C2) is false, the rightmost element of the tabu list (vertex 1) will never
be removed from the list.

Hence, in both cases, with positive probability, the hitting time of vertex 0 is infinite. This implies that the
mean hitting time of vertex 0 is infinite.

(⇐) Suppose first that the update rule is trivial. The walker then performs a simple random walk. Since
the simple random walk on each finite and connected graph is positive recurrent, all mean hitting times are
finite.

2 F` is defined in Section 5, for all values of `.
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Assume now that the update rule is not trivial and satisfies both (C1) and (C2). Consider a graph G. An
essential communicating class (see [11, p. 16]) for the corresponding tabu chain3 is a set of ordered pairs
formed by a vertex and a tabu list such that the tabu chain cannot exit from and visits each of its elements
infinitely often. Let x and y be two vertices of G. Starting from x with empty tabu list, the walker reaches
an essential communicating class of the tabu chain in mean finite time. Hence, it suffices to show that the
mean hitting time to y is finite, starting from some state of an essential communicating class. Therefore, we
assume now that the tabu chain starts from a state (z, t) of a communicating class C. (N.b., starting the walk
from (z, t), t may not be empty despite all vertices in t have never been visited.)

The restriction of the tabu chain to C is a positive recurrent Markov chain (see [11, p. 11]). So it suffices
to show that there exists a tabu list s such that (y, s) belongs to C. Besides, since G is connected, we may
assume that y is a neighbor of z. We proceed by contradiction by assuming that there exists one neighbor w
of z that will never be reached by the walker. As (z, t) is in C, z is visited infinitely often, so w must have an
occurrence in t. Besides, there exists a neighbor of z, w′, that does not have any occurrences in t (otherwise
t contains all the neighbors of z and there is a positive probability that the walker reaches w). So, when
located at z with tabu list t, the walker reaches w′ with positive probability. If this event is realized, then we
obtain a state (w′, u), where u does not contain any occurrence of w′. Moreover, as (z, t) is in C, (w′, u) is
also in C. Assume now that the walker is in w′ with tabu list u. We distinguish between two cases:

– First, assume that u is not full. According to (C1), w′ is inserted in the tabu list with positive probability.
Hence, we reach a state (w′′, u′) in C with |u′| = |u|+ 1. Since, by definition, the length of the tabu list
cannot decrease and since the tabu chain revisits (w′, u) almost surely, we reached a contradiction.

– Second, assume that u is full. According to (C2), the last element of the tabu list is removed with
positive probability. On one hand, (w′, u) is visited infinitely often and we remove infinitely often the
last element of the current tabu list. On the other hand, the walker never reaches the vertex w. Hence the
number of occurrences of w in its tabu list decreases. Eventually, all occurrences of w in the tabu list are
removed. Since (z, t) is visited infinitely often, the tabu list t cannot contain any occurrence of w. Once
again, we reached a contradiction.

�

4 Optimal Update Rule for m-Free Graphs

For each positive integer m, we identify a non trivial class of graphs on which FIFOm gives the smallest
mean hitting time, among all update rules of length at most m. Then, we describe a class of update rules that
yield tabu random walks with the same law than FIFOm on this class of graphs.

Definition 3 (m-Free Graphs) Let m be a positive integer. A graph is m-free if there does not exist any
path x0, . . . , xk with length k > 1 that satisfies the four following conditions:

1. The vertex xk has degree at least two.
2. For all integers j in {0, . . . , k − 1}, xj 6= xk.
3. All neighbors of xk of degree at least two belong to {x0, . . . , xk−1}.
4. k + 2d 6 m, where d is the number of neighbors of xk of degree one.

3 Recall that the tabu chain is the Markov chain (Xn, Tn)n>0.
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The idea behind Definition 3 is that for each m-free graph with m ≥ 2, a walker who uses FIFOm

always selects a destination that is not in his current tabu list. Hence, he avoids cycles of size less than or
equal to m.

As direct consequences of the definition, note that all graphs are 1-free and that all (m+ 1)-free graphs
are also m-free, for every positive integer m. Furthermore:

– A graph is 2-free if and only if it does not contain any triangle with one vertex of degree exactly two,
namely, if and only if it does not possess any vertex x such that Vx = {y, z} and {x, z} ⊆ Vy, where Vx

and Vy are, respectively, the set of neighbors of x and y.
– Every (m+ 1)-regular graph, namely with all vertices of degree m+ 1, is m-free. Indeed, assume that

x0, . . . , xk is a path that satisfies the four conditions stated above. Since d = 0, we infer that k 6 m.
Yet, xk has m + 1 > k neighbors of degree at least two while the set {x0, . . . , xk−1} has k elements.
Thus, the condition 3 is not satisfied and we reach a contradiction.

– Every graph with girth strictly greater than m + 1, that is, where every cycle has at least m + 2 edges,
is m-free.

The following theorem states that for m-free graphs, and with no more than m memories, FIFOm is
the optimal update rule.

Theorem 4 Let m be a positive integer and Rk be an update rule of length k 6 m. On a m-free graph, for
every two vertices x and y, E(x,ε)Hy(FIFOm) 6 E(x,ε)Hy(Rk).

Note that being m-free is not a necessary condition to have, for every two vertices x and y, E(x,ε)Hy(FI-
FOm) 6 E(x,ε)Hy(Rk) (Theorem 4 only gives a sufficient condition). Indeed, consider the clique with
vertex set {0, 1, 2}. The path (x0, x1, x2) = (0, 1, 2) ensures that the graph is not 2-free. Yet, for every two
distinct vertices x and y and for every update rule R, E(x,ε)Hy(R) > 3/2, while E(x,ε)Hy(FIFO2) = 3/2.

We now sketch a proof of Theorem 4.
Proof Outline. Let m be a positive integer and let G be a m-free graph. Since G is m-free, we can show,
by contradiction, that for every tabu random walk associated to FIFOm, the walker does not visit a vertex
if at least one occurrence of that vertex is in the current tabu list, except if the current vertex has degree one.
Now, consider an ordered pair (x, y) of vertices of G and an update rule Rk of length k in {0, . . . ,m}. Let
(Xn(Rk))

Hy(Rk)
n=0 be the associated tabu random walk on G that starts at x with empty tabu list and stops

when it reaches y. Assume that i is an integer such that Xi(Rk) has degree at least two while Xi+1(Rk)
has an occurrence in the tabu list Ti(Rk). In particular, this implies that all neighbors of Xi(Rk) have an
occurrence in Ti(Rk). We set

j = min{` > 2 : Xi(Rk) = Xmax{i−`,0}(Rk)} .

We remove all steps of (Xn(Rk))
Hy(Rk)
n=0 from i−j+1 to i. By applying iteratively this operation, we obtain

a random walk (X̃n)
H̃y

n=0 such that the walker does not visit a vertex if at least one occurrence of that vertex
is in the current tabu list, except if the current vertex has degree one.

Applying the same scheme recursively, we can prove that (X̃n)
H̃y

n=0 follows the same law than the first
Hy(FIFOm) steps of the tabu random walk (Xn(FIFOm))

Hy(FIFOm)
n=0 associated to the update rule

FIFOm, starting at (x, ε). Therefore, we infer that E(x,ε)H̃y = E(x,ε)Hy(FIFOm). By construction
H̃y 6 Hy(Rk) then we obtain E(x,ε)Hy(Rk) 6 E(x,ε)Hy(FIFOm). �

From the above theorem, we can deduce that the non-backtracking random walk (FIFO1) is the fastest
among all update rules of length less or equal to 1, since every graph is 1-free.
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Corollary 5 For every update rule R of length 0 or 1 and for every two vertices x and y of every graph,
E(x,ε)Hy(FIFO1) 6 E(x,ε)Hy(R).

Proposition 6 completes Corollary 5 and states that FIFO1 is the only update rule of length 1 such that,
on all graphs, all hitting times are smaller than those associated to the simple random walk, here represented
by FIFO0.

Proposition 6 If R is an update rule of length 1 distinct from FIFO1, then there exists a positive integer `
such that on the graph F`,4 E(1,ε)H0(FIFO0) < E(1,ε)H0(R) .

Theorem 4 shows that FIFOm is the best update rule of length at most m for m-free graphs. In Theo-
rem 7 below, we characterize a larger class of update rules which are optimal policies in that specific case;
for example, LRU is in this class as stated by Corollary 8 (as a direct application of Theorem 7).

Theorem 7 Consider a positive integer m and a m-free graph. Every update rule of length k in {0, . . . ,m}
yields tabu random walks with the same law as those associated to FIFOk if and only if it satisfies the two
following conditions:

– If the tabu list is not full and does not contain the current vertex, then it is inserted.
– If the tabu list is full and does not contain the current vertex, then the last element is removed and the

current vertex is inserted.

Proof Outline.
The two conditions stated above imply that the walker never has any occurrence of its current position

in its tabu list when the graph is m-free. Hence, the law of the tabu random walk is entirely determined by
the update rule when the current vertex does not have any occurrence in the tabu list.

Conversely, if an update rule of length k differs from FIFOk when the current vertex does not have any
occurrence in the tabu list, then the associated tabu random walks on a clique with m+ 3 vertices (which is
a m-free graph) follow two distinct laws. �

Corollary 8 Let m be a positive integer. On every m-free graph, for every integer k in {0, . . . ,m}, the
update rules LRUk and FIFOk yield tabu random walks with same law.

As a conclusion, within the class of m-free graphs and no more than m memories, we identified a class
of optimal update rules which contains FIFOm. For other cases, namely, for graphs that are not m-free or
using more that m memories, the question is still open.

5 Impact of the Length of the Update Rules

We study the effect of the size of the memory of the walker, on the mean hitting times using three collec-
tions of update rules: (FIFOm)m>0, (LRUm)m>0, and (RANDm)m>0. Our results shows that there is no
general trend, i.e., having more memory does not always increase the performances. To see this, we present
comparisons based on four particular collections of graphs: the cliques (Kr)r>2, the lollipops (Lr)r>3, the
lines (Pr)>2, and the flowers (F`)`>1. For a given update rule, Rm of length m, we study the mean hitting
time h(Rm) = E(1,ε)H0(Rm) of the vertex 0 for a walker that starts from vertex 1 with an empty tabu list.
The next paragraphs present the graphs and the comparisons. All the results are summed up in Proposition 9.

m-Free Graphs. Within the class of m-free graphs and with a FIFO update rule of length less than m,
4 Flower graphs F` are defined in Section 5.
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Fig. 2. The clique K6.

the greater the length is, the more efficient the algorithm is. Precisely, for
every positive integer m, and for all integers k such that k ≤ l ≤ m, we
have h(FIFOl) ≤ h(FIFOk) on every m-free graph. This is a direct
application of Theorem 4.

Cliques. For every integer r ≥ 2, the clique Kr is the complete graph
with vertex set {0, . . . , r−1}: each vertex is neighbor of all other vertices.
As an example, the clique K6 is drawn in Figure 2. Note also that Kr, for
r > 2 is (r − 2)-free.

In our technical report [9], we compute on the clique Kr an analytic expression of h(Rm) for a family
of update rules that contains (FIFOm)m>0, (LRUm)m>0, and (RANDm)m>0. Using this expression,

Fig. 3. The lollipop L6.

we compare all these update rules and conclude that the larger the length
of the update rule is, the smaller the mean hitting times are.

Lollipops. For every integer r > 3, Lr denotes the lollipop graph with
vertex set {0, . . . , r− 1} such that the vertices 2, . . . , r− 1 form a clique
with r − 1 elements and the vertex 1 has 0 and 2 as neighbors. As an
example, the lollipop L6 is drawn in Figure 3.

We use lollipop graphs to compare:

1. RAND3 against RAND2;
2. RANDk with k ≥ 4 against RANDm with 1 ≤ m < k; and
3. LRUk with k ≥ 3 against LRUm with 1 ≤ m < k.

A walker on the lollipop Lr that starts at the vertex 1 and does not hit the vertex 0 at its first move, must
stay on the set of vertices {3, . . . , r − 1} until its tabu list is full. Thus, increasing the length of the update
rule may raise the mean hitting time and this is actually the case for the comparisons above.

Lines. For every integer r > 2, Pr denote the graph line with vertex set {0, . . . , r − 1}

Fig. 4. The line P4.

and edge set {{i, i+1}, i ∈ {0, . . . r− 2}}. As an example, the graph P4 is
drawn in Figure 4.

Line graphs are used to compare:

1. FIFOk with k ≥ 3 against FIFOm with 0 ≤ m < k;
2. LRUk with k ≥ 3 against LRU0 (the simple random walk);
3. RANDk, with k ≥ 4 against RAND0 (the simple random walk); and
4. RAND3 against RANDm with m = 0, 1.

In the above comparison, the length of the update rule raises the mean
hitting time on a line. Indeed, assume that m is a positive integer and consider
a walker on Pr that starts at the vertex 1 and does not hit the vertex 0 at its first move. First, the walker must
go to the end of the line, that is to say the vertex r − 1, without backtracking. Then, its tabu list is almost
surely (r − 2) · · · (r −m − 1). Thus, the walker performs a simple random walk, until it reaches a vertex
with a neighbor not included in the tabu list. The duration of the simple random walk behavior increases
with the length of the update rule. Next, the walker goes to the vertex 0 without backtracking.

Flowers. For all positive integers `, we define the graph F` with vertex set {0, . . . , 2` + 1} as follows.
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Fig. 5. The flower F3.

Initially, the vertices 0 and 1 are isolated and for each integer x in
{1, . . . , `}, the vertices 2x and 2x + 1 are neighbor. Then, each vertex
is linked to the vertex 1, except the vertex 1 itself. As an example, the
flower F3 is drawn in Figure 5.

We deal with the flower graphs to compare:

1. FIFO2 against FIFOk, k = 0, 1;
2. LRU2 against LRUk, k = 0, 1; and
3. RAND2 against RANDk, k = 0, 1.

For the above comparison, increasing the length of the update rule
raises the mean hitting time in a flower graph. Indeed, consider a walker
in F` that starts at the vertex 1 and does not hit the vertex 0. Without loss of generality, assume that he
reaches vertex 2 at its first move. Now, the mean return time to the vertex 1 increases with the length of
the update rule. After having returned to the vertex 1, the walker either hits 0 or reaches again the previous
situation and must return again to vertex 1.

Results. The following proposition summarizes the above results and presents a complete view of the impact
of the length on the update rules for (FIFOm)m>0, (LRUm)m>0 and (RANDm)m>0.

Proposition 9 On the graph written at k-th row and m-th column,

1. h(FIFOk) > h(FIFOm):

@
@
@k
m

0 1 2 m > 3

0 ∅ K3 K3 K3

1 ∅ ∅ K3 K3

2 F7 F4 ∅ K4

k > 3 P4 P4 P4


Pm+2 if m < k ,

∅ if m = k ,

Kk+2 if m > k .

2. h(LRUk) > h(LRUm):

@
@
@k
m

0 1 2 > 3

0 ∅ K3 K3 K3

1 ∅ ∅ K3 K3

2 F7 F4 ∅ K4

> 3 P4 L4 L4


Kk+2 if m > k ,

∅ if m = k ,

Lm+2 if m < k .

3. h(RANDk) > h(RANDm):
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@
@
@k
m

0 1 2 3 m > 4

0 ∅ K3 K3 K3 K3

1 F5 ∅ K3 K3 K3

2 F5 F6 ∅ K4 K4

3 P4 P4 L5 ∅ K5

k > 4 P4 L5 L5 L5


Kk+2 if m > k ,

∅ if m = k ,

Lm+2 if m < k .

In each table, the symbol ∅ means that no such graph exists. Actually, symbol ∅ appears in two disjoint cases
: when k = m or when we compare FIFO0 to FIFO1. (In this latter case, for all graphs and all vertices
x and y, E(x,ε)Hy(FIFO0) > E(x,ε)Hy(FIFO1), by Corollary 5.)

The above proposition shows that, for the three studied collections of update rules, there is no general
trend: increasing the length of the memory does not always lead to a gain of performance and may even be
a penalty in some cases.

6 Conclusion and Perspectives

We analyzed classes of tabu random walks characterized by their update rules. Our goal was to study the
impact of the choice of an update rule on the performance of tabu random walks. We focus on classes of
update rules, for which we give a necessary and sufficient condition that ensures the finiteness of the mean
hitting time of the associated tabu random walk on every graph. Then, we exhibit non-trivial classes of
graphs, namely the m-free graphs, on which we exhibit the optimal update rules among those of length at
most m. Finally, we study the impact of the tabu list length on the efficiency of the walk. This latter study
shows that, except in one case (namely FIFO1), modifying the length of the tabu list does not guarantee a
better hitting time in all cases.

Our results could be extended to a larger class of update rules for which more removals are allowed; for
example, the list could be reset regularly. A preliminary study shows that this extension should be carefully
done: we believe that the necessary and sufficient condition of Theorem 2 could be adapted and that the
result on m-free graphs still holds. In future works, we would also like to compare the relative performance
of different update rules of same length. As a first step, we know that given a positive integer m, FIFOm

is faster than LRUm on line graphs, and LRUm is faster than RANDm on lollipop graphs (see [9]).
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volume 2 of Bolyai Society Mathematical Studies, pages 1–46. János Bolyai Mathematical Society, 1993.
4. D.J. Aldous and J.A. Fill. Reversible Markov Chains and Random Walks on Graphs. Book in preparation, http://www.

stat.berkeley.edu/˜aldous/RWG/book.html, 20XX.
5. G. Slade. The self-avoiding walk: A brief survey. To appear in Surveys in Stochastic Processes, Proceedings of the Thirty-third

SPA Conference in Berlin, 2009, to be published in the EMS Series of Congress Reports, eds. J. Blath, P. Imkeller, S. Roelly,
2010.

6. K. Li. Performance analysis and evaluation of random walk algorithms on wireless networks. In IPDPS Workshops, pages
1–8, 2010.

7. K. Altisen, S. Devismes, P. Lafourcade, and C. Ponsonnet. Routage par marche aléatoire à listes tabous. In Algotel’2011
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